

FirstSpirit™ FormEdit
FirstSpirit Version 5.0

Version 1.09

Status RELEASED

Datum 2013-06-18

Abteilung Product Management

Copyright 2012 e-Spirit AG

Dateiname FORM50EN_FirstSpirit_Modules_FormEdit

e-Spirit AG
Barcelonaweg 14
44269 Dortmund | Germany

T +49 231 . 477 77-0
F +49 231 . 477 77-499

 info@e-spirit.com
 www.e-spirit.com

http://www.e-spirit.com/
mailto:info@e-spirit.com
http://www.e-spirit.com/en

FirstSpirit™ FormEdit

 FirstSpirit V 5.0 FORM50EN_FirstSpirit_Modules_FormEdit 1.09 RELEASED 2013-06-18 1

Inhaltsverzeichnis

1 Introduction ... 4

1.1 Overview of the functions .. 4

1.2 Topics covered in this document .. 5

1.3 Layout and function .. 6

2 Installation and Configuration ... 7

2.1 Installing the module on the server .. 7

2.2 Installing the project component ... 8

2.2.1 Adding the project component ... 8

2.2.2 Adding the template to the project.. 9

2.3 Installing the web application in the project ... 10

2.3.1 Configuring the web application .. 11

2.4 Live-server side logging .. 13

3 Configuration .. 14

3.1 Creating the logger ... 14

3.2 Logger configuration of the processing .. 17

3.2.1 Configuring log file processing .. 17

3.2.2 Configuring CSV processing .. 19

3.2.3 Configuring database processing ... 19

3.2.4 Configuring e-mail processing ... 21

3.2.5 Configuring URL processing .. 23

3.3 E-mail configuration file ... 25

3.4 Autocomplete request .. 29

FirstSpirit™ FormEdit

 FirstSpirit V 5.0 FORM50EN_FirstSpirit_Modules_FormEdit 1.09 RELEASED 2013-06-18 2

3.5 "fs-formlogger.ini" configuration file ... 30

4 Creating Forms .. 31

4.1 Form layout ... 31

4.2 Form configuration .. 32

4.2.1 form-start .. 32

4.2.2 form-block .. 36

4.2.3 form-divider .. 36

4.2.4 form-end ... 37

4.3 Available form elements .. 38

4.3.1 Form component "text" .. 39

4.3.2 Form component "textarea" .. 41

4.3.3 Form component "RadioButtons" ... 43

4.3.4 Form component "Checkboxes" ... 46

4.3.5 Form component "Password" .. 49

4.3.6 Form component "Hidden" .. 51

4.3.7 Form component "Autocompleter" ... 52

4.3.8 Form component "combobox standard" ... 54

4.3.9 Form component "combobox query" ... 56

4.3.10 Form component "combobox date" .. 59

4.3.11 Form component "fileupload" ... 62

4.3.12 Form component "captcha" .. 63

5 Media Required and their Function ... 66

5.1 Stylesheet file ... 66

5.2 Javascript file .. 66

5.3 jQuery .. 66

FirstSpirit™ FormEdit

 FirstSpirit V 5.0 FORM50EN_FirstSpirit_Modules_FormEdit 1.09 RELEASED 2013-06-18 3

5.4 Form validation ... 67

5.5 Autocompleter .. 67

6 "Auto Completion" Concept ... 69

7 Case Study: "Competition" .. 71

7.1 Creating the form ... 71

7.2 Creating the mail template .. 72

7.3 Creating the logger configuration (e-mail) ... 74

7.4 Creating the logger configuration (database) ... 75

7.5 Creating the configuration file "fs-formlogger.ini" .. 76

7.6 Referencing and deploying ... 76

8 Legal Notices .. 77

FirstSpirit™ FormEdit

 FirstSpirit V 5.0 FORM50EN_FirstSpirit_Modules_FormEdit 1.09 RELEASED 2013-06-18 4

1 Introduction

The "FirstSpirit FormEdit" module consists of an editorial component for the creation of web

forms using the FirstSpirit Java or WebClient and a web component in the form of a servlet,

which accepts and processes data entered by the user.

 This document is provided for information purposes only. e-Spirit may change the

contents hereof without notice. This document is not warranted to be error-free, nor

subject to any other warranties or conditions, whether expressed orally or implied in law,

including implied warranties and conditions of merchantability or fitness for a particular

purpose. e-Spirit specifically disclaims any liability with respect to this document and no

contractual obligations are formed either directly or indirectly by this document. The

technologies, functionality, services, and processes described herein are subject to

change without notice.

1.1 Overview of the functions

The following forms of processing of form data are supported:

 Save the data in a file in CSV format:

This type of processing saves all values sent by the form within a freely definable file in CSV

format.

 Save the data in a JDBC-compatible database:

By using this type of processing, it is possible to save the values within a database. The

configuration setting can be used to define individual mapping for the form fields.

 Dispatch the data as an e-mail:

With this type of processing, any form data can be sent by e-mail. The e-mail layout can be

individually designed by means of an e-mail template. Among other things, the e-mails can

be sent with file attachments, and cc and bcc recipients are also possible.

 Output of the data in the log file of the servlet engine:

This function is used to output all values of the form within the log files of the servlet engine,

in which the FormServlet is initialised.

 Calling a URL with parameter passing

This function enables a URL with the defined parameters to be called, without the user

FirstSpirit™ FormEdit

 FirstSpirit V 5.0 FORM50EN_FirstSpirit_Modules_FormEdit 1.09 RELEASED 2013-06-18 5

seeing this page in the browser. (e.g. tracking)

Further, it is possible to evaluate the forms via your own implementations. The processing

methods named above can also be combined with each other.

1.2 Topics covered in this document

Chapter 1: Provides a brief introduction to the layout and functional scope of the "FirstSpirit

FormEdit" module (from page 4).

Chapter 2: Describes installation of the "FirstSpirit FormEdit" module on the server and

installation of the web component in a project (from page 7).

Chapter 2.4: This chapter explains configuration of the "FirstSpirit FormEdit" module (from page

13).

Chapter 4: Describes the creation of the form for the "FirstSpirit FormEdit" module and lists all

the available form elements (from page 31).

Chapter 5: This chapter describes use of the exemplary stylesheet file "formedit_css", with

which form components can be quickly and easily adjusted. In addition, use and the functions of

the "jQuery" framework and its plug-ins are explained, with whose help, for example, the form

components used can be checked for content correctness while it is being entered (from page

66).

Chapter 6: This chapter explains the example of the auto completion function supplied with the

package. The chapter acts as a concept for developing your own solutions for finding

meaningfully completed terms.

Chapter 7: This chapter uses an example to describe the actions an editor must perform to

prepare a form for a competition, which not only sends data by e-mail but also stores the data

entered in a database (from page 71).

FirstSpirit™ FormEdit

 FirstSpirit V 5.0 FORM50EN_FirstSpirit_Modules_FormEdit 1.09 RELEASED 2013-06-18 6

1.3 Layout and function

The following graphic shows the module's layout and how it functions using the example of the

live server. The web and application servers used in FirstSpirit are used for use of the module

within the preview or staging.

Figure 1-1: Layout and function

FirstSpirit™ FormEdit

 FirstSpirit V 5.0 FORM50EN_FirstSpirit_Modules_FormEdit 1.09 RELEASED 2013-06-18 7

2 Installation and Configuration

"FirstSpirit FormEdit" is installed in five steps:

 Installation of the module: see Chapter 2.1 page 7

 Installation of the project component: see Chapter 2.2.1 page 8

 Installation of the supplied templates: see Chapter 2.2.2 page 9

 Installation of the web component: see Chapter 2.3 page 10

 Configuration of the web component: see Chapter 2.3.1 page 11

2.1 Installing the module on the server

The "FirstSpirit FormEdit module" must first be installed within the server and project

configuration application. To this end, the "Modules" menu entry is selected in the "Server

Properties" area. Click the "Install" button to open a file selection dialog. The fsm file to be

installed can be selected here. The successfully installed module is then displayed in the "Server

Properties" dialog:

Figure 2-1: Installing the module on the FirstSpirit server

The project application "FS FormEdit ProjectConfiguration", the web application "FS FormEdit",

and the library “FS FormEdit Scripts” are parts of the "FirstSpirit FormEdit" module.

FirstSpirit™ FormEdit

 FirstSpirit V 5.0 FORM50EN_FirstSpirit_Modules_FormEdit 1.09 RELEASED 2013-06-18 8

The Project Application provides media, page, section, script and table templates which can be

used to design forms. The component is "visible" for the "Project" area. It is therefore a "project

locale" component. This can be added following installation of the project component within the

required projects (see Chapter 2.2.1 page 8).

The web application provides servlets, which can be used and called within the project. The

component is "viewable" for the "Project/Web" areas. It is therefore a "web locale" component.

This can be added to the different web areas (previews, staging, live, webedit) within the required

projects following installation (see Chapter 2.3, page 10).

The library provides the classes that are used from within the provided scripts.

 After installing the module it’s necessary to set “All permissions” for this module by

clicking on the configure button.

For further information on this dialog, see FirstSpirit Manual for Administrators.

2.2 Installing the project component

2.2.1 Adding the project component

The project component must now be installed in the required project. To do this, the "Project

Components" menu entry within the project properties is opened.

FirstSpirit™ FormEdit

 FirstSpirit V 5.0 FORM50EN_FirstSpirit_Modules_FormEdit 1.09 RELEASED 2013-06-18 9

Figure 2-2: Installing the project component

Add: Click the button to open the "Add" dialog. The list shows all project components installed on

the server (see Chapter 2.1 page 4). Select the "FS FormEdit ProjectConfiguration" entry.

For further information on this dialog, see FirstSpirit Manual for Administrators.

2.2.2 Adding the template to the project

Figure 2-3: Configuring the project component

Configure: Select the "FS FormEdit ProjectConfiguration" entry just added and click the

"Configure" button. Select a database layer from the "Schema" combobox and click "Import

templates".

The selection list contains all database layers approved for the project. If you have not used any

layers to date, or if you want to use your own database for the module, select "New layer". If this

option is selected, a new layer is generated, which points to FirstSpirit's internal Derby database.

For further information on database layers, please refer to the FirstSpirit Manual for

FirstSpirit™ FormEdit

 FirstSpirit V 5.0 FORM50EN_FirstSpirit_Modules_FormEdit 1.09 RELEASED 2013-06-18 10

Administrators.

 After you have clicked the "Import templates" button and close the dialog, it is not

possible to make any more changes to the configuration. Renewed importing is only

possible by means of "Delete" and renewed "Add"-ing of the project component.

2.3 Installing the web application in the project

The web application must now be installed in the required project. To do this, the "Web

Components" menu entry is opened within the project properties. The web components for a

project can be activated in this area.

Figure 2-4: Installing the web application within the web areas

Four different web areas exist for each project. The respective tab can be used to individually

enable and configure the web components for each area:

Figure 2-5: Web areas within a project

 Preview: Location for the project content, for which a preview has been requested.

 QA (staging): Location for the generated project content

FirstSpirit™ FormEdit

 FirstSpirit V 5.0 FORM50EN_FirstSpirit_Modules_FormEdit 1.09 RELEASED 2013-06-18 11

 Production (live): Location for the deployed project content

 WEBedit: Location for the project content if using a project-locale WEBedit environment

Add: Click the button to open the "Add" dialog. The list displays all web components installed on

the server (see Chapter 2.1 page 4).

After adding them to a web area, it is possible to configure the components; either with a

web.xml generated by the component or a generic GUI (see Chapter 2.3.1 page 11). Following

configuration, the components must then be enabled. A component within a project can be

enabled or disabled for specific areas only.

On configuring for production (live), note that there is no automatic deployment of the web

applications and their configuration files; instead, the .war file generated using the "Download"

button must be manually transferred to the live server.

For further information on this dialog, see FirstSpirit Manual for Administrators.

2.3.1 Configuring the web application

Figure 2-6: Configuring the web application

Different parameters are available for configuring "FirstSpirit FormEdit".

OK Redirect: Use this field to specify the path to the file displayed following successful sending

of the form data. This value is used if a special page was not given in the form (see Chapter

4.2.1 page 32). The forwarding behaviour can be influenced using the "redirect:" or "forward:"

prefix. "forward:ok.jsp", for example, would generate forwarding with all parameters to the page

FirstSpirit™ FormEdit

 FirstSpirit V 5.0 FORM50EN_FirstSpirit_Modules_FormEdit 1.09 RELEASED 2013-06-18 12

ok.jsp. If neither "forward:" nor "redirect:" is given, redirect always takes place.

Error Redirect: Use this field to specify the path to the file displayed following incorrect sending

of the form data. This value is used if a special page was not given in the form (see Chapter

4.2.1 page 32). The forwarding behaviour can be influenced using the "redirect:" or "forward:"

prefix. "forward:error.jsp", for example, would generate forwarding with all parameters to the

page error.jsp. If neither "forward:" nor "redirect:" is given, redirect always takes place.

Form Encoding: Use this field to specify the encoding to be used for sending the form data. This

is also a retrieval (fall-back)) value, if no encoding was given in the configuration of a processing

component (see Chapter 3.2 page 17). Examples are "UTF-8" or "ISO-8859-1".

 Always ensure that the encoding chosen matches the encoding used in the

generated pages (MetaTags or encoding of the language in the server and project

properties).

Path Prefix: Use this field to specify a prefix, which is placed in front of the path to the mail

template, in order that it can be used. This prefix describes the partial path between the WebApp

root and the folder created by FirstSpirit. For example, for the staging environment, this would be

the schedule ID.

Loggers.ini Path: The path to the configuration file fs-formlogger.ini must be given in this

field. If this field is empty, or if the file cannot be found, an empty configuration file is used.

Staging example:

21090/de/conf/fs-formlogger.ini

The schedule ID – here 21090 – is placed in front of the path for the staging environment.

Live example:

de/conf/fs-formlogger.ini

The path to be given here can also be given as an absolute value. This

example searches for the file relative to the WebAppRoot.

Captcha Width: Use this field to determine the display width of the Captcha graphic in pixels. If

this field is empty, an internal retrieval value of the servlet is used: 100.

Captcha Height: Use this field to determine the display height of the Captcha graphic in pixels. If

FirstSpirit™ FormEdit

 FirstSpirit V 5.0 FORM50EN_FirstSpirit_Modules_FormEdit 1.09 RELEASED 2013-06-18 13

this field is empty, an internal retrieval value of the servlet is used: 100.

Captcha Chars: Use this field to specify the number of characters displayed in the Captcha

graphic. If this field is empty, an internal retrieval value of the servlet is used: 6.

2.4 Live-server side logging

For easier error analysis the FormEdit module can log some information to an appropriate logfile.

This logging uses the log4j framework therefore it is necessary to configure log4j for your

webapplication accordingly, in case this wasn’t done before. Configuring log4j happens by

putting the log4j configuration file log4j.properties into the /WEB-INF/classes directory. In

case this directory doesn’t exist, it can be added manually.

An exemplary log4j configuration file could look in the following way:

log4j.rootLogger=debug, stdout, R

log4j.appender.stdout=org.apache.log4j.ConsoleAppender

log4j.appender.stdout.layout=org.apache.log4j.PatternLayout

Pattern to output the caller's file name and line number.

log4j.appender.stdout.layout.ConversionPattern=%5p [%t] (%F:%L) - %m%n

log4j.appender.R=org.apache.log4j.RollingFileAppender

log4j.appender.R.File=example.log

log4j.appender.R.MaxFileSize=100KB

Keep one backup file

log4j.appender.R.MaxBackupIndex=1

log4j.appender.R.layout=org.apache.log4j.PatternLayout

log4j.appender.R.layout.ConversionPattern=%p %t %c - %m%n

Please consider that depending on the configuration the logfile may also contain information from

other modules.

FirstSpirit™ FormEdit

 FirstSpirit V 5.0 FORM50EN_FirstSpirit_Modules_FormEdit 1.09 RELEASED 2013-06-18 14

3 Configuration

For this section, it is assumed that the reader is familiar with handling FirstSpirit "Data sources"

(content).

For information about handling content, please refer to the FirstSpirit Manual for Developers and

the FirstSpirit Manual for Editors (JavaClient).

The various process options of the form data are configured in the project by so-called loggers.

Each logger is assigned a specific processing type (e.g. MailLogger) and appropriate

parameters. The various loggers are maintained as data sets (content store data) in a data

source (content). The logger configuration file "fs-formlogger.ini“ is generated on the basis of the

logger configuration. The content schema and table templates necessary for this are generated

on installation of the project component. To create loggers, it is now only necessary to create

content for the table template "form_edit.formLogger“. For information on the logger types and

their configuration options, please refer to Chapter 3.2 from page 17.

 Please ensure you set mapping for the missing languages within the table template

"form_edit.formLogger". (On delivery, only "German" is mapped.) Additional columns with

"_<language abbreviation>" should be created for the language-dependent

"formLogger_description" column, e.g. "formLogger_description_EN".

3.1 Creating the logger

Open the project in JavaClient. There are now two options for creating or editing the logger:

1. directly via the content (content: FormLogger) in the Content Store

Figure 3-1: New data record (Content)

FirstSpirit™ FormEdit

 FirstSpirit V 5.0 FORM50EN_FirstSpirit_Modules_FormEdit 1.09 RELEASED 2013-06-18 15

2. from the "form-start" section (see Chapter 4.2.1 page 32)

Figure 3-2: New data record (form start)

Clicking the "New Entry" button in the content view or in the input component within the

"formstart" section to open the following form:

Figure 3-3: Creating the logger

FirstSpirit™ FormEdit

 FirstSpirit V 5.0 FORM50EN_FirstSpirit_Modules_FormEdit 1.09 RELEASED 2013-06-18 16

All logger-specific data is entered in this form:

Logger name: Here, the logger can be given a name. The name is used as a reference name

within the configuration file. The name may not contain any spaces or special characters/symbols

and must be unique throughout the whole project.

Logger type: The logger type is required for creating the logger configuration file "fs-

formlogger.ini" (see Chapter 3.5 page 30). The following logger types are available (for a

description, see Chapter 3.2 ff., from page 17):

 ConsoleLogger (see Chapter 3.2.1 page 17)

 CSVLogger (see Chapter 3.2.2 page 19)

 jdbcLogger (see Chapter 3.2.3 page 19)

 MailLogger (see Chapter 3.2.4 page 21)

 MailUploadLogger

 UrlLogger (see Chapter 3.2.5 page 23)

Description: Use this field to enter a brief description in this field, so that you can more easily

assign the logger at a later date. Input is optional, and has no effect on the function of the logger.

Logger parameters: The logger-specific configuration parameters can be specified here. You

can choose between two templates for an entry:

Figure 3-4: Add parameter

logger-text-value (preselected): Apart from one exception – choice of the mail template – this

FirstSpirit™ FormEdit

 FirstSpirit V 5.0 FORM50EN_FirstSpirit_Modules_FormEdit 1.09 RELEASED 2013-06-18 17

template is used for all parameters.

formLoggerPassword: This template can be used for parameters whose value shouldn’t be

displayed within FirstSpirit.

logger-template-ref: This template is chosen if a mail template is to be selected from the

structure for the MailLogger or MailUploadLogger.

The parameters which can be used here are explained in Chapter 3.2, from page 17.

Default logger: These radio buttons can be used to mark a logger as the "default" logger. If one

or several default loggers exist, they are also used for forms which cannot be assigned to a

logger, e.g. due to a configuration error.

Status: These radio buttons can be used to switch a logger to active (“enabled”) or inactive

(“disabled”). Only active loggers can be selected as a processing option in a form.

3.2 Logger configuration of the processing

Each logger is assigned a specific processing type (e.g. MailLogger) and appropriate

parameters. The various loggers are maintained as data sets (content store data) in a data

source (content). The logger configuration file "fs-formlogger.ini“ is generated on the basis of the

logger configuration.

3.2.1 Configuring log file processing

Task:

Output of the form data in the log file of the servlet engine.

Parameters (parameter name, expected value):

class de.espirit.firstspirit.opt.formedit.ConsoleLogger

prefix Text placed in front of the log output

Example:

FirstSpirit™ FormEdit

 FirstSpirit V 5.0 FORM50EN_FirstSpirit_Modules_FormEdit 1.09 RELEASED 2013-06-18 18

Figure 3-5: ConsoleLogger 1 parameters: ConsoleLogger parameters

Comments:

class This parameter is generated automatically and does not have to be

 created.

 .

FirstSpirit™ FormEdit

 FirstSpirit V 5.0 FORM50EN_FirstSpirit_Modules_FormEdit 1.09 RELEASED 2013-06-18 19

3.2.2 Configuring CSV processing

Task:

Output of the form data in a CSV file.

Parameters (parameter name, expected value):

class de.espirit.firstspirit.opt.formedit.CSVLogger

logFile (Absolute) path to the CSV file

encoding Encoding for sending the e-mail, e.g. "UTF-8"

Example:

Figure 3-6: ConsoleLogger 2 parameters: CSVLogger parameters

Comments:

class This parameter is generated automatically and does not have to be created.

logFile The path can be given as an absolute or relative to the web application (the

configured file has to be created manually).

encoding If this parameter is not given, the default value from the configuration of the web

application is used (see Chapter 2.3.1 page 11).

3.2.3 Configuring database processing

Task:

Output of the form data in a database (interfaced via JDBC).

Unlike the "simple" CSV and log file loggers, the JdbcLogger has several more parameters. The

following main aspects can be configured:

JDBC parameters (parameter name, expected value):

class de.espirit.firstspirit.opt.formedit.JdbcLogger

driver JDBC driver, e.g. "org.gjt.mm.mysql.Driver"

FirstSpirit™ FormEdit

 FirstSpirit V 5.0 FORM50EN_FirstSpirit_Modules_FormEdit 1.09 RELEASED 2013-06-18 20

user Database user, e.g. "cms"

password Password of the database user

url JDBC-URL to the database, e.g.

 "jdbc:mysql://localhost:3306/logging"

table Name of the table in the database in which the logging is to take

 place.

Example:

Figure 3-7: JdbcLogger parameters

Comments:

class This parameter is generated automatically and does not have to be created.

Mapping rules:

It is possible to define into which table column each form parameter is to be added. If the

parameters are not explicitly assigned, the software tries to use the parameter name as the

column name. If this also fails, an entry is only made in the "unmappedColumn" (see below, Item

Additional parameters).

The following schema applies here:

formparameter

Unique identifier of the form element

columnName

Name of the column in which the value is to be written

FirstSpirit™ FormEdit

 FirstSpirit V 5.0 FORM50EN_FirstSpirit_Modules_FormEdit 1.09 RELEASED 2013-06-18 21

Example:

Figure 3-8: JdbcLogger Mapping parameters

The value of the form element "address1" is to be written in the database, in the "street" field:

Additional parameters (Parameter name, expected value):

The following special rules can be specified in addition to the mapping rules:

csvColum Name of the table column in which the complete form data record is entered in

CSV form.

unmappedColumn Name of the table column in which all form data in CSV form NOT processed

by mapping rules is entered.

timestampColumn Name of the table column in which the date and time at which the request

is received are saved in timestamp format.

3.2.4 Configuring e-mail processing

Task:

Output of the form data in the form of an (configurable by means of a file) e-mail (optionally with

file attachment too).

The e-mail logger is used to send the form data by e-mail. A separate e-mail is sent for each

FirstSpirit™ FormEdit

 FirstSpirit V 5.0 FORM50EN_FirstSpirit_Modules_FormEdit 1.09 RELEASED 2013-06-18 22

form. The format and/or text of the e-mail can be configured in a (separate) file. Due to the form-

specific logger configuration, if necessary, an e-mail configuration file can be assigned to each

form.

Parameters:

class de.espirit.firstspirit.opt.formedit.JdbcLogger

de.espirit.firstspirit.opt.formedit.MailUploadLogger

smtpHost Name of the e-mail server

sender E-mail address of the sender

mailTemplatePath (absolute) path to the e-mail configuration file

encoding Encoding for sending the e-mail

smtpAuth (Optional) "true,“ if the smtp server requires authentication

(smtpAuth)

smtpAuthUser Name of the user for the authentication

smtpAuthPassword Password for the authentication

Example:

Figure 3-9: MailLogger parameters

Comments:

class This parameter is generated automatically and does not have to be created.

smtpHost The hostname of the mail server.

Sender Address that should be used as sender.

mailTemplatePath "logger-template-ref" should be selected here as the template. This

FirstSpirit™ FormEdit

 FirstSpirit V 5.0 FORM50EN_FirstSpirit_Modules_FormEdit 1.09 RELEASED 2013-06-18 23

can be used to select the template from the structure.

encoding If this parameter is not given, the default value from the configuration

of the web application is used (see Chapter 2.3.1 page 11).

smtpAuthUser / If the "smtpAuth" parameter is set with the value "true",

smtpAuthPassword these parameters are mandatory parameters and must be given.

"logger-text-password" can be selected here as the template, to

display the data concealed.

3.2.5 Configuring URL processing

Task:

URL call with parameter passed to another page

The URL logger is used to call another page (URL) with the option of passing on defined

parameters of the form. However, the user does not call this page in their browner. A classic

application case is, for example, tracking.

Parameters:

class de.espirit.firstspirit.opt.formedit.URLLogger

url.sendWithOutParams Pass parameters (true / false)

url.urlPrefix Destination URL (e.g.

 http://myserver.com/tracking.jsp)

url.param.<identifier> Unique identifier of the form component

 Similar to the JdbcLogger, it is necessary to map the form's parameters to new

parameters. In the case of URLLogger, only the parameters specified in the configuration

are attached to the UrlPrefix. If no parameters are configured, each parameter of the form

will be attached to the UrlPrefix.

FirstSpirit™ FormEdit

 FirstSpirit V 5.0 FORM50EN_FirstSpirit_Modules_FormEdit 1.09 RELEASED 2013-06-18 24

Example:

Figure 3-10: URLLogger parameters

Comments:

class This parameter is generated automatically and does not have

to be created.

url.param.<param> <param> Defines the parameter name, in the way it is to be attached to

the URL.

FirstSpirit™ FormEdit

 FirstSpirit V 5.0 FORM50EN_FirstSpirit_Modules_FormEdit 1.09 RELEASED 2013-06-18 25

3.3 E-mail configuration file

Task:

The e-mail to be sent is configured using the page template "mailtemplate". The interface is

similar to that of an e-mail program.

Figure 3-11: Mail template (header)

Recipient (To), Cc, Bcc: One or several recipients' e-mail addresses can be given here. If using

several addresses, they must be separated with a “;“ (semi-colon).

Reply to: An e-mail address for a reply can be entered here. This is used if the user clicks

"Reply" in their e-mail program.

Sender: An e-mail address can be defined here, which is displayed as the sender. Alternatively,

it is also possible to use %parameter% (here: %e-mail%) to access a form element which

contains a valid e-mail address. If a value is given here, the "sender" value given in the logger

FirstSpirit™ FormEdit

 FirstSpirit V 5.0 FORM50EN_FirstSpirit_Modules_FormEdit 1.09 RELEASED 2013-06-18 26

configuration is overwritten.

Subject: The subject of the e-mail to be sent can be given here.

Upload Attachments: Here you can configure the file attachments. This can be done on

the one hand, using %parameter% or using %all%.

%parameter% If this parameter is given, only the file passed via the form element

with the identifier "parameter" is attached to the e-mail. Several

files must be separated by commas (,).

 Example: %lebenslauf%,%foto%

%all% With this input, all files sent with the form are attached to the e-

mail.

Text: After the information required for the e-mail header has been give, the e-mail text is

entered This text can contain wildcards in the form %name%, which are used to access values

from the form.

FirstSpirit™ FormEdit

 FirstSpirit V 5.0 FORM50EN_FirstSpirit_Modules_FormEdit 1.09 RELEASED 2013-06-18 27

Figure 3-12: Mail template (message part)

The following parameters are available:

%date% Date on which the form is sent

%time% Time at which the form is sent

%csv% List of all form parameters as CVS

%unmapped% List of all form unedited parameters as CSV (see below)

In addition to these parameters, each form parameter can be used. This is done using the %

notation and the parameter name: %parameter%

Form data which has been sent, but was not output in the mail template via % notation, can be

output using the parameter %unmapped%.

Server attachments: By using this FS_LIST within a page of type mailtemplate the editor can

select files that shall be attached to the email automatically. E.g. if you would like to send a

FirstSpirit™ FormEdit

 FirstSpirit V 5.0 FORM50EN_FirstSpirit_Modules_FormEdit 1.09 RELEASED 2013-06-18 28

registration confirmation including your terms of use, you would select the appropriate file in this

FS_LIST.

To define the folder that contains the files you would like to send, you have to modify the link

template of the FS_LIST elements. The folder can be specified within the FOLDER Tag of the

FS_REFERENCE element. E.g. <FOLDER name=”root” store=”mediastore”/> will allow to select

files from the whole mediastore.

In addition the following variables have to be defined under Global settings / Project settings as

text fields (CMS_INPUT_TEXT):

ps_webappContentPath The path to the web application

ps_webappContentFolder The target folder for the deployment within

ps_webappContentPath.

These variables are used within the html channel of the link template.

FirstSpirit™ FormEdit

 FirstSpirit V 5.0 FORM50EN_FirstSpirit_Modules_FormEdit 1.09 RELEASED 2013-06-18 29

3.4 Autocomplete request

This page template is a functional example template. It is also possible to check data against a

database or similar. This file is not generally valid and must be adjusted for each specific

project, if the source is not an XML file. For further information please refer to Chapter 6 page

69.

Task:

This page template is used to process an input source such as XML. If the user makes an entry

in an autocomplete form field, the source given on this page is browsed through and the results

are shown to the user.

Figure 3-13: Autocomplete request

Comparator attribute: The attribute within the XML source file which is to be compared with the

user's input is given here.

Return text: Here you can define which attribute the XML source file is to show the user as the

return value.

XML source: Here you select the XML source file which is to provide the results.

FirstSpirit™ FormEdit

 FirstSpirit V 5.0 FORM50EN_FirstSpirit_Modules_FormEdit 1.09 RELEASED 2013-06-18 30

3.5 "fs-formlogger.ini" configuration file

This configuration file contains all the information of your forms or assignment to the processing

configurations and these configurations themselves. The content of this file is generically

generated by FirstSpirit during generation.

In order for this file to be correctly generated, a page based on the "logger-ini-file" template must

be created in the Page Store, and the object ID of the "form start" template, or the templates

generated by you which fulfil the function of the "form start" template, must be entered on this

page. The ID is displayed with the keyboard shortcut "ALT + P" in the selected section template

Figure 3-14: "fs-formlogger.ini" page

When referencing in the structure, note that the file is filed in the place given when configuring

the web component (see Chapter 2.3.1 page 11).

Further, the file name of the page must be correctly set in the Site Store. The name "fs-

formlogger" is used within this document:

Figure 3-15: File name of the configuration file

FirstSpirit™ FormEdit

 FirstSpirit V 5.0 FORM50EN_FirstSpirit_Modules_FormEdit 1.09 RELEASED 2013-06-18 31

4 Creating Forms

4.1 Form layout

A specific section template order must be adhered to when creating the form to ensure the form

works. The section template form-start (Chapter 4.2.1 page 32) always marks the start and the

section template form-end (Chapter 4.2.4 page 37) always marks the end of a form. Any number

of sections of the type form-block (Chapter 4.2.2 page 36) and form-divider (Chapter 4.2.3

page 36) can occur between these two sections.

Figure 4-1: Form templates

A form-block element can contain any number of form elements.

The section templates of the form editor provide all the form elements available in HTML and

also provide sufficient options for configuring the components. It is necessary to adjust to specific

design requirements first before using the components. On the one hand, this can be done by

direct adjustment of the HTML code in the section templates and / or by defining cascading style

FirstSpirit™ FormEdit

 FirstSpirit V 5.0 FORM50EN_FirstSpirit_Modules_FormEdit 1.09 RELEASED 2013-06-18 32

sheets in the integrated stylesheet file. Each form component can be individually assigned a

stylesheet class.

4.2 Form configuration

4.2.1 form-start

The section template "form-start" introduces a new form. The basic configurations, which solely

concern this form, can be made here.

FirstSpirit™ FormEdit

 FirstSpirit V 5.0 FORM50EN_FirstSpirit_Modules_FormEdit 1.09 RELEASED 2013-06-18 33

Figure 4-2: form-start section

FirstSpirit™ FormEdit

 FirstSpirit V 5.0 FORM50EN_FirstSpirit_Modules_FormEdit 1.09 RELEASED 2013-06-18 34

Form heading (text): Display of the form's heading

Form name (text): Unique identifier for the form ("name" attribute of the "form" element)

 This identifier may not contain any spaces or special characters/symbols, as the

form name is used as part of the servlet call.

Processing (ContentList): Selection and display of the loggers for this form

Alternative form evaluation page (page reference): If a logger is not wanted, a form evaluation

page can be given here as an optional alternative.

Captcha validation (checkbox): Activation of server-side captcha validation. If this checkbox is

enabled, the form must contain the captcha form element.

 As a default, the servlet is notified of the status by means of a concealed form field

(input type=“hidden“). This can be recognised by senders of spam. Instead of

<input type="hidden" name="useCaptcha" value="true" />

we recommend using the following jsp code in the template:

<% session.setAttribute(“useCaptcha“,“true“); %>

Client-side content check (checkbox): Activation of client-side content checking

Confirmation page (optional) (page reference): This form-specific confirmation page is

displayed if the e-mail has been successfully sent. If a page is selected here, the global

configuration in the web.xml is overwritten. The type of forwarding can be defined in the template

by a "forward:" or "redirect:" placed in front of the reference. If no prefix is given, redirection is to

the destination page.

<input type="hidden" name="okRedirect"

value="forward:$CMS_REF(st_noerrorPage)$" />

<input type="hidden" name="errorRedirect"

value="redirect:$CMS_REF(st_errorPage)$" />

As a default, no prefix is set in the template.

FirstSpirit™ FormEdit

 FirstSpirit V 5.0 FORM50EN_FirstSpirit_Modules_FormEdit 1.09 RELEASED 2013-06-18 35

Error page (optional) (page reference): This form-specific confirmation page is displayed if

sending the e-mail was unsuccessful. If a page is selected here, the global configuration in the

web.xml is overwritten. The type of forwarding can be defined in the template by a "forward:" or

"redirect:" placed in front of the reference. If no prefix is given, redirection is to the destination

page.

Captcha invalid (optional) (page reference): This form-specific page is displayed if the user has

not made any or has made an incorrect input. If a page is not selected here, the "error page" is

displayed instead (see above).

Send method (RadioButton): Use this component to specify the transmission mode for the form

values. Default selection: "POST“

File upload (checkbox): If this option is set, files can be passed to the web server via the form.

FirstSpirit™ FormEdit

 FirstSpirit V 5.0 FORM50EN_FirstSpirit_Modules_FormEdit 1.09 RELEASED 2013-06-18 36

4.2.2 form-block

Any number of form elements can be created within a "form-block" element. The order of the

components is irrelevant for the form's ability to function. Each component can be individually

configured. For example, stylesheet classes can be used and the display width and height of the

form defined. For precise information and configuration examples, please refer to Chapter 4.3,

from page 38.

Figure 4-3: form-block section

4.2.3 form-divider

The "form-divider" element generates a graphic separation within the form and otherwise has no

function.

FirstSpirit™ FormEdit

 FirstSpirit V 5.0 FORM50EN_FirstSpirit_Modules_FormEdit 1.09 RELEASED 2013-06-18 37

4.2.4 form-end

The "form-end" section template defines the end of the form.

Figure 4-4: form-end section

Note for mandatory fields: A note for mandatory fields can be given here; it is displayed below

the form fields.

Labelling for the Submit/Reset button: Enter the identifier (name) for the button, with which

the form data is sent or all the form's entries are deleted. If no entries are made, a button is not

generated.

Stylesheet class for buttons (optional): Here you can give the name of a stylesheet class for

the design of the buttons. If a class is not given, the buttons are displayed in the standard look-

and-feel of the browser or your stylesheet file.

FirstSpirit™ FormEdit

 FirstSpirit V 5.0 FORM50EN_FirstSpirit_Modules_FormEdit 1.09 RELEASED 2013-06-18 38

4.3 Available form elements

The form editor enables the editor to use the complete set of HTML form elements. As already

mentioned, before using the components it is advisable to make an adjustment to the HTML

source code together with the stylesheet file. In this way, individual design templates can be

adhered to and are available on the whole of the web page. However, the HTML tags of the form

elements should not be affected by the changes, to ensure correct function of the JavaScript

checks.

 The form components can only be used in the "form-block" section template!

To add a new form element, select an already created section of the type "form-block" and add a

new form element to the content area list:

Figure 4-5: Form elements

The following gives an overview of the available standard elements and their configuration

options and functions.

 The content of the form field can be accessed at a later date via the unique

identifier or unique group identifier. For example, if a mail / MailUploadLogger is used, this

takes place via %uniqueIdentifier%

FirstSpirit™ FormEdit

 FirstSpirit V 5.0 FORM50EN_FirstSpirit_Modules_FormEdit 1.09 RELEASED 2013-06-18 39

4.3.1 Form component "text"

This component provides the user with a form text field. The component must be assigned a

designator which is unique in this form ("name" attribute), so that the evaluation of the form and

check of its content can work properly.

FirstSpirit™ FormEdit

 FirstSpirit V 5.0 FORM50EN_FirstSpirit_Modules_FormEdit 1.09 RELEASED 2013-06-18 40

Figure 4-6: Form component "text"

FirstSpirit™ FormEdit

 FirstSpirit V 5.0 FORM50EN_FirstSpirit_Modules_FormEdit 1.09 RELEASED 2013-06-18 41

Labelling: Use this text field to enter the title of the form field.

Unique identifier ('name’ attribute): Use this text field to enter the unique identifier.

Default selection ('value’ attribute): Use this text field to enter text with which the form field is

filled.

Allow editing ('read only' attribute): This radio button is used to control whether the user may

edit the form field or not.

Content check (filled or valid value): This radio button can be used to create a check which

checks for content or valid data.

Number of characters ('maxlength' attribute): This text field can be used to define the

maximum number of characters that can be entered.

Display width: Use this field to specify the width of the form field in pixels.

Display height: Use this field to specify the height of the form field in pixels.

Stylesheet class ('class’ attribute): Use this text field to enter the name of a CSS class.

4.3.2 Form component "textarea"

The "Textarea" form component provides a multi-line text input field for the user. The component

must be assigned a designator which is unique in this form ("name" attribute), so that the

evaluation of the form and check of its content can work properly.

FirstSpirit™ FormEdit

 FirstSpirit V 5.0 FORM50EN_FirstSpirit_Modules_FormEdit 1.09 RELEASED 2013-06-18 42

Figure 4-7: Form component "textarea"

FirstSpirit™ FormEdit

 FirstSpirit V 5.0 FORM50EN_FirstSpirit_Modules_FormEdit 1.09 RELEASED 2013-06-18 43

Labelling: Use this text field to enter the title of the form field.

Unique identifier ('name’ attribute): Use this text field to enter the unique identifier.

Default selection ('value’ attribute): Use this text field to enter text with which the form field is

filled.

Allow editing ('read only' attribute): This radio button is used to control whether the user may

edit the form field or not.

Content check (filled or valid value): This radio button can be used to create a check which

checks for content or valid data.

Display width: Use this field to specify the width of the form field in pixels.

Display height: Use this field to specify the height of the form field in pixels.

Stylesheet class ('class’ attribute): Use this text field to enter the name of a CSS class.

4.3.3 Form component "RadioButtons"

This form component can be used to generate HTML radio buttons. On adding the radio buttons

in the "Options" area, ensure that a meaningful default is given for each radio button. The radio

buttons are shown with their corresponding designation (labelling), one after the other on the

right-hand side of the component.

4.3.3.1 "RadioButtons" subcomponent

This component can be added within a "form-block" section. The values which are the same for

all radio buttons are set in this section. The actual RadioButtons are added within a

ContentAreaList in this section.

FirstSpirit™ FormEdit

 FirstSpirit V 5.0 FORM50EN_FirstSpirit_Modules_FormEdit 1.09 RELEASED 2013-06-18 44

Figure 4-8: Form component "RadioButtons"

Labelling: Use this text field to enter the title of the form field.

Group identifier ('name’ attribute): Use this text field to enter the unique identifier.

Content check (filled): This radio button can be used to create a check which checks whether

FirstSpirit™ FormEdit

 FirstSpirit V 5.0 FORM50EN_FirstSpirit_Modules_FormEdit 1.09 RELEASED 2013-06-18 45

an entry has been selected.

Mandatory field note: A message which appears if the content check fails must be given for this

type of form field.

Stylesheet class ('class’ attribute): Use this text field to enter the name of a CSS class.

4.3.3.2 "RadioButton" subcomponent

This component can only be used within the form "RadioButtons" component. It is used to add

the actual radio buttons within the component named above.

Figure 4-9: Form component "RadioButton"

Labelling: Use this text field to enter the labelling of the option.

Value ('value’ attribute): Use this text field to enter the value for this option.

Preselection ('checked’ attribute): These radio buttons can be used to make a preselection,

FirstSpirit™ FormEdit

 FirstSpirit V 5.0 FORM50EN_FirstSpirit_Modules_FormEdit 1.09 RELEASED 2013-06-18 46

whether this form field should be selected or not.

Stylesheet class ('class’ attribute): Use this text field to enter the name of a CSS class.

4.3.4 Form component "Checkboxes"

This form component can be used to generate HTML checkboxes. When adding the checkboxes

in the "Options" area it is necessary to ensure that a meaningful value is given for each

checkbox. The checkboxes are shown with their corresponding designation (labelling), one after

the other on the right-hand side of the component.

4.3.4.1 "Checkboxes" subcomponent

This component can be added within a "form-block" section. The values which are the same for

all checkboxes are set in this section. The actual checkboxes are added within a ContentAreaList

in this section.

FirstSpirit™ FormEdit

 FirstSpirit V 5.0 FORM50EN_FirstSpirit_Modules_FormEdit 1.09 RELEASED 2013-06-18 47

Figure 4-10: Form component "Checkboxes"

Labelling: Use this text field to enter the title of the form field.

Group identifier ('name’ attribute): Use this text field to enter the unique identifier.

Content check (filled): These radiobuttons can be used to create a check, which checks

FirstSpirit™ FormEdit

 FirstSpirit V 5.0 FORM50EN_FirstSpirit_Modules_FormEdit 1.09 RELEASED 2013-06-18 48

whether or not at least one checkbox in this group has been selected.

Mandatory field note: A message which appears if the content check fails must be given for this

type of form field.

Stylesheet class ('class’ attribute): Use this text field to enter the name of a CSS class.

4.3.4.2 "Checkbox" subcomponent

This component can only be used within the form "Checkboxes" component. It is used to add the

actual checkboxes within the component named above.

Figure 4-11: Form component "Checkbox"

Labelling: Use this text field to enter the labelling of the option.

Value ('value’ attribute): Use this text field to enter the value for this option.

Preselection ('checked’ attribute): These radio buttons can be used to make a preselection,

FirstSpirit™ FormEdit

 FirstSpirit V 5.0 FORM50EN_FirstSpirit_Modules_FormEdit 1.09 RELEASED 2013-06-18 49

whether this checkbox should be selected or not.

Stylesheet class ('class’ attribute): Use this text field to enter the name of a CSS class.

4.3.5 Form component "Password"

This component can be used to provide a password field for the user. Here too, the editor must

assign a unique identifier for the component. Characters entered are shown in the component as

"*" (asterisks).

FirstSpirit™ FormEdit

 FirstSpirit V 5.0 FORM50EN_FirstSpirit_Modules_FormEdit 1.09 RELEASED 2013-06-18 50

FirstSpirit™ FormEdit

 FirstSpirit V 5.0 FORM50EN_FirstSpirit_Modules_FormEdit 1.09 RELEASED 2013-06-18 51

Figure 4-12: Form component "Password"

Labelling: Use this text field to enter the title of the form field.

Unique identifier ('name’ attribute): Use this text field to enter the unique identifier.

Default selection ('value’ attribute): Use this text field to enter text with which the form field is

filled.

Allow editing ('read only' attribute): This radio button is used to control whether the user may

edit the form field or not.

Number of characters ('maxlength' attribute): This text field can be used to define the

maximum number of characters that can be entered.

Display width: Use this field to specify the width of the form field in pixels.

Display height: Use this field to specify the height of the form field in pixels.

Stylesheet class ('class’ attribute): Use this text field to enter the name of a CSS class.

4.3.6 Form component "Hidden"

This form component can be used to create fields which are not displayed in the browser, but

can be evaluated in the servlet or PHP script, i.e. additional non-visible information. Here too, the

editor must assign a unique identifier for the component.

Figure 4-13: Form component "Hidden"

FirstSpirit™ FormEdit

 FirstSpirit V 5.0 FORM50EN_FirstSpirit_Modules_FormEdit 1.09 RELEASED 2013-06-18 52

Unique identifier ('name’ attribute): Use this text field to enter the unique identifier.

Default selection ('value’ attribute): Use this text field to enter text with which the form field is

filled.

4.3.7 Form component "Autocompleter"

This form component can be used to offer the user the convenience of having suggestions for

completion of their input provided while they are typing. Here too, the editor must assign a unique

identifier for the component.

FirstSpirit™ FormEdit

 FirstSpirit V 5.0 FORM50EN_FirstSpirit_Modules_FormEdit 1.09 RELEASED 2013-06-18 53

Figure 4-14: Form component "Autocompleter"

FirstSpirit™ FormEdit

 FirstSpirit V 5.0 FORM50EN_FirstSpirit_Modules_FormEdit 1.09 RELEASED 2013-06-18 54

Labelling: Use this text field to enter the title of the form field.

Unique identifier ('name’ attribute): Use this text field to enter the unique identifier.

Default selection ('value’ attribute): Use this text field to enter text with which the form field is

filled.

Request file: This component can be used to select a page from the structure which accepts the

input and returns the applicable values.

Content check (filled or valid value): This radio button can be used to create a check which

checks for content or valid data.

Number of characters ('maxlength' attribute): This text field can be used to define the

maximum number of characters that can be entered.

Display width: Use this field to specify the width of the form field in pixels.

Display height: Use this field to specify the height of the form field in pixels.

Stylesheet class ('class’ attribute): Use this text field to enter the name of a CSS class.

4.3.8 Form component "combobox standard"

The form "combobox standard" component provides the editor with a convenient way of making

a selection list available to the form user. The contents of the list and the number and layout are

freely formattable. Here the editor must give a unique group designator.

FirstSpirit™ FormEdit

 FirstSpirit V 5.0 FORM50EN_FirstSpirit_Modules_FormEdit 1.09 RELEASED 2013-06-18 55

Figure 4-15: Form component "combobox standard"

FirstSpirit™ FormEdit

 FirstSpirit V 5.0 FORM50EN_FirstSpirit_Modules_FormEdit 1.09 RELEASED 2013-06-18 56

Labelling: Use this text field to enter the title of the form field.

Group identifier ('name’ attribute): Use this text field to enter the unique identifier.

Visible entries ('size' attribute): Use this field to enter the number of visible entries as a

number.

Multiselect ('multiple’ attribute): These radio buttons are used to control whether several

entries in this form field can be selected or not

Content check (filled or valid value): This radio button can be used to create a check which

checks for content or valid data.

Options: The contents / selection options of the form field can be entered in this list.

Display width: Use this field to specify the width of the form field in pixels.

Display height: Use this field to specify the height of the form field in pixels.

Stylesheet class ('class’ attribute): Use this text field to enter the name of a CSS class.

4.3.9 Form component "combobox query"

The form "combobox query" component provides the editor with a convenient way of making a

selection list available to the form user. The contents of the list and the number and layout are

freely formattable. This special SelectBox filters and outputs the selection options from the

database via a "Query". Here the editor must give a unique group designator.

FirstSpirit™ FormEdit

 FirstSpirit V 5.0 FORM50EN_FirstSpirit_Modules_FormEdit 1.09 RELEASED 2013-06-18 57

Figure 4-16: Form component "combobox query"

FirstSpirit™ FormEdit

 FirstSpirit V 5.0 FORM50EN_FirstSpirit_Modules_FormEdit 1.09 RELEASED 2013-06-18 58

Labelling: Use this text field to enter the title of the form field.

Group identifier ('name’ attribute): Use this text field to enter the unique identifier.

Visible entries ('size' attribute): Use this field to enter the number of visible entries as a

number.

Multiselect ('multiple’ attribute): These radio buttons are used to control whether several

entries in this form field can be selected or not

Content check (filled or valid value): This radio button can be used to create a check which

checks for content or valid data.

Database query: Use this text field to enter the name (UID) of a database query (Query) in the

Template Store.

Column: Use this text field to enter the name of a database column or database field. The

values of this column are available to choose from in this form field.

Selected value(s) ('selected’ attribute): Use this text field to specify one or several values

which are preselected in the form field. If you specify several values, separate them with a ","

(comma).

Display width: Use this field to specify the width of the form field in pixels.

Display height: Use this field to specify the height of the form field in pixels.

Stylesheet class ('class’ attribute): Use this text field to enter the name of a CSS class.

FirstSpirit™ FormEdit

 FirstSpirit V 5.0 FORM50EN_FirstSpirit_Modules_FormEdit 1.09 RELEASED 2013-06-18 59

4.3.10 Form component "combobox date"

The form "combobox date" component provides the editor with a convenient way of making a

selection list available to the form user. The contents of the list, the number of entries and layout

are freely formattable. Three boxes are automatically generated in this special SelectBox, which

can be used to conveniently select a date. Here the editor must give a unique group designator.

 To convert into a correct date format within the servlet, a "toDate_“! is placed in

front of the unique identifier, in order to make the field identifiable for the servlet. If "date"

was entered as the unique identifier, the field's identifier is "toDate_date" and must

therefore also be used in this form, e.g. in the mail template.

FirstSpirit™ FormEdit

 FirstSpirit V 5.0 FORM50EN_FirstSpirit_Modules_FormEdit 1.09 RELEASED 2013-06-18 60

Figure 4-17: Form component "combobox date"

FirstSpirit™ FormEdit

 FirstSpirit V 5.0 FORM50EN_FirstSpirit_Modules_FormEdit 1.09 RELEASED 2013-06-18 61

Labelling: Use this text field to enter the title of the form field.

Group identifier ('name’ attribute): Use this text field to enter the unique identifier.

Visible entries ('size' attribute): Use this field to enter the number of visible entries as a

number.

Content check (filled or valid value): This radio button can be used to create a check which

checks for content or valid data.

Start year: Use this text field to enter a date (year). Date selection is possible from this value up

to the value of the "End year" field.

End year: Use this text field to enter a date (year). Date selection is possible from the value of

the "Start year" field up to this value.

Display width: Use this field to specify the width of the form field in pixels.

Display height: Use this field to specify the height of the form field in pixels.

Stylesheet class ('class’ attribute): Use this text field to enter the name of a CSS class.

FirstSpirit™ FormEdit

 FirstSpirit V 5.0 FORM50EN_FirstSpirit_Modules_FormEdit 1.09 RELEASED 2013-06-18 62

4.3.11 Form component "fileupload"

This form component enables the user to send files via the form. In addition, it is possible to limit

the file formats. Here too, the editor must assign a unique identifier for the component.

Figure 4-18: Form component "fileupload"

FirstSpirit™ FormEdit

 FirstSpirit V 5.0 FORM50EN_FirstSpirit_Modules_FormEdit 1.09 RELEASED 2013-06-18 63

Labelling: Use this text field to enter the title of the form field.

Unique identifier ('name’ attribute): Use this text field to enter the unique identifier.

Content check (filled or valid value): This radio button can be used to create a check which

checks for content or valid file types.

Accepted file formats: Use this text field to enter a comma-separated list of file extensions. An

evaluation only takes place if "valid file type" is activated for the content check. Several file

extensions must be separated from each other by "|".

Display width: Use this field to specify the width of the form field in pixels.

Display height: Use this field to specify the height of the form field in pixels.

Stylesheet class ('class’ attribute): Use this text field to enter the name of a CSS class.

4.3.12 Form component "captcha"

This form component is used to generate a captcha graphic, a link, which generates a new

graphic, and a text field for entering the captcha code, in the form. This component should be

used to refuse use of the form by non-human users.

FirstSpirit™ FormEdit

 FirstSpirit V 5.0 FORM50EN_FirstSpirit_Modules_FormEdit 1.09 RELEASED 2013-06-18 64

 Select the "Captcha Validation" checkbox in the "form-start" section so that the input

is checked by the servlet.

Figure 4-19: Form component "captcha"

Labelling: Use this text field to enter the title of the form field.

Number of characters ('maxlength' attribute): This text field can be used to define the

maximum number of characters that can be entered.

FirstSpirit™ FormEdit

 FirstSpirit V 5.0 FORM50EN_FirstSpirit_Modules_FormEdit 1.09 RELEASED 2013-06-18 65

Display width: Use this field to specify the width of the form field in pixels.

Display height: Use this field to specify the height of the form field in pixels.

Stylesheet class ('class’ attribute): Use this text field to enter the name of a CSS class.

Overlapping of the characters is affected by the height, width and number of characters to be

rendered (see Chapter 2.3.1 page 11). Always ensure that the characters are not too easy to

read, as otherwise they can be read by spam robots. With the default configuration of 100 x 100

pixels with 6 characters, a captcha can look like this:

Figure 4-20: Form "captcha" graphic component

FirstSpirit™ FormEdit

 FirstSpirit V 5.0 FORM50EN_FirstSpirit_Modules_FormEdit 1.09 RELEASED 2013-06-18 66

5 Media Required and their Function

5.1 Stylesheet file

Configuration fields for stylesheet classes are provided for virtually every component to enable

form components to be quickly and easily adjusted. Each field can therefore be assigned its own

individual style by specifying a stylesheet class. An exemplary stylesheet file "formedit_css" is

added to the project when the project component is installed. The class names should be

entered accordingly in the configuration fields of the components. We urgently recommend

adjusting the stylesheet file to the individual design requirements.

<script type="text/javascript"

src="$CMS_REF(media:"formedit_js")$"></script>

In order to be able to use your own stylesheet classes, they must be declared in the HTML

header of the (page) templates by means of the <style> tag, or added to an existing or new

stylesheet file in the project.

5.2 Javascript file

Javascript functions are used within the templates supplied with the module, e.g. to enable

individual form blocks to be shown and hidden. These functions are in the medium "formedit_js".

The medium must be referenced within the HTML header of all (page) templates in which

Javascript functions can be used:

<script type="text/javascript"

src="$CMS_REF(media:"formedit_js")$"></script>

5.3 jQuery

This free Javascript framework provides various functions which are used by the templates

supplied with the module. In addition, this library is a requirement for use of the form

"Autocompleter" component (see Chapter 5.5 page 67) and form field validation (see Chapter 5.4

page 67). The version supplied is compatible with the plug-ins supplied. If an update is

necessary, ensure that it is compatible with the plug-ins. jQuery can be used in parallel with other

frameworks, e.g. MooTools. The framework must be referenced within the HTML header in all

FirstSpirit™ FormEdit

 FirstSpirit V 5.0 FORM50EN_FirstSpirit_Modules_FormEdit 1.09 RELEASED 2013-06-18 67

templates which use the functions of jQuery or its plug-ins:

<script type="text/javascript" src="$CMS_REF(media:"jquery")$"></script>

Further information and updates: http://www.jquery.com

5.4 Form validation

The jQuery "validate" plug-in provides a convenient option for checking the form fields used for

correct content on entering the data. The form components use the basic functions of this plug-

in. This plug-in can also be used to check dependencies between form fields and other

limitations and constraints. To use this function in the project, the "jquery_validate.js" file must be

referenced within the HTML header of all (page) templates in which form components can be

used:

<script type="text/javascript"

src="$CMS_REF(media:"jquery_validate")$"></script>

Alternatively, it is possible to add the function to an existing Javascript file.

This plug-in also supplies the (error) messages in 19 languages, which appear – inline – in the

event of missing or incorrect input components. These error messages are deposited in the

language-dependent medium "jquery_validate_messages" and if necessary can be changed and

extended. In order for these (error) messages to appear, the medium must be referenced within

the HTML header of all (page) templates in which form components can be used:

<script type="text/javascript"

src="$CMS_REF(media:"jquery_validate_messages")$"></script>

Further information and updates: http://plugins.jquery.com/project/validate

5.5 Autocompleter

A jQuery plug-in is also used for the "Autocompleter" component. However, it only provides the

function of setting up a request with the entered characters to another page and displaying the

response to the user. The "jquery_autocomplete" file must be referenced within the HTML

header of all (page) templates in which the form "Autocompleter" component can be used:

<script type="text/javascript"

src="$CMS_REF(media:"jquery_autocomplete")$"></script>

FirstSpirit™ FormEdit

 FirstSpirit V 5.0 FORM50EN_FirstSpirit_Modules_FormEdit 1.09 RELEASED 2013-06-18 68

For further information on complete integration, please refer to Chapter 6 page 69.

Further information and updates: http://plugins.jquery.com/project/autocompletex

FirstSpirit™ FormEdit

 FirstSpirit V 5.0 FORM50EN_FirstSpirit_Modules_FormEdit 1.09 RELEASED 2013-06-18 69

6 "Auto Completion" Concept

In real terms, the form "Autocompleter" component only provides a completely normal text input

component. The logic which provides this component with the autocompletion function consists

of two parts:

 The first part is the jQuery "autocomplete" plug-in (see Chapter 5.5 page 67). This plug-in

enables the characters entered to be sent to another dynamic server or a servlet in the

background. Further, it accepts the reply (response) and shows it to the user.

 The second part must be implemented for each specific case: To do this, a dynamic page

must be generated (e.g. jsp or php), which accepts a request from the autocompleter and

then uses it to browse through a source (e.g. XML, database or CSV). In another step, the

data found must then be returned to the autocompleter by means of a response.

This concept is implemented in the templates supplied with the module on the basis of an

example XML file. The logic is implemented on the jsp-side and also requires the Java "jdom"

library.

 The Java "jdom" library is not part of the "FirstSpirit FormEdit" module, but must be

separately copied onto the applicationServer or FirstSpirit Server or installed as a module.

Further information: http://www.jdom.org.

Example:

This example is based on the following XML file ("xmlDataBase" page template):

<?xml version="1.0" encoding="UTF-8"?>

<jobs>

 <job jobnr="Project Manager (jb-1742-a01)" jobdescription="Project

Manager"/>

 <job jobnr="Apprentice (jb-1743-a02)" jobdescription="Apprentice"/>

 <job jobnr="Template Developer (jb-1744-a03)" jobdescription="Template

Developer"/>

 <job jobnr="Product Development Manager (jb-1745-a04)"

jobdescription="Product Development Manager"/>

FirstSpirit™ FormEdit

 FirstSpirit V 5.0 FORM50EN_FirstSpirit_Modules_FormEdit 1.09 RELEASED 2013-06-18 70

</jobs>

On using the form "Autocompleter" field, after entering, e.g. 3 characters, a request is sent to the

page referenced in the form component. This page is based on the "autocompleterequest" page

template. Logic is implemented in this page template, which accepts this request and the

transferred character chain.

incomingValue = (String) request.getParameter("q");

Within the referenced XML source, the comparator attribute is searched for occurrence of the

requested character string.

for (Element child : children) {

 if (incomingValue == null ||

child.getAttribute(compareAttr).getValue().toLowerCase().contains(incomingVa

lue.toLowerCase())) {

 buffer.append(child.getAttribute(resultAttr).getValue() + "\n");

 }

}

If an applicable entry is found, a response is sent to the form input component:

Project Manager

Product Development Manager

The data found is now shown to the form user, e.g. here the value of the "jobdescription" attribute

(return text). If the user now selects an option, it is saved as the value of the form field.

FirstSpirit™ FormEdit

 FirstSpirit V 5.0 FORM50EN_FirstSpirit_Modules_FormEdit 1.09 RELEASED 2013-06-18 71

7 Case Study: "Competition"

This example describes all actions to be performed by the editor, which are necessary to create

a form with which a user can register for a competition.

The data entered by the user is to be used on the one hand for a personalised participation

confirmation and on the other is to be stored in a database containing all participants.

To carry out this example, the "FirstSpirit FormEdit" module must be installed for a FirstSpirit

project, as described in Chapter 2, from page 7. Furthermore, a database and an available e-mail

server are required.

7.1 Creating the form

Create a new page in the Page Store and choose the "form" template. Add the "form start", "form

block" and "form end" sections, one after the other in a section area of the page:

Figure 7-1: Create page with form sections

Now enter a heading and form name in the "form start" section. Choose "Post" as the send

method and enable client-side content checking. If you already have a confirmation page and an

error page in your structure, you can reference them here.

Now switch to the "form block" section and create a text field for each of the following: Name, first

name, street, house number, post code, town/city and e-mail address. Use the content check

"Field filled" on each. To enable easy filing of the data in the database, it is advisable to choose

the column name in the database as the unique identifier. For this example we use "name“,

"firstname“, "street", "housenumber", "zip", "city" and "email" as unique identifiers:

FirstSpirit™ FormEdit

 FirstSpirit V 5.0 FORM50EN_FirstSpirit_Modules_FormEdit 1.09 RELEASED 2013-06-18 72

Figure 7-2: Form elements

All the necessary fields in the "form end" section are already completed, but you can now adjust

them to your wishes.

7.2 Creating the mail template

Create a new page in the Page Store on the basis of the "mailtemplate" template. We use the

field from the form as the recipient, as the

e-mail is to be sent to the form user. I.e., in this example, %e-mail%.

You can also define the term yourself, just like the message text and the sender's address. You

can use %uniqueIdentifier% in the message text to access all form fields:

FirstSpirit™ FormEdit

 FirstSpirit V 5.0 FORM50EN_FirstSpirit_Modules_FormEdit 1.09 RELEASED 2013-06-18 73

FirstSpirit™ FormEdit

 FirstSpirit V 5.0 FORM50EN_FirstSpirit_Modules_FormEdit 1.09 RELEASED 2013-06-18 74

Figure 7-3: Mail template

Now use Drag&Drop to drag the mail template you have created into the Site Store or reference

it via the context menu from the Site Store.

7.3 Creating the logger configuration (e-mail)

Now switch back to your "form start" section and add a new data record in the "Processing"

component.

Figure 7-4: Add data record

In the following dialog, enter a name for the e-mail processing and choose "MailLogger" as the

LoggerType. You can add an optional description.

Now add a new data record to the "Logger Parameter" component by clicking "Add Section" and

select the "logger-text-value" entry and click "OK". In the following dialog, enter "smtpHost" as

the parameter name and the address of your outgoing mail server as the parameter value, e.g.

smtp.ANOther.de. Repeat this for the "encoding" parameter, using the name of the encoding

you require (here: "UTF-8“).

Now create a new section; however, this time using the "logger-template-ref" template. Now

enter "mailTemplatePath" as the parameter name and choose the mail template created by you

in the "Mailtemplate" component. Further parameters are explained in Chapter 3.2.4 page 21.

Figure 7-5: MailLogger parameter

FirstSpirit™ FormEdit

 FirstSpirit V 5.0 FORM50EN_FirstSpirit_Modules_FormEdit 1.09 RELEASED 2013-06-18 75

Finally, select "Activated" status in the component (see Chapter 3.1 page 14) and click the

"Save" symbol in the top left-hand corner. The logger created by you is now automatically listed

in the "Processing" component, in your "form start" section.

7.4 Creating the logger configuration (database)

The second configuration is created in exactly the same way as described in Chapter 7.3 page

74. However, here you select "JdbcLogger" as the logger type and create all parameters on the

basis of the "logger-text-value" template. Please create the "driver" parameter first with the

name of your database driver, e.g. "com.mysql.jdbc.Driver" for a MySQL database.

 Please ensure that the database driver has already been added to the FirstSpirit

server.

Use the "url" parameter to pass the address to your database, e.g.

"jdbc:mysql://muster:3306/formlogger" and the "table" parameter to pass the name of your table

(here: "demo“).

Now create the "user" and "password" parameters and fill these with the login data for the

database, which is usually made available to you by your database administrator.

Figure 7-6: JdbcLogger parameter

Further parameters are explained in Chapter 3.2.3 page 19.

FirstSpirit™ FormEdit

 FirstSpirit V 5.0 FORM50EN_FirstSpirit_Modules_FormEdit 1.09 RELEASED 2013-06-18 76

7.5 Creating the configuration file "fs-formlogger.ini"

Please read Chapter 3.5 from page 30.

7.6 Referencing and deploying

Then reference all the pages you have created in the structure and, if applicable, release them. If

you or the project administrator have set up the "FirstSpirit FormEdit" module for staging,

following generation, your form should be visible in its generated status

(http://www.youreditorialserver.com:8000/fs4staging_<project_id>/...) and should be able to be

used.

FirstSpirit™ FormEdit

 FirstSpirit V 5.0 FORM50EN_FirstSpirit_Modules_FormEdit 1.09 RELEASED 2013-06-18 77

8 Legal Notices

The "FirstSpirit™ FormEdit" module is a product belonging to e-Spirit AG, Dortmund, Germany.

The user may only use the module as defined under the terms of the licence agreed with e-Spirit

AG.

Details of possible external software products used, not produced by e-Spirit AG, their own

licences and any update information, is given on the homepage of each FirstSpirit server, in the

"Legal Notices" area.

	1 Introduction
	1.1 Overview of the functions
	1.2 Topics covered in this document
	1.3 Layout and function

	2 Installation and Configuration
	2.1 Installing the module on the server
	2.2 Installing the project component
	2.2.1 Adding the project component
	2.2.2 Adding the template to the project

	2.3 Installing the web application in the project
	2.3.1 Configuring the web application

	2.4 Live-server side logging

	3 Configuration
	3.1 Creating the logger
	3.2 Logger configuration of the processing
	3.2.1 Configuring log file processing
	3.2.2 Configuring CSV processing
	3.2.3 Configuring database processing
	3.2.4 Configuring e-mail processing
	3.2.5 Configuring URL processing

	3.3 E-mail configuration file
	3.4 Autocomplete request
	3.5 "fs-formlogger.ini" configuration file

	4 Creating Forms
	4.1 Form layout
	4.2 Form configuration
	4.2.1 form-start
	4.2.2 form-block
	4.2.3 form-divider
	4.2.4 form-end

	4.3 Available form elements
	4.3.1 Form component "text"
	4.3.2 Form component "textarea"
	4.3.3 Form component "RadioButtons"
	4.3.3.1 "RadioButtons" subcomponent
	4.3.3.2 "RadioButton" subcomponent

	4.3.4 Form component "Checkboxes"
	4.3.4.1 "Checkboxes" subcomponent
	4.3.4.2 "Checkbox" subcomponent

	4.3.5 Form component "Password"
	4.3.6 Form component "Hidden"
	4.3.7 Form component "Autocompleter"
	4.3.8 Form component "combobox standard"
	4.3.9 Form component "combobox query"
	4.3.10 Form component "combobox date"
	4.3.11 Form component "fileupload"
	4.3.12 Form component "captcha"

	5 Media Required and their Function
	5.1 Stylesheet file
	5.2 Javascript file
	5.3 jQuery
	5.4 Form validation
	5.5 Autocompleter

	6 "Auto Completion" Concept
	7 Case Study: "Competition"
	7.1 Creating the form
	7.2 Creating the mail template
	7.3 Creating the logger configuration (e-mail)
	7.4 Creating the logger configuration (database)
	7.5 Creating the configuration file "fs-formlogger.ini"
	7.6 Referencing and deploying

	8 Legal Notices

