

FirstSpirit™ CorporateContent
FirstSpirit™ Version 5.1

Version 1.13

Status RELEASED

Date 2015-02-04

Department FS-Core

Copyright 2015 e-Spirit AG

File name CONT51EN_FirstSpirit_CorporateContent

e-Spirit AG

Stockholmer Allee 24
44269 Dortmund | Germany

T +49 231 . 477 77-0
F +49 231 . 477 77-499

 info@e-Spirit.com
 www.e-Spirit.com

http://www.e-spirit.com/en
mailto:info@e-spirit.com
http://www.e-spirit.com/en

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 1

Table of contents

1 Introduction ... 5

1.1 Topic of this documentation ... 6

2 Terms and concepts .. 7

2.1 ContentTransport functionality .. 7

2.1.1 Feature combining in ContentTransport ... 7

2.1.2 Cross-server transport of features.. 8

2.2 CorporateContent functionality .. 8

2.2.1 Package types in CorporateContent .. 9

2.2.2 Package dependencies in CorporateContent 9

2.2.3 Package definition and package version .. 11

2.2.4 Publication groups ... 13

2.2.5 Subscription ... 14

2.2.6 Integrating workflows and scripts ... 16

3 Configuration .. 18

3.1 Checking the license file ... 18

3.2 Starting the "PackageManager" service ... 19

4 ContentTransport ... 20

4.1 Creating or loading a feature ... 24

4.2 Adding objects to a feature ... 25

4.2.1 Using the tree structure of stores ... 25

4.2.2 In the feature combination .. 26

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 2

4.3 Feature combination ... 26

4.3.1 Overview .. 26

4.3.2 "Included objects" area .. 27

4.3.3 "Required missing references" area .. 28

4.3.4 "Optional missing references" area .. 29

4.4 Flyout menu .. 30

4.5 Graphical representation of dependencies (references) 31

4.5.1 Icon bar ... 32

4.5.2 Display of relation graph .. 33

4.5.3 Context menu on objects .. 34

4.6 Updating a feature in a target project .. 35

4.7 Limitations and Notes ... 38

4.8 Configuring storage locations .. 40

4.9 Automatic creation, updating and installation of features 42

4.9.1 Exporting existing feature bundles by schedule ("Create new feature

bundle")... 44

4.9.2 Importing feature bundles by schedule ("Install/Update feature bundle") 46

5 CorporateContent (package store) .. 48

5.1 Creating or loading a package .. 49

5.1.1 Creating a new package .. 49

5.1.2 Creating a package version .. 60

5.1.3 Publishing a package ... 63

5.2 Adding objects to a package .. 65

5.2.1 Using the tree structure of the stores .. 65

5.2.2 In the package combination ... 65

5.3 Package combination ... 66

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 3

5.3.1 Overview .. 66

5.3.2 "Integrated objects" area ... 67

5.3.3 "Unfulfilled dependencies (own package)" area 68

5.3.4 "Unfulfilled dependencies (foreign packages)" area 69

5.4 Flyout menu .. 70

5.5 Graphical representation of dependencies .. 71

5.5.1 Icon bar ... 72

5.5.2 Display for dependency charts .. 72

5.5.3 Context menu on objects .. 73

5.6 Functions via the "CorporateContent" menu item 75

5.6.1 Overview menu item ... 75

5.6.2 Package menu item - Edit packages ... 82

5.6.3 Package menu item - Publish packages .. 85

5.6.4 Subscription menu item - Create subscription 86

5.6.5 Subscription menu item - Edit subscription ... 91

5.6.6 Subscription menu item - Update subscription 93

5.6.7 Publication groups menu item ... 95

5.6.8 Combining package and target project contents 100

5.7 CorporateContent content menu in the stores ... 106

5.7.1 Starting adding to a package (master project) 106

5.7.2 Removing from a package (master project) 107

5.7.3 Removing a package relationship (target project) 108

5.7.4 Change status (target project) ... 109

5.7.5 Reintegrating an original (target project) .. 111

5.8 Transferring existing projects into package master projects 113

5.8.2 For similar projects .. 122

5.8.3 Import / export... 122

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 4

5.9 Corporate Content for developers .. 124

5.9.1 Individualization of the package contents in the target projects .. 124

5.9.2 Support for multiple languages .. 124

5.9.3 Using workflows and events ... 131

5.10 Shared database access... 135

5.10.1 Configuring the target projects (read-only DB access) 137

5.10.2 For existing databases ... 138

5.10.3 New databases ... 139

5.10.4 "contentSelect" function ... 139

5.10.5 Language-dependent content .. 140

5.10.6 Different database layers in the master and target project 141

6 Legal notices .. 143

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 5

1 Introduction

 This document is provided for information purposes only. e-Spirit may change the

contents hereof without notice. This document is not warranted to be error-free, nor

subject to any other warranties or conditions, whether expressed orally or implied in law,

including implied warranties and conditions of merchantability or fitness for a particular

purpose. e-Spirit specifically disclaims any liability with respect to this document and no

contractual obligations are formed either directly or indirectly by this document. The

technologies, functionality, services, and processes described herein are subject to

change without notice.

The Multisite Management area includes functions that allow the distribution, and thereby the

reuse, of FirstSpirit content in SiteArchitect. In the process, the user is conveniently supported by

the user interface in an optimal way. This reuse is possible across both project and server

boundaries.

The essential use cases here are:

 Reusing editorial content and layouts between different projects (sites or clients)

 Simply reusing specific project solutions

 Supporting the development of quality assurance processes (DQP scenario)

Multisite Management includes the ContentTransport and Corporate Content functions.

The Corporate Content functionality is located on the vertical icon bar in the left area of

SiteArchitect under the icon and on the menu bar under the menu item "Corporate Content".

The desired project contents are combined in the source project into what are known as

packages. These packages can be subscribed to in other FirstSpirit projects (target projects).

ContentTransport functionality is located on the vertical icon bar in the left area of SiteArchitect

under the icon. The desired project contents are combined in the source project into what are

known as features. The feature combination can then be saved as an archive file and be

imported into other FirstSpirit projects (target projects).

The advantage of these functions: Objects can be managed at a central location (source project)

and can always be kept at the desired version in other projects (target projects).

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 6

1.1 Topic of this documentation

Chapter 2 explains the most important terms and concepts for working with packages, features

and subscriptions. The chapter offers a general overview of the operation of CorporateContent

and helps first-time users get started (starting on page 6).

Chapter 3 describes the configuration settings on the server. The chapter is only relevant for

administrators (starting on page 18).

Chapter 4 covers the ContentTransport area with all of the functions for creating, editing and

publishing ContentTransport features (starting on page 20).

Chapter 5 covers the Corporate Content area with all of the functions for creating, editing and

publishing packages (starting on page 38).

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 7

2 Terms and concepts

2.1 ContentTransport functionality

Different project content can be collected from all of the stores using Content Transport. In

addition to templates, FirstSpirit content can now also be transported. Here, content from the

content store can be selected for reuse in addition to content from the page, media and site

stores.

A feature and the elements it contains always relate to one specific project state. This can be a

state such as the release state or one of the past states. FirstSpirit also only transports content

from this state via the feature. These past contents can easily be viewed at any time. Both the

editing form and the inline preview of the SiteArchitect are displayed with the historical data.

An object explicitly added to a feature is used as the start node. All subordinate objects, including

entire folders, are also applied to the feature starting from this start node. The parent chain of the

object is also taken into account and implicitly applied to the feature. Necessary and optional

dependencies are detected automatically and can be added to the feature manually using the

"ContentTransport" store area. Once all desired objects are combined in the feature, the feature

can be saved as a compressed zip file and be provided for import into the FirstSpirit target

projects.

 For more information about limitations and for further notes on the

"ContentTransport" functionality please refer to Chapter 4.7 page 38.

2.1.1 Feature combining in ContentTransport

Feature combinations do not have to be closed, i.e. not all of the referenced objects have to be

included in a feature, since a link to existing objects is established in the target project. The user

interface visualizes these open edges at different spots:

Directly in the tree view:

The tree view shows the missing elements of the feature for both the entire feature and starting

from elements already in the feature. The missing elements can be added to the feature directly

by the user.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 8

In the graphical display for the combination

The graphical display provides a complete overview of the elements (open edges) that are in the

feature or are still missing. The feature combination is supported optimally by being able to add

elements to or remove them from the graphs directly.

2.1.2 Cross-server transport of features

Transporting combinations from Content Transport, called "Features", is possible across server

boundaries, for example using external storages (see Chapter 4.8 page 40). Thus, Content

Transport also optimally supports DQP scenarios and the associated development and quality

assurance process which involve transferring new functions from a development system (D) to a

quality assurance system (Q) so that the function can be tested there. After being tested

successfully, the function is transferred further to the production system (P) starting from D.

Use schedules for automating the transfer of features between DQP systems (see Chapter 4.9

page 42). Moreover, there is an API available.

2.2 CorporateContent functionality

The FirstSpirit CorporateContent function represents a further development of the previous

"package management" function that could be used to distribute templates and content between

different projects on a server automatically. Content can be reused conveniently and across

projects with FirstSpirit this way. An important aspect when combining packages is that all

dependent objects also have to be included in the package.

Packages are created and edited in the source project. The project available for importing

packages into other projects is designated the source project. The objects are selected from the

source project's project tree. What is known as a start node is defined in the process. All

subordinate objects, even entire folders, are transferred to the package starting from this node. If

all desired objects have been combined, a new package version is created which is then

available for importing to all target projects with a valid subscription.

Likely the most important functional enhancement is the option for creating packages at the last

released state. Thus, all of the package's elements no longer have to have been released at the

time the version is created.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 9

2.2.1 Package types in CorporateContent

FirstSpirit distinguishes between two package types:

 Content packages: Content packages contain objects from the page store, the site store

and the media store. They do not contain templates or objects from the content store.

 Template packages: Objects from the template store are integrated into template

packages. In addition, a template package is allowed to contain objects from the content

store and the media store. Integrating objects from the media store into a template

package should, however, be limited to media that are referenced in the templates

directly, such as those used for the layout (cascading style sheets, spacer.gif, logos, etc.).

Other media objects continue to belong to a content package.

 Each object can only be integrated into one respective package!

2.2.2 Package dependencies in CorporateContent

Different objects are combined into packages. Most objects, excepting objects from the media

store, can reference additional objects. For instance, a page from the content store could

reference an image from the media store and a template from the template store. The

dependencies between objects have to be resolved in order to import objects into different

projects successfully. In other words, it must be ensured that all objects referenced in a package

are also contained in the package. This is the reason behind strictly separating content and

template packages.

A distinction is made between two dependencies in the process:

1. Content-related dependencies:

The dependencies within a content package are resolved automatically using what are

known as reference graphs (see section 5.8.1.1, page 113). For instance, which objects a

page references for each page that is to be taken over in a package is checked in the

process. The referenced objects are then also taken over in the package. If there is an

object that is to be transferred to a content package, such as a page reference or a folder

from the site store, then all associated pages from the page store are also transfered to

the package.

If referenced objects are already integrated into one content package, they cannot be

taken over in another context package since each object is only allowed to be included in

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 10

one single package. In this case, a dependency on this dependent content package is

established by the system. This is shown when creating a package version or in the

version list for a package and in the detailed information for the package. The dependent

content packages can then be subscribed to manually (see section 5.6.6, page 93). A

content package can have multiple dependent content packages.

2. Dependencies on templates

A content package's dependency on a template cannot be resolved automatically. The

relationship between a content package and a template package has to be specified in

the content package's properties. If there is a dependency between a content package

and a template package, a specific sequence has to be followed when creating a version

in the master project and when publishing from the master project (see section 5.6.3,

page 85).

Templates can also have dependencies on other templates. These dependencies cannot

be resolved automatically in each instance since the effects would be very far-

reaching in some cases. The package developer should put thought into dependencies

and the most effective package structure possible well in advance when packing a

template package. The sequence in which objects are added to a package also has to be

taken into account in the process. If, for instance, a template has a dependency on a

content source, the associated database schema (including table templates and queries)

has to be added to the package beforehand.

 For a subscription this means: A package can have a dependency on another

package (content or template package). In order to subscribe to a package, all dependent

template packages must be subscribed to and all dependent content packages can be

subscribed to as well. The import sequence is not arbitrary in this context:

Whenever a content package with a dependency on a template package is imported,

the template package has to be imported first and then the associated content package. If

this sequence is not followed, an error message appears and the user can restart the

import.

Whenever a content package with a dependency on another content package is

imported, the dependent content package has to be imported first and only then is the

content package that contains the references to the dependent objects imported. Errors in

the target project may result if this sequence is not followed during the import or if the

dependent content packages are not imported.

A specific sequence has to be followed for publishing dependent content packages.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 11

2.2.3 Package definition and package version

A package consists of one or more package versions depending on the specific type (content or

template package). Each package version has precisely one zip file used for importing into

target projects.

The zip file contains all of the data required for the package version and a meta description of the

package contents. This meta description is called a package definition. The package definition

is made hierarchically based on a list of start nodes. These start nodes determine which objects

are part of the package. All of the objects below this start node are taken over in the package

when it is created. Which objects this exactly entails depends on the structure and contents of

the master project.

In addition to the package definition, the dependencies between individual objects have to be

taken into account as well (see section 2.2.2, page 9). If there are dependencies between an

object contained in a package and another object that is not part of the package, then the

dependency is identified automatically using the reference graphs and the referenced object is

added to the package even though it is not explicitly part of the package definition. Thus, a

package cannot be defined solely via the selected package content. Therefore, a distinction

between the package definition and the package version is vital.

Package definition:

Describes the content of a package using the start node from the master project integrated in the

package. Referenced objects are not included in this node list and thus are not part of the

package definition. The complete content does not result until a package version is created using

a package definition.

Package version:

Contains all of the objects determined using the package definition and all manually referenced

objects. Thus a package version provides a complete description of the package contents. Unlike

the package definition, which always reflects the most up-to-date content, a package version is

only as up-to-date as the date of its last creation.

Package

 Package

version

 Zip file

Conceptual Physical

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 12

The package contents change if:

 A new start node is explicitly added, i.e. when a package definition is modified.

 An object is implicitly added because it was created from scratch below a start node in

the master project (no change to the project definition).

In these two cases, the packages should be refreshed by creating a new package version (see

section 5.1.2, page 60). A package version can be released for one or more publication groups.

 If a new object is created below an already integrated start node in an existing

package, this object is added to the package automatically and applied in the next

package version.

 Overlap between package contents cannot occur when creating packages. This

means, each project node can only belong to exactly one package. Project nodes and

objects already used in a package can be identified based on the

"ObjectName@PackageName" name extension (in reference names; if the namespace

extension has not been disabled, see section 5.1.1.3.1, page 58) and by a package

symbol in the project tree. This process increases clarity since otherwise multiple new

package versions would have to be created and published at the same time when

modifying a single object.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 13

2.2.4 Publication groups

Creating and publishing packages is a complex task. Incorrect operation can result in problems

and conflicts in target projects. Therefore, packages should be thoroughly tested before they are

used in a production environment. The concept of a "publication group" was instituted for this

purpose (also refer to section 5.6.7, page 95). A publication group is a sort of "marker" that can

be assigned to one or more package versions. Packages for specific publication groups can "be

released" on master project pages and which publication group a package is intended for is

defined on target projects' pages when subscribing to a package. Publication groups are defined

server-wide and thus can be used in both master and target projects.

For instance, the following publication groups could be defined:

 Development: For developing packages.

 Test: For projects used for testing packages.

 Production operation: For projects that use a package in a production environment.

The example flow then appears as follows:

The "Development" group begins developing a package. The initial 0.1 and 0.2 package versions

are only released for this group. The development continues until package version 0.3 is created

at some point, which is released for both the "Development" publication group and the "Test"

group. This makes this version of the package available to all projects whose subscription was

concluded with the "Development" and "Test" publication groups. An automatic or manual update

occurs in the target project depending on the project configuration. If the development of the

package is concluded, a new package version 1.0 can be released for the "Production operation"

group.

Package version Release for pub. group

Version 0.1 Development

Version 0.2 Development

Version 0.3 Development, Test

Version 0.4 Development, Test

Version 1.0 Production operation

Version 1.1 Development

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 14

As can be seen in the example, multiple versions can be released for one publication group. The

package version with the highest package number, i.e. the most up-to-date version, is always

used in this case. The package number is unique and is generated when creating a new package

version.

2.2.5 Subscription

Subscriptions are created and edited in target projects. Projects that can import packages from a

source project are designated as target projects. Only packages defined as "available" in the

source project can be subscribed to (see 5.1.1.2, page 51).

A distinction is made between two states for a subscription:

1. Initialization: With a subscription, all package contents (such as all of the source

project's media files) are initially taken over in the target project and can be edited further

by the target project's content editors depending on the package or subscription

configuration.

2. Update: A new package version has to be created as soon as some aspect of the objects

integrated into the package changes in the source project or new objects are to be made

available, such as a new image. Each new package version not only contains changes

from the preceding version, but also all the modified objects from the preceding version.

However, all of the objects contained in the package are no longer replaced when

updating a target project with a new package version. Instead, only the newly added and

modified objects are replaced.

2.2.5.1 Updating packages in the subscription

A package update can be carried out using two different processes:

1. Automatic update: With automatic updating, the decision to update a package is in

the hands of the source project administrator. From a central location, the

administrator initiates the update for all target projects that have a valid subscription

to this package by publishing the package (see section 5.6.3, page 85). This is also

referred to as a "push" process. Manual intervention on behalf of the person

responsible for the target project is not necessary.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 15

2. Manual update: With manual updating, the decision to update is in the hands of the

target project administrator. A new package is made available to the administrator

(such as in the package overview, see section 5.6.1, page 75, or in the subscription

list) and the administrator can update the project using the new package as needed

(see section 5.6.6, page 93). This is also referred to as a "pull" process. The

administrative burden is placed on the target projects by manual updating.

Three possible states are feasible during updating:

 An object from the source project is newly created in a target project.

 An object present in a target project is updated with content from the source

project.

 A conflict situation occurs (also see section 5.7.4, page 109).

Publication groups have been defined in order to simplify package updating and to avoid errors in

production packages (see section 2.2.4, page 13).

2.2.5.2 Subscribing to metadata and project settings templates

In most projects, in addition to standard page templates, there is also a template page for global

project settings and for what are known as metadata, if they are used in the project. These

templates can be part of a template package and thus can be imported into any target project

with a valid subscription. By integrating a project setting template, for example, it is possible to

define layout specifications uniformly for headlines and continuous text across an entire project.

By integrating metadata, for example, it is possible to work with personalized pages. If these

templates are imported into target projects, they can be expanded and adapted to project-

specific circumstances there without issue.

 Imported metadata templates have to be configured in the ServerManager in the

project settings under the "Options" item in the "Metadata template" field.

 These templates can, in fact, be imported into target projects in both cases, but

using them is also not mandatory. This can lead to problems if other packages are based

on these project settings or metadata.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 16

 Using CorporateContent only the templates are transfered, not the contents. Please

use the ContentTransport functionality for being able to transfer metadata or project

settings which have been entered by the editors into other projects (see Chapter 4 page

20).

2.2.5.3 Release

The project-specific concept of release control can also be used for working with packages.

Whether the subscribed contents are to be released automatically or not is already determined

when subscribing to a package. If automatic release is selected, all new or modified objects are

released automatically and immediately after being imported, without any action on the part of

the target project (for release via workflows see section 2.2.6, page 16). Which objects are

modified is not apparent to target project content editors in this case.

In contrast to this procedure, explicit release can also be defined. Modified or new objects are

shown in red in the target project's project tree in the process and have to be released explicitly

by a responsible editor. Advantage: The changes are visible at a glance. This solution does offer

more transparency, but would not be very convenient for a larger package scope. For this

reason, explicit release can be carried out using a single workflow. When updating a package, a

list of the released objects is created at the same time and announced throughout the

subscription. All of the objects from this list can then be released using just one workflow (also

see section 5.9.3.1, page 131 in this regard).

2.2.6 Integrating workflows and scripts

Packages are usually updated and imported in complex project environments. Integrating

workflows into target projects is vital in order to make working as convenient as possible. Specific

events are made known to each package in the process. A workflow or script that is started after

importing the package can then be assigned to each of these events. Examples of such events

include:

 Automatic release: Directly after importing, a workflow is started that releases all new or

modified objects automatically, without any action on the part of the target project (see

section 2.2.5.3, page 16).

 Resolving a conflict: If a package conflict occurs when importing a package, a workflow

that is intended to correct the conflict is started when this event occurs.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 17

 Report function: The report function is particularly interesting for large projects. It creates

a log file during import of a package and informs groups of responsible persons about

updates.

In the event of a subscription, the assignments created in the package for events are applied by

default but can be reconfigured in the target project.

In addition to being run in the target projects, workflows can also be used in the master project. A

package update can also basically be initiated using a workflow or a script.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 18

3 Configuration

"CorporateContent" is a license-dependent functionality; this means the "package store" (on the

FirstSpirit SiteArchitect menu bar) and the ContentTransport icon (on the FirstSpirit SiteArchitect

vertical icon bar) are only shown if a valid license for this functionality is present.

Two steps are needed to activate the functionality:

 Checking the license file and replacing it if necessary (see section 3.1, page 18)

 Activating PackageManagerService (see section 3.2, page 19)

3.1 Checking the license file

The applicable FirstSpirit functions of the license file fs-license.conf are shown using the

FirstSpirit Monitoring menu "FirstSpirit – Configuration – License". The parameter

license.PACKAGEPOOL has to be set to a value of 1 for using the "CorporateContent" or

"ContentTransport" functions.

If this is not the case, a new valid license can be requested from the manufacturer and be

exchanged using FirstSpirit server monitoring.

 Tampering with fs_license.conf will result in an invalid license. If changes

become necessary, please contact the manufacturer.

The server does not have to be restarted when inserting a new fs_license.conf configuration

file. The file is updated on the server automatically.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 19

3.2 Starting the "PackageManager" service

The "PackageManager" service on the FirstSpirit server has to be started in the next step. The

service can be activated via FirstSpirit Server Monitoring in the "FirstSpirit – Control – Services"

area (or via the ServerManager).

The service is started by clicking the "Start" entry. The server does not have to be restarted.

The configuration for automatically starting the service each time the server is restarted can be

defined in the "FirstSpirit – Configuration – Services" area.

For configuring using FirstSpirit Server Monitoring, also see the documentation FirstSpirit Manual

for Administrators, Chapter 8.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 20

4 ContentTransport

The "Content Transport" area is used for creating new features and for editing existing features.

It can be opened using the icon from the vertical icon bar in SiteArchitect. Creating and

combining a feature in a source project and updating one in a target project is described in the

following sections:

 Creating or loading a feature Section 4.1, page 24

 Adding objects to a feature Section 4.2, page 25

 Feature combination Section 4.3, page 26

 Flyout menu Section 4.4, page 30

 Graphical representation of references Section 4.5, page 31

 Updating a feature in a target project Section 4.6, page 35

 Notes on Content Transport Section 4.7, page 38

 Configuring the storage location Section 4.8 page 40

 Automation Section 4.9, page 42

Figure 4-1: Content Transport store

The Content Transport area's icon bar contains entries for creating and editing Content Transport

features.

 The name of the opened feature is shown after this icon. Clicking the name opens a dialog

where the feature name can be modified. If no feature is loaded then "No feature loaded" is

displayed.

 Create or load a feature; clicking this icon opens a dialog for creating a new feature or loading

a feature that already exists (see section 4.1, page 24). This icon is only active if no feature is

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 21

currently loaded.

 Save feature; clicking this icon saves the current feature's object combination. Saving is

required in order to enable automatic updating of this feature (refer to section 4.9.1, page 44 for

more information).

 Create feature Zip file; to use in a target project, the content of the feature is stored in a ZIP

file. Using this icon initiates generation of the feature ZIP file. The storage location for the ZIP file

can be selected in the following dialog:

Figure 4-2: Selecting the target storage location

Possible target storage locations can be configured in FirstSpirit ServerManager in the project

properties under "Project components"/"FirstSpirit Content Transport Storage

App"/"Configuration" or by double-clicking on the project component (refer to section 4.8, page

40). If no other storage location is configured, a default storage location is offered on the local

FirstSpirit server ("Project-Local-Storage" storage location).

Clicking "OK" generates the feature ZIP file and saves it to the selected storage location. The

user can then select whether the file should also be stored in another, local storage location:

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 22

Figure 4-3: Saving the ZIP file locally as well

Save locally: The desired target folder for the ZIP file can be selected in following dialog box.

The name of the ZIP file is created automatically.

Save in storage only: The ZIP file is only saved in the storage location previously selected.

A message box appears indicating that the feature was saved successfully.

 Discard feature; clicking this icon closes the open feature – after affirming a confirmation

prompt. Unsaved changes to the object combination are lost.

 Install feature; clicking this icon opens a dialog for selecting the source. The call for this

function only occurs in the target project.

Figure 4-4: Selecting a source

Local file system: A dialog opens for selecting a feature ZIP file from the local workstation.

Storage: The feature to be installed can be selected in the following dialog. The storage location

from which the feature is to be loaded is selected first. The list is empty if no feature was

previously created (see the "Create feature Zip file" function, further up).

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 23

Figure 4-5: Feature selection

Storage: Storage location selected for feature generation (for configuring

 storage locations, see section 4.1, page 24). Default storage

 location on FirstSpirit server: "Project-Local-Storage"

The available features at the particular storage locations are displayed with the following

information:

Feature name: Name given to the feature when it was created

Project name: Specifies the name of the source project on the server.

Revision: Feature revision selected when generating the feature.

released: Release state selected when generating the feature.

Server: Specifies the name of the server where the feature was created.

UUID: unique ID across servers that was assigned automatically by the

 system when the feature was generated.

Clicking "OK" installs the selected file in the target project (see section 4.6, page 35).

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 24

4.1 Creating or loading a feature

Clicking the icon or the entry "Create or load a feature" in the empty feature area opens a

dialog for creating a new feature or for editing or loading an existing feature.

Figure 4-6: "Create or load a feature" dialog

Create or load a feature

The choice of creating a new feature of FirstSpirit objects or loading an already created feature

(feature or feature zip file) is made in the upper area of the dialog. Existing feature zip files can

be loaded from the local workstation and existing features can be loaded from the FirstSpirit

server.

Create new feature: Activating this option creates a new empty feature.

Load feature from server: A dialog for selecting an already existing feature opens. The combo

box contains all of the features that have previously been saved on the FirstSpirit server.

Load feature from local Zip file: A dialog for selecting a feature zip file from the local

workstation opens.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 25

Feature settings

The settings for the newly created or loaded feature can be edited in the dialog's lower area.

Name: A unique and legible name should be specified when creating a new feature. The name is

used to save the feature file on the FirstSpirit server, on the local workstation, or externally.

Revision: A feature always relates to a specific revision of the object (the current revision when

being added). The field is used for selecting a maximum revision for all of the FirstSpirit objects

contained in the feature. When added to a feature, all objects are stored with the revision in the

feature that is directly below this maximum revision.

Release status: If this option is enabled then only the last release state is taken into account for

each included object.

Elements: This field specifies how many elements have already been added to the selected

feature.

Datasets: This field specifies how many datasets in the selected feature have already been

added.

4.2 Adding objects to a feature

4.2.1 Using the tree structure of stores

New objects compatible with Content Transport can be added to a Content Transport feature

using the tree structure of the corresponding stores in one of two ways:

 using the object's context menu item Add to Content Transport feature or

 using drag-and-drop to copy an object to the "Included objects" area (see section 4.3.2,

page 27).

The selected object is then added explicitly to the feature. Furthermore, all of the selected

object's higher level parent elements are implicitly added to the list of included objects and all

child objects are added explicitly.

The user works on a view of the datasets in the Data Store when adding datasets. Data sources,

filtered data sources (each without contents or datasets) or even individual datasets can be

added as objects here.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 26

4.2.2 In the feature combination

Additional objects can also be added to the feature using the areas for required or optional

references. The checkbox in front of the respective object just has to be selected for the desired

objects, then the objects are included in the feature by clicking the Add selected button.

4.3 Feature combination

4.3.1 Overview

Figure 4-7: Feature - Overview

Revision: The maximum revision of all included objects is displayed here (with/without release

state).

Date: The date and time when the maximum revision was configured is specified here.

Included objects | datasets: The number of objects explicitly added by the user that are present

in the feature is specified here.

Missing references: How high the number of missing references in the entire feature

combination is specified here. The number of absolutely necessary objects is shown here in red;

the number of optional objects is in yellow.

 Missing references always refer to the entire feature – A detailed view of the

missing references can be called up using the flyout menu (see section 4.4, page 30).

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 27

4.3.2 "Included objects" area

All objects included for the feature are listed in this area. There is a distinction between explicitly

and implicitly added objects. If an object is added explicitly, then all higher level parent objects

are implicitly added automatically to the feature as well. Child objects, on the other hand, are

added explicitly even though they were not added separately by the user.

 Objects added by the user are shown in normal text; this indicates that they can be removed

from the list again by using the icon.

 Explicit objects that are the child elements of an explicitly included object are also shown in

normal text but cannot be removed from the list.

 Implicitly added objects that are at a higher level than an explicitly included object are shown

in text with less contrast and cannot be removed from the list either.

Figure 4-8: Feature – Included objects

Clicking on an object in the list opens a tab with that object's forms in the SiteArchitect edit area

for viewing. The object cannot be edited at this point; this is indicated by a clock symbol on

the object icon.

 Show relation graph; clicking this icon opens a tab in the AppCenter area with a graphical

representation of the hierarchical structure and the references (dependencies) of the selected

object (see section 4.5, page 31).

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 28

 Delete; this icon is only displayed if the associated object was explicitly included by the user.

Clicking this icon removes the selected, explicitly added object from the list along with all

automatically included child objects, after the user affirms a confirmation prompt. Higher level

objects that are not used by other explicitly included objects are also removed.

 Missing optional references; the yellow exclamation mark indicates that the respective object or

a child object has missing optional references. The objects are listed in detail in the "Optional

missing references" area.

 Missing required references; the red exclamation mark indicates that the respective object or a

child object has missing hard references. The objects are listed in detail in the "Required missing

references" area.

 Object details; clicking this icon opens a flyout menu with object-specific information (see

section 4.4, page 30). Clicking the icon again closes the flyout menu.

4.3.3 "Required missing references" area

All of the objects that are required to install the feature combination in a target project

successfully are shown in this area. If all of the required references are found, then this area

remains empty.

Figure 4-9: Feature – Required missing references

Required objects are displayed in list form, each with a checkbox for selecting each individual

object. Clicking on an object in the list opens a tab with that object's forms in the SiteArchitect

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 29

edit area for viewing. The object cannot be edited at this point; this is indicated by a clock

symbol on the object icon.

Required missing references: If this checkbox on the top end of the area is selected, then the

checkbox for selecting an object is selected for all of the objects in the list.

Clicking on the Add selected button integrates all of the objects selected in this area into the

feature combination.

 Required dependent objects have to be added. But this only applies to an empty

project. If missing references are already found in the target project, then these objects do

not absolutely have to be added; the feature can be applied regardless.

4.3.4 "Optional missing references" area

All of the objects that are not absolutely required for successful installation in a target project but

are desired are shown in this area. If all of the optional dependencies are fulfilled then this area

remains empty.

Figure 4-10: Feature – Optional missing references

Optional objects are displayed in list form with a checkbox for selecting each individual object.

Clicking on an object in the list opens a tab with that object's forms in the SiteArchitect edit area

for viewing. The object cannot be edited at this point; this is indicated by a clock symbol on

the object icon.

Optional missing references: If this checkbox on the top end of the area is selected, then the

checkbox for selecting an object is selected for all of the objects in the list.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 30

Clicking on the Add selected button integrates all of the objects selected in this area into the

feature combination.

4.4 Flyout menu

The flyout menu contains object-specific information displayed in the same way as the

information for the feature combination.

Figure 4-11: Flyout menu

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 31

The flyout menu always contains at least a tabular listing of object-specific data the same way as

the feature overview.

 Icon and language-dependent display name for the displayed object

 Revision of the object (object-specific state included in the feature) as well as the date and

time of the revision.

 "Include child objects" checkbox – If this checkbox is selected, then the missing references

for the displayed object are displayed along with all of the object's child objects. If the

checkbox is not selected, then only the missing references of the displayed object are

displayed.

 Number of child objects

 Number of missing references (required and optional)

 A tab with a graphical representation of an object's references can be displayed using the

Show relation graph button in the AppCenter area (see section 4.5, page 31).

The Required and Optional missing references areas are the same as the areas in the feature

combination with the same name (see sections 4.3.3 and 4.3.4, starting from page 28).

4.5 Graphical representation of dependencies (references)

The graphical representation is used to provide a flexible view of the hierarchical structure and

dependencies of a feature's embedded objects. Furthermore, objects can be added/removed in

the graphical representation.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 32

Figure 4-12: Show dependencies

The relation graph is integrated as a reusable tab in the SiteArchitect AppCenter area.

4.5.1 Icon bar

 Layout; clicking this icon automatically arranges the displayed objects in a uniform layout. In

the process, layout changes made by the user are discarded without prompting.

 Update; clicking this icon updates the information displays in the relation graph. Changes to

the hierarchical structure of the objects and the feature's new or removed objects are taken into

account in the process.

 Zoom out/1:1/in; clicking on these icons changes the view of the relation graph by

increasing it, shrinking it or changing it back to its original size.

 Fit to Screen; clicking this icon adjusts the zoom level so that the entire relation graph is

visible at the current tab size.

 Save as image; clicking this icon opens a dialog box for selecting the name and save location

for creating an image file in PNG format. The created picture file contains the entire relation

graph at the selected zoom level.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 33

Grouping size: How many objects are to be displayed at the same time using the "Show linked

objects" context menu function or by double-clicking can be specified in this field.

/ Follow mode; clicking this icon switches to follow mode. Two states can be configured:

 Clicking on an object in the feature's tree structure also displays the object in the

workspace and selects it in relation graphs.

 Clicking on an object in relation graphs also then displays the object in the workspace.

4.5.2 Display of relation graph

The relation graph displays objects from the stores and their connections to each other. These

connections can be relationships between parent and child objects as well as references

between different objects.

The object that the relation graph was retrieved for is used as the root node for the view and

appears at the far left in the relation graph. When expanding outgoing connections for an object,

the target nodes are arranged to the right of the object. Each link between two objects is

represented by an arrow that points to the child or referenced objects.

Each object is shown as a rectangle and contains the following information:

 Object icon; the same icon that is also displayed in the tree structure of individual stores.

 Suitcase symbol (); specifies whether the object is currently included in the feature. It is

placed on the object icon for identification

 Display name; the language-dependent display name from the relevant stores is displayed.

Alternatively, the developer can set another text as the display name.

 Preview symbol; if present, a preview of the object or included images is shown as a symbol.

 Exclamation mark (/); displayed if missing references exist for the object or a child object.

The color rules match the tree view in the "Included objects" area of the feature combination

(see section 4.3.2, page 27).

Edge lines are drawn between objects that are related to each other. These lines are shown

differently depending on the missing or found status:

 Solid line; used for explicitly added objects (references).

 Dashed line; used for child elements that are child elements of an explicitly included object.

 Gray; used between objects if their connection is intact in the current feature combination (i.e.

always child objects, referenced objects if the reference target is included in the feature).

 Red; used between objects if a missing required reference is present.

 Yellow; used between objects if a missing optional reference is present

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 34

4.5.3 Context menu on objects

A context menu can be called up on each object. The functions of the context menu are active or

grayed out depending on the state of the object.

Add to feature: The selected object and all of its child elements are included in the feature.

Remove from feature: Explicitly included objects and their automatically included child objects

are removed from the feature.

 Objects that have been added to fulfill the dependencies of a removed object are

not implicitly removed.

Show element in workspace: Calling this function opens a tab with this object's forms in the

SiteArchitect edit area for viewing. The object cannot be edited at this point; this is indicated by a

 clock symbol on the object icon.

Add all required edges: Calling this function integrates all of the required missing references of

the selected object into the feature combination.

Add all optional edges: Calling this function integrates all of the optional missing references of

the selected object into the feature combination.

Expand related objects (double-click): If there are connections to other objects that are not yet

displayed, calling this function triggers the display of these objects. The maximum number of

objects that are displayed there is specified on the icon bar under "Grouping size". Another group

of objects can be displayed by calling the function (or double-clicking) again.

If not all linked objects were able to be displayed, this is indicated by an extra object with the

label "Show next elements (X total)". Another group of objects can also be displayed by double-

clicking this extra object.

Collapse related objects: All linked objects currently being displayed can be hidden by calling

this function. All of a linked object's subordinate objects are also hidden in the process. Thus, if

an object is hidden and then immediately displayed again, then its subordinate objects continue

to be hidden

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 35

4.6 Updating a feature in a target project

A Content Transport feature can be installed in a target project in two ways. Either using the

"Install feature" entry in the empty feature area or using the icon on the icon bar of the Content

Transport area.

After selecting a feature zip file from the file system, a dialog box opens with an overview of the

combination for the selected feature and its included objects.

Figure 4-13: Target project - Installing updates

Feature overview

Server: Specifies the name of the server where the feature was created.

Project: Specifies the name of the source project on the server.

Package revision: The maximum revision for all of the objects included in the feature and the

date and time of the maximum revision are displayed here.

Release status: Specifies whether the objects included in the feature are installed in a released

version.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 36

Objects | data records: Specifies the number of objects that are included in the feature.

Errors: Specifies the number of errors that are expected upon installing the feature in the target

project. The number in front of the parenthesis specifies missing references in the feature; the

errors are marked in red and the feature cannot be installed. The number in parentheses

specifies the optional missing references; the errors are marked in yellow and it is possible to

install the feature despite them.

List of included objects

Object: The objects included in the feature are listed in their hierarchical structure sorted by

stores. As in the SiteArchitect tree structure, the individual objects can be expanded or collapsed

here.

Status: Each object can assume the "New" or "Update" state. For "Update", the object is already

present in the target project and may have changed since the last feature installation. The object

can be checked using the Display in FirstSpirit Client button.

Errors: The type and number of errors can be read for each object here. The number in front of

the parentheses specifies the required missing references and the number in parentheses

specifies the number of optional missing references for this object.

After each object with errors, a dialog with a detailed list of the errors can be called up via the

icon.

Figure 4-14: List of object-related errors

Errors occurring due to required missing references are marked in red in this dialog.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 37

General warnings

General warning that do not refer to a specific object are displayed in the lower area of the dialog

box. These warnings include mismatches in the project settings, such as for project languages or

image resolutions.

The Display in FirstSpirit Client button is only active if an object that has the "Update" state is

selected and could be overwritten by installing the feature. Clicking this button displays the

selected object in the FirstSpirit Client edit area.

Clicking the OK button carries out the update. The button is only active if no required missing

references exist for installing the feature. The user is prompted to select a database layer if one

is not yet present in the target project; then the update is carried out.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 38

4.7 Limitations and Notes

 Objects included via Content Transport do not have a feature relation or namespace

extension and also cannot be protected from being overwritten. However: A distinction is

also made between explicitly and implicitly added objects when installing a feature in a target

project.

o Explicitly added objects are always created in the target project. If an object

already exists in a target project, then the changes are reset again as soon as

another update is carried out.

o Implicitly added objects are always created in a target project if they were not

present in the project until now. If an object already exists in a target project, then

the changes to the target project remain intact when an update is carried out next.

 Preservation of a node structure which is to be transported is dependent upon the node

which is explicitly added to a feature. All child nodes of that parent node are considered to be

explicitly added to the feature as well.

When such a parent node is updated in a target project and the parent node’s child element

structure in the target project differs from that included in the feature, child elements which

are present in the target project but not present in the feature will be handled differently

depending on the following criteria:

a) Child elements will be deleted if they are either objects which do not

possess an UID (e.g. folders in the Templates store, sections) or are

objects which can never exist directly in a folder (i.e., query elements and

table templates).

b) Other child elements will be moved into an automatically created folder

"Lost & Found".

c) If a child element, which would normally be deleted according to the above

rules, is referenced by other elements (e.g. a section which is referenced

by a section reference), this element will be preserved – i.e. neither deleted

nor moved – in the target project although it is not explicitly contained in

the feature.

If such an object cannot be deleted because of inbound references, feature installation will

abort with an error message (“Unable to install feature file: Error installing feature. Unable to

delete element XYZ. The element is still referenced by the following elements: […]”). In order

to install the feature, references from other elements to elements which should be deleted

due to feature installation must be removed manually, or the referencing elements must be

deleted manually.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 39

 If missing references have already been found in a target project, then the feature

combination can be applied regardless.

 If objects (such as templates) are in edit mode in the target project, the import process for

these objects cannot be carried out. Therefore, it should be ensured that no objects are in

edit mode!

 Different numbers of languages are possible between a source and target project using

Content Transport. If a language channel does not available in the source project, it is not

overwritten in the target project.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 40

 Settings made in a source project when assigning permissions cannot be applied to a target

project. Permissions have to be assigned in the target project manually. The permissions in

the target project only have to be assigned once; all settings remain intact during future

update processes.

 Workflow states are not transported.

 Metadata is transported but, depending on the configuration in the target project, can be

incompatible with the selected metadata template.

 Settings made in the ServerManager cannot be applied to the target project by using

Content Transport.

 In the case of the adoption behavior of start node information (start folders/start pages), a

distinction is made between explicitly and implicitly added objects.

o If in the case of the corresponding information carrier (parent node) it is an

explicitly added object, the start node information will be set as it is in the source

project.

o If in the case of the corresponding information carrier (parent node) it is an

implicitly added object, the start node information will not be transported and the

corresponding start nodes in the target project will remain as they are.

o An exception to this behavior would be in the case of objects that are directly

underneath the root node. During the initial installation of a feature in the target

project, the start node information is set automatically if:

- no start node exists yet, or

- it is a page reference (in the case of the transported node).

4.8 Configuring storage locations

Different locations can be configured for saving created ZIP files. In addition to the local file

system and network drives, external storage locations can be used, including Internet-based

locations such as Dropbox. To be able to use external storage media, the relevant modules need

to be created. This type of module will then handle Internet service authentication, for instance.

Storage locations are configured in the ServerManager project properties under "Project

components"/"FirstSpirit Content Transport Storage App". Each project must have its own

storage locations configured. The "FirstSpirit Content Transport Storage App" project component

is installed automatically during a new install or a server update to version 5.1 if the

license.PACKAGEPOOL license key is present in the fs-license.conf license file with the

value 1. This system project component cannot be removed.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 41

After clicking "Configure" or double-clicking on the "FirstSpirit Content Transport Storage App"

project component, the following window appears:

Figure 4-15: Configuring storage locations for Content Transport content

A default storage location called "Project-Local-Storage" is offered on the local FirstSpirit server.

Other directories can be configured as an alternative. As with external storage locations, the

following "Add" and "Configure" functions are used for these:

Add: A dialog appears in which the user can select from the available storage locations.

The "File system feature storage" entry can be used to specify a directory that can

be accessed from the FirstSpirit server. Access to external storage locations must

be modified in the FirstSpirit module. A reference name and a display name can

be specified for the storage location in the following dialog:

Figure 4-16: Specifying a name for the storage location

 Clicking "OK" opens a dialog where the storage can be configured.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 42

Configure: A dialog appears in which access to the storage location can be configured. If it is

"File system feature storage", the path to the desired directory can be entered in

the following dialog:

Figure 4-17: Specifying a path

 Access to external storage locations must be provided by FirstSpirit modules. The

external storage configuration dialog may therefore vary from implementation to

implementation. Advanced configuration of the "Project-Local-Storage" default

storage location is not possible.

Remove: Removes access by the Content Transport function to the selected storage

location.

The storage locations configured using this project component are then offered as selection

options when generating and installing feature ZIP files in SiteArchitect, for example (see Figure

4-2).

4.9 Automatic creation, updating and installation of features

FirstSpirit schedule management can be used to set an automatic update of Content Transport

content at predefined times. To do this, the feature ZIP files must be stored in an external

storage location (refer to section 4.8, page 40 for more information).

For this purpose, a schedule with the "Content Transport (create, update, install)" action must be

created in the FirstSpirit ServerManager project properties:

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 43

Figure 4-18: New activity

When using this activity, two options are available to choose from in the following dialog:

 Create new feature bundle (refer to section 4.9.1, page 44)

This option allows for regular generation of a feature ZIP file with the current state of the

feature's content, e.g. the current development state of templates, at predefined times. The

feature ZIP file with the current state is then stored at the selected storage location ("push").

From there the content is then made available for import to other projects (on the same or

other FirstSpirit servers).

 Install/Update feature bundle (refer to section 4.9.2, page 46)

This option allows the user to regularly import features to the current project at predefined

times ("pull"). If only the local file system is available as a storage location, the features can

be exchanged between projects on a FirstSpirit server using the relevant schedule; if external

storage locations are available (refer also to section 4.8, page 40 for more information), the

exchange can take place across server boundaries.

In schedules where activities are already present, this option is no longer displayed.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 44

4.9.1 Exporting existing feature bundles by schedule ("Create new feature bundle")

Figure 4-19: Content Transport activity – Create new feature bundle

Name: A name for the activity must be specified here.

 This will be used on the "Actions" tab of the Content Transport

 schedule and distinguishes it from the schedule's other actions.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 45

Feature: The features available on the current FirstSpirit server are listed

 here. To ensure that a desired feature appears here, it first needs

 to be saved in the FirstSpirit SiteArchitect on the server (refer to the

 "Save feature" function in chapter 4 for more information).

Storage: Here is where the user selects the desired location where the

feature is to be stored.

A default storage location called "Project-Local-Storage" is offered

on the local FirstSpirit server.

Additional storage locations can be configured in the project

properties (see section 4.8, page 40).

At the time a feature is created, a check is made to determine if there are any required or

optional references missing (see section 4.3.3, page 28 or section 4.3.4, page 29 for more

information). After creating a feature that is selected in this activity, the content is usually edited

further. In particular deleting or moving nodes can result in new inconsistencies. When a

current feature version is created automatically, the references (dependencies) are therefore

rechecked. The following two options can be used to handle possible inconsistencies:

Halt on missing required references: If this option is active, generation of the selected feature

 is canceled if the feature is missing required references.

Halt on missing optional references: If this option is active, generation of the selected feature

 is canceled if the feature is missing optional references.

The specified configuration can be tested by clicking on the "Test configuration" button. Clicking

"OK" saves the applied settings.

Execution time(s) and intervals for generating the feature are configured in the schedule on the

"Properties" tab (for more information on schedules, refer to "Schedule entry planning" Chapter

in the FirstSpirit documentation for administrators).

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 46

4.9.2 Importing feature bundles by schedule ("Install/Update feature bundle")

Figure 4-20: Content Transport activity – Install/Update feature bundle

Name: A name for the activity must be specified here.

 This will be used on the "Actions" tab of the Content Transport

 schedule and distinguishes it from the schedule's other actions.

Storage: The location where the feature was stored and will be imported is

 specified here.

 A default storage location is offered on the local FirstSpirit server:

 "Project-Local-Storage".

 Additional storage locations can be configured in the project

 properties (see Chapter 4.8, page 40).

Feature: If a storage location from the "Storage" drop-down list is selected,

 the features available at the selected storage location will be listed

 here. To ensure that a desired feature appears here, it must be

 stored at the selected storage location first (via the "Create new

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 47

 feature bundle" schedule (see section 4.9.1, 44) or via the

 "Save feature" SiteArchitect function).

Analyze only: When manually installing a feature in the target project, a check is

made to determine if there are any required or optional references

missing (refer to section 4.6, page 35 for more information). If there

are required references that are missing, the feature will not be

installed. If the installation of a feature is automatic due to the

schedule described here, this option can be used to handle it. If this

checkbox is active, it will only check for missing references. A script

that follows can then evaluate the results of the analysis, for

instance, and then halt or continue an installation depending on the

results.

Figure 4-21: Example of a Content Transport schedule

 If there are missing required references, the feature will not be

 installed.

The specified configuration can be tested by clicking on the "Test configuration" button. Clicking

"OK" saves the applied settings.

Execution time(s) and intervals for generating the feature are configured in the schedule on the

"Properties" tab (for more information on schedules, refer to "Schedule entry planning" Chapter

in the FirstSpirit documentation for administrators).

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 48

5 CorporateContent (package store)

The "CorporateContent" store area is used for creating new packages and for editing existing

packages. It can be opened using the icon from the vertical icon bar in SiteArchitect.

In parallel to the package store known from previous versions, some functions can also be called

up using the "CorporateContent" menu item on the SiteArchitect menu bar.

Creating and combining a package in a source project and creating and editing a subscription in

a target project are described in the following sections:

 Creating or loading a package Section 5.1, page 49

 Package combination Section 5.3, page 66

 Flyout menu Section 5.4, page 70

 Graphical representation of dependencies Section 5.5, page 71

 Functions using the "CorporateContent" menu item Section 5.6, page 75

 CorporateContent context menu in stores Section 5.7, page 106

 Transferring existing projects into package

master projects Section 5.8, page 113

 CorporateContent for developers Section 5.9, page 124

 Shared database access Section 5.10, page 135

Figure 5-1: CorporateContent store area

There are entries for creating and editing ContentTransport features on the ContentTransport

area's icon bar.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 49

 The name of the opened package is displayed after this icon. "No package loaded" is

displayed if no package is loaded.

 Create or load package; clicking this icon opens a dialog for creating a new package or

loading a package that already exists. (For creating a package see section 5.1.1, page 49)

 Create version; clicking this icon opens a dialog with an overview of all versions that have

been created from the package. (For creating a package version see section 5.1.2, page 60)

 Close package; clicking this icon closes the opened package – after affirming a confirmation

prompt.

 Publish; clicking this icon opens a dialog with all of the package versions available for

publication

5.1 Creating or loading a package

Clicking the icon or the "Create or edit package" in the empty package area displays a prompt

for whether a new package is to be created or an existing package is to be loaded.

5.1.1 Creating a new package

The process of creating a new package follows multiple steps explained below.

5.1.1.1 Selecting a package type

Figure 5-2: Dialog for selecting a package type

The package type for the new package can be assigned here. The package type is also

displayed in the "Edit package properties" dialog box but cannot be modified any further there.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 50

Content package: Clicking this button selects a content package as the package type. A content

package is only allowed to contain objects from the page store, media store and site store and

these are also the only stores displayed when selecting package contents.

Template package: Clicking this button selects a template package as the package type. A

template package is allowed to contain objects from the template store, content store and media

store and these are also the only stores displayed for selecting package contents. The media

integrated here should be limited to media referenced directly in the templates. Other media

objects should be integrated into a content package.

Depending on the selected type, the "Create package" dialog then opens. All of the initial settings

for the package are set by the administrator of the master project there.

 If objects from a database schema are to be integrated into the package, the

database configuration has to be adjusted in the target project's project properties (see

section 5.10, page 135). Otherwise a corresponding error message will be output when

importing the package into the target project later on (see section 5.6.6, page 93).

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 51

5.1.1.2 Creating a package – Settings tab

Figure 5-3: Create/edit package - Settings

Package available: The new package is made available to all target projects if this checkbox is

checked. If the checkbox is unchecked, the package is not made available and cannot be

selected for subscribing in target projects.

Package name: Unique name for the package; specified initially during creation and cannot be

changed afterwards.

Comment: Optional comment for the package.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 52

Events: Clicking the Configure button opens the "Configure events" dialog box (see section

5.1.1.2.1, page 53).

Permissions

Editing permissions for the package are configured in this area. A new package is initially created

by the master project's administrator, who also assigns permissions for the package. Package

properties can also be edited by all authorized persons once the permissions have been defined

here.

Responsible: These are the persons responsible for the package in the master project.

Responsible persons are informed via e-mail if a new package version is available or a new

package version has been imported. Using the icon, another user can be added to the list of

responsible persons and they can be removed from the list using the icon.

Authorized: These persons may edit the package properties (permissions, dependencies, etc.)

and make content changes in the package such as adding events or deleting start nodes. Using

the icon, another user can be added to the list of responsible persons and they can be

removed from the list using the icon.

Publisher: These persons may publish packages and thus make them available for import into

target projects. Using the icon, another user can be added to the list of responsible persons

and they can be removed from the list using the icon.

Type

In this area, the selected package type can be read or a package dependency can be defined.

Package type: Specifies the package type that was selected in the "Select type" dialog box

when creating the package (content or template package).

Dependent on: Only active for content packages. Manual dependencies on template packages

are set here. If the content package is subscribed to, then the customer also has to subscribe to

the specified, associated template package here. Template packages do not have any

dependencies. Thus the field is disabled for the template package type. A content package

dependency on an existing template package can be defined using the icon. The desired

template package can either be selected from a list of all packages subscribed to in the same

project (source project) or from another project. Clicking the icon removes the selected

dependency again.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 53

Modifiable: Write permission to the imported objects is granted for target projects if this

checkbox is checked. If the checkbox is unchecked, the imported objects can be seen and

used in target projects but they cannot be modified.

 Since only one template package can be selected here, it is absolutely essential

that all templates (page, section, link templates, etc.) used as a basis for pages and

sections from the content package are included in this template package. Also refer to

section 5.8.1.2, page 115 in this regard.

 A content package can also have dependencies on other content packages. These

content-related dependencies are not shown here! They are, however, visible in the

version list for a package and in the detailed information for a package.

5.1.1.2.1 Configuring events for a package

Figure 5-4: Dialog - Configuring events

All of the events defined for the package are listed in the table and the scripts or workflows

assigned to the event are shown. There are two types of events: Default events and what are

known as package-specific events. Default events are provided by the system and handle the

most common procedures when importing packages. Default events are:

 OK: The assigned workflow is carried out after the package version is imported

successfully.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 54

 Error: The assigned workflow is carried out if the package version is imported

incorrectly.

 Conflict: The assigned workflow is started if there is a conflict situation after the package

version is imported.

 Release: The assigned workflow is carried out after the package version is imported

successfully, if no automatic release is configured in the subscription (see section

5.6.4.2, page 87). Thus, for example, all of the objects contained in the package can be

released in the target project automatically.

 Update: The assigned workflow is carried out after the package version is imported

successfully. The selected workflow is initiated for all of the nodes that have not been

newly imported into the project but have been changed instead.

Clicking the Edit button opens a list with all known workflows from the source project. The

desired workflow is selected from this list.

Clicking the OK button saves the changes and closes the dialog.

Clicking the Cancel button closes the dialog; any changes made are not applied.

All events configured in the package store are taken over in target projects with a subscription.

However, the option of once again changing the event configuration for a package is present in

the subscription store. The workflows that have been defined for the package in the source

project can be changed again in the target projects (see section 5.6.4.4, page 90). These

changes are not visible in the source project and are not applied to other target projects either.

 The workflows from the source project can be assigned to a package. The

workflows are not known in the target project during the first import. In this case, the

required workflows have to be imported into the target project using a template package

first. Only afterwards can events in additional packages be configured and implemented.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 55

5.1.1.3 Creating a package - Advanced tab

Figure 5-5: Creating/editing a package - Advanced

Namespace extension:

In this area, namespace extensions for package contents can be activated or deactivated

globally or for individual element types.

Enable namespace extension for all package contents: If this checkbox is checked,

namespace extension is enabled for all package contents. This means that if an object is added

to a package, the reference name is provided with a "@PackageName" extension. Afterwards,

potential references to the added object have to be adapted in the project (see section 5.8.1.7,

page 118 ff.).

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 56

If the checkbox is unchecked, namespace extension is disabled for all package contents. If an

object is added to the package, the reference name remains unchanged (i.e. the reference name

does not receive a "@PackageName" extension). Whether a master project's package contents

overwrite the objects present in the target project or they are to be created under a different

name in the target project can be defined using conflict handling for importing package contents

into a target project (see section 5.8.1.7, page 118) in this case.

Change settings for specific element types: Enabling or disabling namespace extension is

usually only desired for specific element types. Therefore, the global setting for package contents

can be limited to specific element types.

Store: Representation of the store areas as an icon (the same as the tree display in FirstSpirit

SiteArchitect). The column can be sorted.

Type: Representation of the element type as an icon (the same as the tree display in FirstSpirit

SiteArchitect). The column can be sorted.

Type identifier: Name of the element type. The column can be sorted.

Enable: Namespace extension can be enabled or disabled for the respective element type by

checking or unchecking this checkbox. If the checkbox is checked, namespace extension is

enabled for the selected element type. If an object of the selected type (such as a format

template) is added to a package, the reference name is provided with a "@PackageName"

extension. Afterwards, potential references to the added object have to be adapted in the project

(see section 5.8.1.7, page 118 ff.).

If the checkbox is unchecked, the namespace extension is disabled for the selected element

type. If an object of the selected type (such as a format template) is added to a package, the

reference name remains unchanged (i.e. the reference name does not receive a

"@PackageName" extension). Whether a master project's package contents are to overwrite

objects present in the target project or not can be defined using conflict handling for importing

package contents into a target project in this case.

Clicking the Add button opens a dialog for selecting the desired element types that are to be

added to the list (see section 5.1.1.3.2, page 59).

Clicking the Delete button can remove a selected element type back out of the list. The global

settings for namespace extension again apply for this element type after it is removed.

Overwriting identically named objects during import into a target project

In this area, overwriting can be enabled in the target project for identically named objects or just

for identically named objects of a specific type (e.g. format templates).

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 57

Enable globally: If this checkbox is unchecked, overwriting contents in a target object with

identically named package contents is prevented (default setting). Conventional conflict handling

that is also used when creating identically named objects in a project takes effect in this case: If a

reference name (Uid) that has already been specified in a namespace is used, FirstSpirit

automatically replaces the name with a unique name, usually by attaching a number. Thus, the

package contents are created under another name in the target project in this case.

If the checkbox is checked, identically named contents in the target project are overwritten by

package contents from the master project during importing. Thus, if the package contains a

format template with the unique name "b", then if an identically named format template is

imported into the target project it is overwritten by the identically named format template from the

master project.

Overwriting package contents with the same Uid: In most cases, overwriting identically

named contents in a target project is only desired for specific element types. Therefore, the

global setting for package contents can be modified for specific element types.

Store: Representation of the store areas as an icon (the same as the tree display in FirstSpirit

SiteArchitect). The column can be sorted.

Type: Representation of the element type as an icon (the same as the tree display in FirstSpirit

SiteArchitect). The column can be sorted.

Type identifier: Name of the element type. The column can be sorted.

Enable: The default settings for import handling can be modified by checking or unchecking this

checkbox. If the checkbox is checked (default setting), overwriting identically named objects in a

target project is enabled for the selected element type. In this case, existing contents in a target

project can be overwritten.

If the checkbox is unchecked, overwriting identically named objects in a target project is

prevented for the selected element type. If an identically named object of the selected type (such

as a format template) already exists in the target project, the object remains intact in the target

project and the new package content is imported into the target project under a different name.

Adjustments in the target project may be necessary in this case.

Clicking the Add button opens a dialog for selecting the desired element types that are to be

added to the list (see section 5.1.1.3.2, page 59).

Clicking the OK button opens the new package for further editing in the CorporateContent store.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 58

5.1.1.3.1 Namespace extension

Overlap between package contents is not permitted when creating packages; each project node

is only allowed to belong to just one package. In order for the affiliation of an object to a package

to be unique and as transparent as possible for the package developer, what is known as

"namespace extension" has been introduced for package objects. When using it, an "@" and the

package name are appended to the reference name of a package's objects

("ObjectName@PackageName").

 The reference names with namespace extension can be displayed in the tree

structure using the option "Show reference names in tree" in the "View" / "Preferred

display language" menu.

After being added to the package, all of the objects receive this namespace extension.

Subsequently, all of the objects in the project that use the "old" reference name have to be

changed; this means that the old reference name has to be replaced by a new reference name

(with "@PackageName") everywhere. Sometimes these changes have to be made manually

(see section 5.8.1.6, page 118 to section 5.8.1.8, page 120).

Namespace extension is problematic for package contents with identical reference names in the

master and target project. This primarily affects standard format templates ("Bold", "Italics", etc.)

that are present in every FirstSpirit project and combined into a folder under the "Format

templates" node in the template store. They are used for formatting text and are used in the

DOM editor and DOM table input components, for instance (also see FirstSpirit Manual for

Developers (Basics)). Assignment to the corresponding buttons (e.g. "Bold") is lost in these input

components by using namespace extension. Namespace extension can lead to errors in the

master and target project in this case (see section 5.8.1.7).

The template developer can disable namespace extension for standard format templates as well

as for other objects that have identical reference names in the master and target project.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 59

5.1.1.3.2 Adding new element types

Clicking the Add button opens the "Element selection" dialog:

Figure 5-6: Element selection for namespace extension

For a description of the Store, Type and Type identifier columns see section 5.1.1.3.1, page 58.

Selection: Checking this checkbox applies the selected elements to the list of selected element

types. Only element types that are intended to be content for the package later on have to be

selected in the process. For instance, no element types from the template store or content store

(pink or brown icons) have to be selected in content packages.

The default setting for transfer to the table is always the opposite of the global settings that have

been defined via the "Enable namespace extension for all package contents" checkbox.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 60

This means, if namespace extension for package contents is disabled globally, then namespace

extension is enabled directly when transferring the selected element types.

If, on the other hand, namespace extension for package contents is enabled globally, then

namespace extension is disabled directly when transferring the selected element types.

5.1.2 Creating a package version

Clicking the icon opens a dialog with an overview of all of the versions that have been created

from the package.

Figure 5-7: Editing package versions

No.: The unique version number that is assigned automatically when creating a new package

version.

Version: The version designation specified by the package's creator.

Update: This check shows that the most recently released state of the integrated objects was

used for the version.

Date: Date and time the package version was created.

Available: Shows the publication groups that the package version is available to.

Comment: Optional comment on the package version.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 61

Dependent packages: Shows the dependent packages (templates and content packages, also

see section 2.2.2, page 9) for the respective package version.

Log file: The appropriate log file can be displayed in a separate dialog here.

Using the Edit availability button or double-clicking the desired package version opens the "Edit

package version" dialog box (see section 5.1.2.1, page 61).

Using the Create version button opens the "Create package version" dialog box (see section

5.1.2.2, page62).

The selected version is removed from the package using the Delete button.

5.1.2.1 Editing package availability

Figure 5-8: Edit package version dialog

Number: Unique version number. The field is inactive and cannot be edited.

Package version: Manually specified version designation when creating a new package version.

The field is inactive and cannot be edited.

Comment: Optional comment. An existing comment can be modified or a new comment can be

inserted at this point.

Update version: If this is checked in this field, then the most recently released state of the

integrated objects is used for this version.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 62

Available to publication groups: All of the available publication groups are shown as

checkboxes here. The availability of the package version for the edited publication group

changes by checking or unchecking a checkbox. If a checkbox is checked, the package version

is available for import. If the checkbox is unchecked, the package version is not available to this

publication group.

Clicking the OK button applies the changes to the existing package version.

5.1.2.2 Create a version

Figure 5-9: Create package version dialog

Number: In place of a unique version number, the entry "New" is shown here. The version

number is specified by the system automatically when creating a new package version (field is

inactive). Since, at this point, there still is not a new package version, a number cannot be

displayed at this point.

Package version: Optionally, in addition to a version number assigned by the system, a

"descriptive" (more meaningful) version number can be specified here.

Comment: Optional comment for the new package version.

Update version: The most recently released state of all integrated objects is used when creating

the new version if this checkbox is checked. The current state of all integrated objects is used

when creating a new version if this checkbox is unchecked.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 63

 If the package contains objects that

 have never been released and the checkbox is selected or

 the objects have not currently been released and the checkbox is not selected,

then an error message will appear to cancel the creation of a new version.

Available for publication groups: All available publication groups are shown as checkboxes

here (see section 5.6.7, page 95). The availability of the package version for the respective

publication group changes by checking or unchecking a checkbox. If the checkbox is checked,

the package version is available for import to that publication group. If the checkbox is

unchecked, the package version is not available to that publication group. A package version

can be available to multiple publication groups; subscriptions, on the other hand, are always

concluded for precisely one publication group (see section 5.6.4.2, page 87). If a package

version is available to the "Test" and "Production" publication groups, a subscription for the

"Test" publication group and a subscription for the "Production" publication group can access the

package version.

5.1.3 Publishing a package

Clicking the icon opens a dialog where the respective most up-to-date package versions are

listed in a tabular overview for known publication groups.

Figure 5-10: Publishing a package – Current version

Group: Publication group for which the package version has been marked as "available".

No: Unique package version number assigned automatically by the system.

Current version: Manually specified version designation.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 64

Last published: Shows the last published version.

Subscribed projects: Shows all of the projects that have concluded a valid, active subscription

for this package version and this publication group.

A package version goes through final publication using the buttons in the lower portion of the

dialog box. Packages can only be published if:

 The person doing editing has publication permissions for the package.

 An active subscription exists for the package version and the publication group.

If the desired package version is marked in the table, it can be published by clicking the Publish

button. Importing contents from the master project starts at this moment in all target projects that

have concluded a valid, active subscription, with automatic updating, for this package version

and the specified publication group.

The button is inactive and publication is not possible if one of the conditions listed above is not

met.

Alternatively, all of the package versions shown in the window can be published together as well.

The Publish all button is always active; however, only package versions that meet all of the

conditions listed above are published.

 Package dependencies should absolutely be determined before publication (see

section 2.2.2, page 9). Dependencies on template packages are defined in the package

properties. These dependencies are checked automatically. If the dependent template

packages are not published or are published in incorrect order, publication is canceled

and an error message is displayed.

Optional dependencies on other content packages are shown in the "Detail info" dialog box (see

Figure 5-22: Detailed information on a package), which can be called up via the package

overview. These dependencies are not checked automatically during publication. If the

dependent content packages are not updated or are not updated in the correct order

(1. importing the dependent content package, 2. importing the package containing the references

to the dependent package), they can cause errors in the target project: For instance, if the

referenced page and page reference are in different packages when publishing page references.

If, in this example, the package with the page reference were published and then the package

with the referenced page, this would cause an error in the target project. In order to resolve the

error, the page reference would have to be locked for editing in the master project and then

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 65

directly unlocked again. Then a new package version (from the package with the page reference)

is generated and republished, in the correct order this time.

5.2 Adding objects to a package

5.2.1 Using the tree structure of the stores

Adding new objects for a CorporateContent package can be started directly using the tree

structure in the corresponding store. There is a "CorporateContent – Start adding to package"

entry in the context menu for this purpose.

Clicking this menu entry displays the selected object as a dependency chart in the AppCenter

area of SiteArchitect and it can finally be added to a package using another context menu there

(see section 5.7.1, page 106).

If an object in a store is copied to an area that is already part of a CorporateContent package,

then a prompt appears asking whether this object is to be added to the corresponding package

as well. Confirming this prompt adds the object to the package.

5.2.2 In the package combination

Additional objects can also be added to the package using the areas for necessary or optional

dependencies. The checkbox in front of the respective object just has to be selected for the

desired objects, then the objects are integrated into the package by clicking the Add selected

button (see section 5.3.3 and 5.3.4 starting on page 68).

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 66

5.3 Package combination

5.3.1 Overview

Figure 5-11: Package – Overview

Package type: The package type configured when the package was created is specified here.

Dependent on: Manual dependencies on template packages are specified here. If the content

package is subscribed to, then the associated template package specified here has to be

subscribed to as well. Template packages do not have any dependencies. Thus the field is

disabled for the template package type.

The package properties set when the package was created can be edited using the Settings

button. A dialog for editing package properties opens (see section 5.1.1.2 and 5.1.1.3 starting on

page 51).

Integrated content objects: How many objects are integrated into the package from the page

store is specified here.

Integrated media: How many objects are integrated into the package from the media store is

specified here.

Integrated structures: How many objects are integrated into the package from the site store is

specified here.

Unfulfilled dependencies: How high the number of unfulfilled dependencies is in the entire

package combination is specified here. The number of absolutely necessary objects is shown

here in red; the number of optional objects is in yellow.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 67

5.3.2 "Integrated objects" area

All objects integrated for the package are listed in this area. There is a distinction between

explicitly and implicitly added objects. If an object is added explicitly, then all of the objects at a

lower or higher level are implicitly added to the feature as well.

 Explicitly added objects are shown in normal text; this indicates that they can be removed

from the list again by using the icon.

 Implicitly added objects are shown in text with less contrast and cannot be removed from the

list.

Figure 5-12: Package – Integrated objects

Clicking on an object in the list opens a tab with that object's forms in the SiteArchitect edit area

for viewing.

 Display dependency charts; clicking this icon opens a tab in the AppCenter area with a

graphical representation of the hierarchical structure and the dependencies of the selected object

(see section 5.5, page 71).

 Delete; this icon is only displayed if the associated object was explicitly integrated by the user.

Clicking this icon removes the selected, explicitly added object from the list along with all

implicitly integrated subobjects, after the user affirms a confirmation prompt. Higher level objects

that are not used by other explicitly integrated objects are also removed.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 68

 Unfulfilled optional dependencies; the yellow exclamation mark indicates that the respective

object or a subordinate object has unfulfilled optional dependencies. The objects are listed in

detail in the "Optional unfulfilled dependencies" area.

 Unfulfilled required dependencies; the red exclamation mark indicates that the respective object

or a subordinate object has unfulfilled hard dependencies. The objects are listed in detail in the

"Required unfulfilled dependencies" area.

 Object details; clicking this icon opens a flyout menu with object-specific information (see

section 5.4, page 70). Clicking the icon again closes the flyout menu.

5.3.3 "Unfulfilled dependencies (own package)" area

All of the objects that have a dependency and belong to the same package type are shown in

this area. If all of the dependencies are fulfilled then this area remains empty.

Figure 5-13: Package – Unfulfilled dependencies (own package)

Dependent objects are shown in list form, each with a checkbox for selecting each individual

object. Clicking on an object in the list opens a tab with that object's forms in the SiteArchitect

edit area for viewing.

Unfulfilled dependencies (own package): If this checkbox on the top end of the area is

selected, then the checkbox for selecting an object is selected for all of the objects in the list.

Clicking on the Add selected button integrates all of the objects selected in this area into the

package combination.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 69

 Objects can be added only to a package with a suitable package type,

5.3.4 "Unfulfilled dependencies (foreign packages)" area

All of the objects that have a dependency but belong to a different package type are shown in

this area. If all of the dependencies are fulfilled then this area remains empty.

Figure 5-14: Package – Optional unfulfilled dependencies

Dependent objects are shown in list form, each with a checkbox for selecting each individual

object. Clicking on an object in the list opens a tab with that object's forms in the SiteArchitect

edit area for viewing.

Unfulfilled dependencies (foreign packages): If this checkbox on the top end of the area is

selected, then the checkbox for selecting an object is selected for all of the objects in the list.

Clicking on the Add selected button integrates all of the objects in the package combination

selected in this area for which a dependency has been defined in the package settings (see

section 5.1.1.2, page 51).

 Objects can be added only to a package with a suitable package type,

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 70

5.4 Flyout menu

The flyout menu contains object-specific information that is shown in the same way as the

information for the package combination.

Figure 5-15: Flyout menu

The flyout menu always contains at least a tabular listing of object-specific data the same way as

the feature overview.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 71

 Icon and language-dependent display name for the displayed object

 "Include child objects" checkbox – If this checkbox is selected, then the unfulfilled

dependencies for the displayed object are displayed along with all of the object's subobjects.

If the checkbox is not selected, then only the unfulfilled dependencies of the displayed object

are displayed.

 Number of subobjects

 Number of unfulfilled dependencies (own package and foreign package)

 A tab with a graphical representation of an object's dependencies can be displayed using the

Show dependencies button in the AppCenter area (see section 5.5, page 71).

The Required and Optional unfulfilled dependencies areas are the same as the areas in the

package combination with the same name (see section 5.3.3 and 5.3.4 starting from page 68).

5.5 Graphical representation of dependencies

The graphical representation is used to provide a flexible view of the hierarchical structure and

dependencies of a package's embedded objects.

Figure 5-16: Show dependencies

The dependency chart is integrated as a reusable tab in the SiteArchitect AppCenter area.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 72

5.5.1 Icon bar

 Layout; clicking this icon automatically arranges the displayed objects in a uniform layout. In

the process, layout changes made by the user are discarded without prompting.

 Update; clicking this icon updates the information displays in the dependency chart. Changes

to the hierarchical structure of the objects and the package's new or removed objects are taken

into account in the process.

 Zoom out/1:1/in; clicking on these icons changes the view of the dependency chart

by increasing it, shrinking it or changing it back to its original size.

 Fit to Screen; clicking this icon adjusts the zoom level so that the entire dependency chart is

visible at the current tab size.

 Save as image; clicking this icon opens a dialog box for selecting the name and save location

for creating an image file in PNG format. The created picture file contains the entire dependency

chart at the selected zoom level.

Grouping size: How many objects are to be displayed at the same time using the "Show linked

objects" context menu function or by double-clicking can be specified in this field.

5.5.2 Display for dependency charts

The dependency chart displays objects from the stores and their connections to each other.

These connections can be relationships between parent and child objects as well as references

between different objects.

The object that the dependency chart was retrieved for is used as the root node for the view and

appears at the far left in the dependency chart. When expanding outgoing connections for an

object, the target nodes are arranged to the right of the object. Each link between two objects is

represented by an arrow that points to the child or referenced objects.

Each object is shown as a rectangle and contains the following information:

 Object icon; the same icon that is also displayed in the tree structure of individual stores.

 Suitcase symbol (); specifies whether the object is currently integrated in the feature. It is

placed on the object icon for identification

 Display name; the language-dependent display name from the relevant stores is displayed.

 Preview symbol; if present, a preview of the object or integrated images is shown as a

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 73

symbol.

 Exclamation mark (/); displayed if unfulfilled dependencies exist for the object or a

subobject. The color rules match the tree view in the "Included objects" area of the feature

combination (see section 4.3.2, page 27).

Edge lines are drawn between objects that are related to each other. These lines are shown

differently depending on the fulfillment status:

 Solid line; used for explicitly added objects.

 Dashed line; used for implicitly added objects that are subelements of an explicitly integrated

object.

 Gray; used between objects if their connection is intact in the current feature combination (i.e.

always subordinate objects, referenced objects if the reference target is integrated in the

feature).

 Red; used between objects if an unfulfilled required dependency is present.

 Yellow; used between objects if an unfulfilled optional dependency is present.

5.5.3 Context menu on objects

A context menu can be called up on each object. The functions of the context menu are active or

grayed out depending on the state of the object.

Add to package "xyz": The selected object and all of its subelements are integrated into the

package.

Show element in edit area: Calling this function opens a tab with this object's forms in the

SiteArchitect edit area for viewing.

Show linked objects (double-click): If there are connections to other objects that are not yet

displayed, calling this function triggers the display of these objects. The maximum number of

objects that are displayed there is specified on the icon bar under "Grouping size". Another group

of objects can be displayed by calling the function (or double-clicking) again.

If not all linked objects were able to be displayed, this is indicated by an extra object with the

label "Show next elements (X total)". Another group of objects can also be displayed by double-

clicking this extra object.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 74

Hide linked objects: All linked objects currently being displayed can be hidden by calling this

function. All of a linked object's subordinate objects are also hidden in the process. Thus, if an

object is hidden and then immediately displayed again, then its subordinate objects continue to

be hidden.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 75

5.6 Functions via the "CorporateContent" menu item

Some of CorporateContent's functions can also be called up in the FirstSpirit menu bar under the

"CorporateContent" menu item and its submenu items.

5.6.1 Overview menu item

The "Package store overview" dialog box opens via this menu function. The same information is

shown here in the master project and target project(s).

Figure 5-17: Package store overview

The window shows the most important information about packages, projects and the current

state of subscriptions in an overview window. All of the projects on the server are shown on the

vertical axis and all packages that are known server-wide are shown on the horizontal axis here.

The intersection between a package and a project displays quick information about the state of

the subscription for the package in the corresponding project.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 76

Figure 5-18: Quick information on a subscription in a target project

Subscriptions in target projects are shown with the following information:

Active – A checked checkbox indicates that the subscription to the package is active. The status

can be modified directly in this overview by double-clicking the subscription or using the Edit

button; this opens a dialog box with detailed information (see section 5.6.1.1, page 78). The

detailed information could also be opened using the Details button in the "Edit subscriptions"

dialog box (see Figure 5-33).

Current – A checked checkbox indicates that the current package version has already been

imported into the target project. The checkbox is only checked for subscriptions marked in green;

the checkbox is unchecked for subscriptions marked in orange or red (see below for subscription

color coding).

Automatic – A checked checkbox indicates that the package contents are updated in the target

project automatically as soon as a more up-to-date package version is made available (push

process, also see section 2.2.5.1, page 14). The state can be changed using the Update

parameter in Figure 5-29: Creating a subscription for package 'xyz'.

Packages from master projects are displayed with the following information:

Figure 5-19: Quick information on a package in a master project

Packages from master projects show the last three package versions in the blue box. This allows

the user to see at a glance how up-to-date the package version is in the respective project and

which package version should be updated in the target projects. A tool tip with the associated

publication groups is shown as additional information if the user hovers the mouse over the blue

box.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 77

If the intersections between package and project are empty, there is no subscription to the

package in the target projects (for information on creating a new subscription: see section 5.6.4

starting on page 86). If only an empty blue box is shown, then no package version has been

created for the package in the master project.

In order to show the state of a subscription in a clear and concise manner, color coding has been

introduced in addition to quick information. This is shown as a colored box in the overview.

Figure 5-20: color coding for the state of a subscription

Blue box – Marks the master project for the respective package.

Green box – Means that the currently most up-to-date package version has already been

imported into the target project successfully.

Red box – Marks an import into the target project that has an error. In this case, the log file from

the detailed information (see section 5.6.1.1, page 78) should be called up (see section 5.6.1.3,

page 81).

Orange box – Means that a more up-to-date package version has become available for import

but the target project has not yet been updated (for information on updating the subscription

starting from a target project: see section 5.6.6, page 93, for information on updating the

subscription starting from a master project: see section 5.6.3, page 85).

Clicking the Edit button or double-clicking the desired package-project relationship opens the

"Project/Package detailed information" dialog box. Information in addition to that from the

overview can be viewed here for each intersection in the overview. A distinction is made here

between information on subscriptions (green, orange and red boxes, see section 5.6.1.1, page

78) and information on packages (blue box, see section 5.6.1.2, page 80).

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 78

5.6.1.1 Detailed information on subscriptions

Figure 5-21: Detailed information on a subscription

The name of the target project being subscribed to and the subscribed package with ID are

shown on the window's title bar and as a header in the content area.

Subscription active: If this checkbox is checked, then the subscription is active for the package.

This means that all new package versions are made available for importing in this project (also

shown in the quick info). The checkbox is active and can be edited in this dialog (also see section

5.6.4.2, page 87).

Automatic: If this checkbox is checked, the target version is updated to a new package version

automatically. The checkbox is disabled and is only used to provide information. The state can

be modified in the subscription properties (see section 5.6.4.2, page 87).

Last update: Shows the date and time of the last update to the package in the target project.

Version: In the first field, shows the unique version number for the package version assigned by

the system. In the second field, a version number manually specified by the master project's

package developer is shown as well.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 79

Update status: Shows the status of the update in the target projects. The information follows the

color coding in the overview window. The three known states for a subscription are specified

here:

 Current – The most up-to-date package version has been imported successfully.

 Outdated – A more up-to-date package version is available for import.

 Error – Incorrect import into the target project.

Clicking the Show log button opens the "Show log file" dialog box. The log file records the

specific process while the packages are imported and, if an import has an error, is of particular

interest for being able to evaluate the error that occurred. Additional information in section

5.6.1.3, page 81.

Publication group: Shows the publication group(s) for which the subscription has been

concluded.

Package publication project: Shows the master project, i.e. the project where the package was

created.

Clicking OK closes the "Detailed info" dialog box; any change to the "Subscription active"

checkbox is applied to the subscription.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 80

5.6.1.2 Detailed information on packages

Figure 5-22: Detailed information on a package

Additional information on a package can be called up in the blue box in the "Package store

overview" dialog box by double-clicking.

 Before updating subscriptions in a target project (see section 5.6.6, page 93), the

detailed information about the package should be checked using this dialog in order to

discover potential dependent content packages ("Dependent packages" column) that

have to be imported before the content package that contains references to dependent

objects.

The name of the master project being subscribed to and the subscribed package with ID are

shown on the window's title bar and as a header in the content area.

The table shows the created package versions for the different publication groups (see section

2.2.3, page 11). The most up-to-date package version is shown at the top by default in the

process.

No: Shows the unique version number assigned by the system.

Version: Shows the manually specified version name.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 81

Date: Shows the date of version creation.

Available: Shows the publication group(s) that this package version is "available" for.

Comment: Optional comment on the package version.

Dependent packages: Shows the dependent packages (templates and content packages, also

see section 2.2.2, page 9) for the respective package version.

Log file: The log file for package version creation can be viewed here.

Import log: The "Show log file" dialog box is opened using the Display button (see section

5.6.1.3, page 81).

5.6.1.3 Showing a log

Figure 5-23: Show log file

A log file is created each time a package version is imported into a target project. The log file

records all of the information during the import process and is important for correcting any errors.

A log file can be selected for each subscription and each imported package version using the

"Show log file" dialog box. The table can be sorted by clicking the respective column.

Subscriber: Specifies the target project where the package was imported.

Version: Shows the version number assigned by the system.

No: Shows the number of attempts to import into a target project. The number is normally "0" if

automatic importing is configured. However, if an error occurs when importing a package version,

the import is initiated again and the number is increased by "1".

Date: Shows the date and time of the import.

File name: Shows the name of the log file. The name is a combination of:

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 82

Figure 5-24: Log file name combination

Double-clicking an entry opens the associated log file:

Figure 5-25: Log file

Log entries with the status ERROR are of particular interest. If there is an error during importing or

updating, you may be able to find out here whether additional referenced objects from the master

project are needed so that the import can then run successfully.

The log outputs can also be opened in an external editor. To do so, all of the outputs first have to

be highlighted using the key combination Ctrl+A and then copied to the clipboard using Ctrl+C.

Then the external editor is opened and the content in the clipboard is pasted into the editor using

Ctrl+V. This process is particularly advantageous when analyzing larger files.

5.6.2 Package menu item - Edit packages

The "Edit package" dialog is opened using this menu function. All of the packages present in the

source project are shown in this dialog box.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 83

Figure 5-26: Edit package – Package list

The table provides the following information on each package:

Package: Unique package name.

Type: Shows whether this is a content package or template packages.

Available: If this checkbox is checked, the package is available for target projects and can be

subscribed to. A subscription can even be created if no package version exists for a package. If

the checkbox is unchecked, the package is available to be subscribed to in the target projects.

Comment: Optional comment for the package.

Clicking the Edit button (or double-clicking the table row) opens the selected package for further

editing in the CorporateContent store (see section 5.3, page 66).

Packages can be deleted from the table using the Delete button. In order to prevent a package

from being deleted accidentally, a confirmation prompt is displayed before it is permanently

deleted.

 Deleting a package also removes all of the package versions! Therefore, it is not

possible to directly delete packages where subscriptions have already been concluded. In

this case, the following confirmation prompt is displayed first.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 84

Affirming the confirmation prompt first deletes all existing subscriptions to the package and then

the package itself.

The package cannot be deleted if a dependency on a template package is present. In this case,

the link to the template package has to be removed in the content package's properties first. Only

then can the content package be deleted.

 If namespace extension has been enabled, the extended reference names

("ObjectName@PackageName") remain intact after a package is deleted; they are not

reset to their original reference names.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 85

5.6.3 Package menu item - Publish packages

This menu function is used for updating package contents in target projects using what is know

as the "push" process (also see section 2.2.5.1, page 14). The "Publish package" dialog box

opens listing all of the existing packages in one table.

Figure 5-27: Publish package – Overview

Package: Unique package name.

Type: Shows whether this is a content package or template packages.

Available: If this checkbox is checked, the package is available for target projects and can be

subscribed to. A subscription can even be created if no package version exists for a package. If

the checkbox is unchecked, the package is available to be subscribed to in the target projects.

Comment: Optional comment for the package.

Clicking the Properties button opens a dialog with the package properties that were set when

the package was created (see section 5.1.1.2 and 5.1.1.3 starting on page 51). The package

properties cannot be modified at this point; they are only for informational purposes.

Clicking the Publish button opens a dialog where the most up-to-date package versions for each

known publication group are listed in a tabular overview. This dialog can also be called up using

the icon in the "CorporateContent" store (see 5.1.3, page 63).

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 86

5.6.4 Subscription menu item - Create subscription

A new subscription in a target project can be created using this menu function. Creating a new

subscription takes a multi-step process; the steps are explained below. Only a target project's

administrator can carry out the initial creation of a subscription.

5.6.4.1 Selecting a package

Figure 5-28: Selecting a package

The "Create subscription" menu item opens the "Select a package" dialog box. All of the

packages available on the server are shown in this dialog box. Only one package can ever be

selected at a time. The table provides the following information on each package:

Package: Unique package name.

Type: Specifies whether this is a content package or a template package.

Comment: Optional comment for the package.

Publisher: Shows the name of the master project where this package was created.

Clicking Cancel closes the window. A dialog for editing the subscription opens (see section

5.6.5, page 91).

Clicking OK opens another dialog box for creating a subscription (section 5.6.4.2, page 87).

 No new subscriptions can be created if no packages are available for subscribing. A

dialog box appears with a corresponding error message.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 87

5.6.4.2 Creating a subscription for a package

Figure 5-29: Creating a subscription for package 'xyz'

All of the settings for the subscription are set by the administrator of the target project in the

"Create subscription for package 'xyz'" dialog box:

Subscription active: An update that can be initiated manually or automatically is provided for

each new package version if this checkbox is checked. If the checkbox is unchecked, the

package is not updated automatically in the target project. If a manual update is provided for the

subscription, the administrator of the target project can update the subscription even if it is not

"active" (see section 5.6.6, page 93).

 A subscription can only be deleted starting from the source project. Therefore, in

order to "cancel" a subscription, the "Subscription active" option should be unchecked

here. In this case, the subscription can only still be updated manually; this prevents an

update initiated from the master project.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 88

Publication group: A publication group can be selected for the subscription in the drop-down list

(see section 2.2.4, page 13). All available publication groups are shown. If a publication group for

which no package version has been made "available" is selected at this point, a subscription can,

in fact, be created. However, an update (see section 5.6.6, page 93) only takes place if a

package version for that publication group exists as well:

Update: The type of the update for the package in the target project can be selected in this drop-

down list. If automatic update is set, importing is initiated from the master project and runs in

the target project automatically. If, on the other hand, manual update is set, importing is initiated

from the target project using the "Update subscription" menu item (see section 5.6.6, page 93). A

manual update can also be carried out if the subscription is not "active".

Release: Release control for the package can be adjusted using this drop-down list. The release

can be automatic, i.e. all included objects are released in the target project automatically after

importing the package. However, the release can also be configured via a workflow. Both

settings only apply if the target project is also working with releases (see section 2.2.5.3, page

16). If this is not the case, then the entries are simply ignored.

 Different release states can occur when using releases in a target project if a

package is imported again after the "Release" workflow is started. At this point, the newly

imported object no longer corresponds to the initial released state.

Conflict handling: This drop-down list controls the process in the event of a conflict when

importing a package. These conflicts can only arise if the "Modifiable" checkbox is active (see

below). This means that the package contents may be changed locally in the target project. A

conflict situation could occur during the next update due to these local changes. The conflict is

triggered only if the change status for an object is set to "Modified" or "Locked" (see section

5.7.4, page 109). The change status is configured manually using the context menu for the

respective objects.

Depending on the change status that is set and the way conflict handling is configured, changes

to objects are overwritten, copied or the update for the entire subscription is prevented.

 Overwrite – The local changes are overwritten by the new package contents.

 Cancel – The import is canceled.

 Copy – A copy of the node where the conflict occurred is created. An exception is made

for nodes in the site store: Copies of the node are not created here, instead they are

overwritten.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 89

The exact results of conflict handling, depending on the change status that is set, are described

in section 5.7.4 on page 109.

Modifiable: Write permission to the imported objects is granted for the target project if this

checkbox is checked. If the checkbox is unchecked, the imported objects can be seen and used

in the target project but they cannot be modified. An error message appears when trying to block

the object in a target project. This setting also affects the order when importing objects into target

projects (see section 5.6.8.3, page 101).

Package content: Using the Limit button opens the "Select node list" dialog box for limiting

package contents during importing (see section 5.6.4.3, page 89).

Events: Using the Configure button opens the "Configure events" dialog box for editing or

deleting events already present in the package (see section 5.6.4.4, page 90).

Clicking the OK button creates a new subscription.

5.6.4.3 Limiting package content in a subscription

Clicking the Limit button in the package content row opens the "Select node list" dialog box:

Figure 5-30: Selecting a node list

All of the objects included in a package version are listed in the dialog box.

Import: This checkbox is checked by default for each object. If specific objects are not intended

to be imported into the target project, then the associated checkbox has to be unchecked. Pages

from the page store can only ever be deactivated together with the child elements (sections) in

this context.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 90

 Caution: If package contents are limited manually here, then the dependencies

between package contents absolutely have to be taken into account (see section 2.2.2,

page 9). If nodes that have to be included in the package are deleted manually here, then

this will result in errors during importing.

Name: Shows the name of the object from the master project. Objects integrated into a package

are provided with a namespace extension.

Figure 5-31: Namespace extension for package contents

It is possible to deactivate namespace extension (see section 5.1.1.3.1, page 58). In this case,

the objects are shown without the appended "@PackageName".

ID: Shows the object ID from the master project.

Path: Path to the object in the master project's project tree

5.6.4.4 Configuring events for a subscription

Clicking the Configure button in the Events row opens the "Configure events" dialog box.

Figure 5-32: Configuring events (in a target project)

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 91

Events, such as errors or releases, that have already been defined when creating a new package

version in a source project can be assigned workflows here. The workflows can be deleted for

the target project or be replaced by other workflows using this dialog. New events cannot be

created.

 deletes an existing workflow from the event table.

Clicking the Edit button opens a dialog for selecting a new workflow.

Clicking the OK button saves the changes and closes the dialog.

Clicking the Cancel button closes the dialog; any changes made are not applied.

5.6.4.5 Subscription is created

Once existing configurations have been made (as explained in sections 5.6.4.1 to 5.6.4.4), the

subscription is initially shown in an overview (see Figure 5-33: Edit subscriptions) with orange

highlighting (see section 5.6.6, page 93 for color coding subscriptions) and initially created using

the Update button.

5.6.5 Subscription menu item - Edit subscription

The "Edit subscription" menu item opens the "Edit subscription" dialog box. A list of all packages

subscribed to for the project is shown in this window.

Figure 5-33: Edit subscriptions

Active: This checkbox is identical to the "Subscription active" box in the "Creating a subscription

for package 'xyz'" dialog. If it is checked, then the subscription for the corresponding package is

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 92

active and can be updated if a new package version is available (orange marking). If the

checkbox is unchecked, then the subscription can no longer be updated (starting from the

master project, see section 5.6.3, page 85). The status in the "Active" column can be changed in

this view by clicking on the checkbox. Refer to section 5.6.6, page 93 and section 5.6.1, page 75

for subscription color coding.

Package: Unique package name.

Type: Specifies the type of the package (content package or template package – see section

2.2.1)

Last update: Date and time of the last subscription update in the target project using a new

package version. If no entry has been made there, then an import has not yet taken place in the

target project.

Version: Both the unique version number (assigned by the system) and the self-defined version

number during package creation are shown here. The number assigned by the system is in

parentheses here (e.g. "MyVersionA(No.12)"). If there is no entry present here, then there is not

yet a package version for this package in the specified publication group.

Comment: Optional comment on the package version.

Publication group: Each subscription is concluded for precisely one publication group. Then a

package version can be imported only if the subscription is active and the package has been

marked as "Available" for the specified publication group.

Clicking the Details button opens the "Detailed info: project/package" dialog box. The window

corresponds to the detailed information for the subscription from the "Package store overview"

(see section 5.6.1.1, page 78). The window is used only for information; the displayed values

cannot be modified.

Clicking the Add button opens the "Select package" dialog box; a new subscription is added to

those already present in the list. The sequence is the same as for the "Create subscription" menu

item (see section 5.6.4, page 86).

Clicking the Edit button opens the "Edit subscription for 'PackageName' package" dialog box. All

of the settings for the subscription are defined in this dialog box (see section 5.6.4.2, page 87).

Clicking the Update button can be used to update a subscription directly from the "Edit

subscription" menu item. The specific procedure for updating a subscription is described in

section 5.6.6, page 93.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 93

 Subscriptions are also initially created using this button.

5.6.6 Subscription menu item - Update subscription

The "Update subscription" menu item is needed only for manually updating (see section 5.6.4.2,

page 87) a subscription in a target project. However, all of the subscriptions can be updated this

way depending on whether a manual or automatic update has been configured in the

subscription or whether a subscription is marked as active or inactive. Thus, this function is used

for updating using what is known as the pull process (also see section 2.2.5.1, page 14).

If a subscription is active and set to automatic Update,then the "Update subscriptions" button is

normally not needed. In the event of an automatic update, the import is initiated from the master

project by publishing a new package version (see section 5.6.3, page 85). However, if an error

occurs during automatic updating in a target project, the update can be repeated easily using a

manual update in the target project.

If a subscription is, in fact, set to automatic update, but was in the inactive state at the time of a

new package publication, then the update is not carried out automatically. In this case, the

subscription is marked as "Not up-to-date" and has to be updated manually.

If a subscription is set to manual update, the update always has to take place in the target

project. The active or inactive status is not relevant for a manual update.

The "Update subscription" menu item opens the "Edit subscriptions" dialog box (see Figure

5-33). The window should already be familiar from the "Edit subscriptions" menu item (see

section 5.6.5, page 91). Only the "Update" button is relevant for manually updating a subscription

at this point.

 Before updating, the package dependencies should be checked (see section 2.2.2,

page 9). Dependencies on template packages are defined in the package properties.

These dependencies are checked automatically. If the dependent template packages are

not updated or not updated in the right order, then the update is canceled and a

corresponding error message is displayed.

Optional dependencies on other content packages are shown in the "Detail info" dialog box,

which can be called up via the package overview. These dependencies are not checked

automatically during updating. If the dependent content packages are not updated or are not

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 94

updated in the correct order (1. importing the dependent content package, 2. importing the

package containing the references to the dependent package), they can cause errors in the

target project: For instance, if the referenced page and page reference are in different packages

when updating page references. If, in this example, the package with the page reference were

updated and then the package with the referenced page, this would cause an error in the target

project. In order to resolve the error, the page reference in the target project has to be deleted

and then the package with the page reference has to be updated again.

 If the subscription is for a template package that contains objects from a database

schema, then the database configuration in the target project's project properties has to

be adjusted before updating (see section 5.10, page 135). Otherwise a corresponding

error is output.

Clicking the Update button initiates a manual update of a subscription starting from the target

project (see section 2.2.5.1, page 14). Since updating a subscription is a sensitive step, a

confirmation prompt appears before updating.

Affirming this confirmation prompt starts the subscription update. An update only makes sense

for subscriptions that do not have an up-to-date status. The update status can easily be seen

using the color coding for the subscriptions in the "Edit subscriptions" dialog box (see Figure

5-33).

The default setup for an update is:

 (orange) – The subscription is currently not up-to-date. A new package version is available

for the subscribed package and the configured publication group that can be imported into

the target project.

 The orange coding (or green for "up-to-date", see below) only refers to contents; the

package's properties (see section 5.1.1.2, page 51) or even the subscription's properties

(see section 5.6.4.2, page 87) can be modified in relation to the last update even though a

"green" status is displayed.

The log for the package import into the target project can be displayed as needed after running

an update. All possible errors are listed in detail here.

Then click on the icon on the right upper edge of the window in the "Edit subscriptions"

window. The new color coding for the subscription is displayed only after updating the view. The

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 95

subscription is in either the "red" or "green" status after updating.

From (orange) to (green) = subscription was updated successfully.

From (orange) to (red) = an error occurred during the update. The subscription is not in an

updated state. In this case, the log for the import should be displayed and evaluated.

A special case for an update occurs if the color coding is orange but no package version is

available for importing yet. This error can occur if a subscription has already been created even

though no package version is exists, likely because there are not any package versions but also

because there are no available package versions for the subscribed publication group. An error

message is displayed in this case:

 If a new package version has been imported into the target project successfully, the

editing environment for the target project still shows an old view of the project. Therefore,

the view should be updated using F5 or the button after each import. Only after this are

all contents contained in the package shown with a corresponding symbol in the project

tree. The symbol is only visible if the option "Show symbols (metadata, packages,

permissions)" is active in the "View" menu item.

For additional information on color coding subscriptions see section 5.6.1 starting from page 75.

5.6.7 Publication groups menu item

The "Publication groups" menu item simplifies the process of publishing and importing packages

in complex operating environments for users (see section 2.2.4, page 13). For instance, by

separating into three publication groups, Development, Production and Test, packages can be

published in a test environment first and only then be implemented in a production environment

as a tested, stable package version.

The publication groups are defined server-wide and thus are available in both master projects

and target projects. Thus there are two different implementation areas for working with

publication groups:

Publication groups in a source project: Which publication groups a package version is to be

available for is assigned to each new package version during creation. (see section 5.1.2.1, page

61). The package versions can then be published for all of the publication groups or just for

individual available ones. They are then ready for import into target projects.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 96

Publication groups in a target project: Each subscription is concluded for exactly one

publication group (see section 5.6.4.2, page 87). Thus, the most up-to-date package version

available for this publication group is always imported into the target project. If, for instance, a

subscription is concluded for the "Test" publication group, then only the most up-to-date package

version made available to the "Test" publication group is imported.

5.6.7.1 Editing a publication group

The "Publication groups" menu item opens the "Edit publication groups" dialog box:

Figure 5-34: Editing publication groups - Overview

All publication groups present on the server are shown here in a table with the following

information:

Default: The checked checkbox indicates the default (server-wide) publication group. This is

selected by default when creating a subscription (section 5.6.4.2, page 87, "Publication group").

Exactly one publication group has to be defined as the default group at all times. This publication

group cannot be deleted without first selecting a new publication group as the default group.

Name: Unique name for the publication group.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 97

Description: Optional description of the publication group.

Clicking the Add button opens the "Create new publication group" dialog box. The rest of the

process is described under the "Add publication group" menu item (see section 5.6.7.2, page

98).

Clicking the Delete button deletes a publication group. The rest of the process is described under

the "Delete publication group" menu item (see section 5.6.7.3, page 99).

Clicking the Edit button opens the "Edit publication group" dialog box. The publication group

highlighted in the table can be edited here.

Figure 5-35: Editing a publication group

The information from the "Edit publication group" dialog box can be edited at this point for the

selected publication group.

Default group: If this checkbox is checked, then this publication group is set as the default

group. Exactly one publication group has to be defined as the default group at all times.

Name: A new name for the publication group can be specified in this field. Existing subscriptions

under the publication group's old name remain intact and are now concluded for the new

publication group name automatically. Thus, if needed, the publication group name only has to

be changed here; manual adjustments at other points are not needed.

Description: A new optional description can be specified in this field.

Clicking OK confirms the changes and closes the window.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 98

5.6.7.2 Adding a publication group

Clicking the Add button in the "Edit publication groups" opens the "Create new publication group"

dialog box.

Figure 5-36: Create new publication group.

Default group: If this checkbox is checked, then this new publication group is created as the

default group. The previous default group then loses this status since only one publication group

at a time can be defined as the default group.

Name: Unique name for the new publication group. The new group cannot be added if the

desired name is already assigned. The "Name" label is marked in red at this point in order to

show the source of the error and, at the same time, the OK button is not active. Thus it is not

possible to input two publication groups with the same name.

Description: Optional description of the new publication group.

Clicking the OK button creates the new publication group. It then appears in the "Edit publication

groups" dialog box.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 99

5.6.7.3 Deleting a publication group

A previously highlighted publication group can be deleted by clicking the Delete button in the

"Edit publication groups" dialog box. In order to prevent a publication group from being deleted

accidentally, a confirmation prompt is called up before it is permanently deleted.

Figure 5-37: Deleting a publication group - Confirmation prompt

Clicking the Yes button deletes the publication group.

Clicking the No button cancels the dialog; the publication group is not deleted.

 Publication groups can be deleted only if they are not used in any subscriptions.

A publication group that has been defined as the default group cannot be deleted. If a default

group is to be deleted, a new publication group has to be defined as the default group in the "Edit

publication group" dialog box first.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 100

5.6.8 Combining package and target project contents

5.6.8.1 General

Contents can be transferred from a master project to multiple target projects using a package

store. To do so, objects from a package are imported into the respective target project. In the

target project, the package contents mix with the contents already present in the target project in

the process. Thus, for instance, a page from the page store is maintained directly in the target

project, however, another page is maintained in the master project and just imported into the

target project. For most content, this combination of package and target project contents is

possible without issue if certain rules are followed (e.g. dependencies). However, structures that

normally cannot be created by themselves in a target project can also be combined using the

package store, such as an individual section (see the following section of this document).

5.6.8.2 Combining sections

In the target projects, contents that are imported from a package can be supplemented by adding

individual content, such as adding any number of sections to an imported page from a package.

The "Modifiable" checkbox has to be checked in the subscription (see Figure 5-29) and in the

package settings for this. This setting grants write permission to imported objects for the target

project.

For instance, company-wide uniform terms and conditions pages can be distributed to individual

subsidiaries using the package store. These pages and sections can then be supplemented

within the subsidiaries by adding additional company-specific sections that are included in the

target projects (subsidiaries) but not in the package. The general portion of the contents, the

terms and conditions pages in this example, is maintained using the package store and updated;

the specific sections are added in the target projects and maintained there as well. Sections

inserted into the target projects remain intact when updating the subscription. If the order of the

sections changes in the master project, then this can also affect the order of sections in the

target project (see section 5.6.8.3, page 101).

Package contents can also certainly be reduced instead of being expanded. The package

contents to be imported are simply restricted in the subscription for this purpose (see 5.6.4.3,

page 89).

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 101

5.6.8.3 Order when importing objects into target projects

The order in which the objects in the master project are present in the object chain is taken into

account as well when importing objects (such as sections) into target projects. This has to be

adhered to to the greatest extent possible during the initial import into a target project as well as

when importing modified objects, as well as in cases where object chains in a target project are

expanded (see section 5.6.8.2, page 100).

Changes to imported objects in a target project can only be made if the "Modifiable" checkbox for

subscriptions has been checked (see section 5.6.4.2, page 87). This setting also affects the

order when importing objects:

If a subscription is marked as "Not modifiable", the contents from the master project cannot be

modified in the target project (no write permission in the target projects). Change authority is in

the master project in this case. This setting affects the import order of objects in the target

project. If the order – such as the sections of a page – in a master project changes, then this

modified order is also applied in the target project when updating a subscription. This applies to

both the first roll-out of contents into a target project as well as updating content that already

exists into the target project.

If a subscription is marked as "Modifiable", the contents from the master project can be

modified in the target project. The content editors in the target project can add additional objects

to imported package contents (such as a new section for an imported page) and modify the order

of objects in the target project as well. These changes are not normally lost when updating a

subscription again. Therefore, after initially importing package contents, the following applies:

 New objects added to already imported package contents in a target project (such as

a new section to an imported page) remain intact when updating package contents in

the target project.

 New objects added to existing package content in a master project (such as a new

section added to a page that is already part of a package) are applied to the target

project. Sorting into existing package contents occurs following specific rules in the

process:

The link to the previous object ("predecessor") has priority when sorting objects from

the master project in the target project. This means that:

o If a predecessor and a successor exist, then the new object is inserted

after the predecessor.

o If only a predecessor exists, it is inserted after the predecessor.

o If only a successor exists, it is inserted before the successor.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 102

Previously, objects were more closely linked with the subsequent object ("successor") if a

successor was available.

The order defined for package contents in the target project (such as by the initial roll-out

or resorting package contents in the target project) remains intact even if the package

contents are resorted in the master project and are rolled out again.

Example 1 – Initial import of package contents into target projects:

A page with 3 sections (1, 2, 3) in the following order is contained in the master project:

Figure 5-38: Example 1 - Page with three sections

If a package with these objects is rolled out to the target project, then the order of the sections is

retained. This applies to the initial import into the target projects (regardless of whether the

subscription is modifiable or not).

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 103

Example 2 – Updating package contents (without modification in the target project):

Now additional sections (a, b, c, d) are added to the page.

Figure 5-39: Example 2 - Inserting new sections

The order from the master project (a, 1, b, 2, c, 3, d) is applied to both target projects when

updating. For target project 1, this is the standard behavior since the master project's order is

retained. For target project 2, the behavior only takes effect because no changes to the package

contents have taken place.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 104

Example 3 – Updating package contents (in the event of a change in the target project):

Figure 5-40: Example 3 - Combined sections in the target project

Three sections are added to the page in the master project (Absatz_Master_x through

Absatz_Master_z). In contrast to the second example, this time changes are made to the page

before the updated package is rolled out in the target project. These changes originate from the

master project (only possible if the package contents in the subscription are marked as

"Modifiable").

 The order of imported sections in the target project is changed by hand (1, 2, 3, a, b,

c, d).

 Two new sections are inserted at the first and last positions (Ziel_x, Ziel_y)

After the renewed update of the package contents, the differences with example 2 are easy to

see:

 The modified order of the sections (1, 2, 3, a, b, c, d) defined in the target project for

the package contents remains intact even if the sections are arranged differently in

the master project (a, 1, b, 2, c, 3, d)

 The new sections from the master project are inserted into the target project's existing

contents based on the following rules:

o Absatz_Master_x only has a successor (Absatz_a) and thus is inserted in

the target project before the successor

o Absatz_Master_y only has a predecessor (Absatz_d) and thus is inserted

into the target project after the predecessor

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 105

o Absatz_Master_z has a predecessor (Absatz_c) and a successor

(Absatz_3) and is inserted in the target project after the predecessor since

the predecessor is given priority.

 The new sections from the target project remain intact.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 106

5.7 CorporateContent content menu in the stores

The "CorporateContent" context menu provides some functions for editing packages directly at

objects in the project tree. It is called up by right-clicking directly on an object or a node from the

project tree. The "CorporateContent" functionality is located under the corresponding menu entry

in the context menu. The "CorporateContent" context menu is divided into five submenu items

described in the following sections.

 Starting adding to a package (section 5.7.1, page 106)

 Removing from a package (section 5.7.2, page 107)

 Removing a package relationship (section 5.7.3, page 108)

 Change status (unmodified/modified/locked) (section 5.7.4, page 109)

 Newly integrating an original (section 5.7.5, page 111)

If the submenu items are shown in a gray font instead of black then the specific function is not

available on the highlighted object, such as on the store's roots.

5.7.1 Starting adding to a package (master project)

A node or object can be added directly to an existing package using the menu entry "Start adding

to package". This function is only available in master projects if the selected object is not already

part of another package.

If no package is open when the menu entry is called up, then a package selection dialog for

opening a specific package appears first. Only packages with the suitable package type are

listed in this selection dialog. Then the selected object is displayed in the SiteArchitect

AppCenter area as a dependency chart.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 107

Figure 5-41: Adding an object - Dependency chart

Right-clicking the object in the dependency chart causes another context menu to appear. The

selected object is added to the package using the entry "Add to package 'xyz'".

 Adding to a package is only possible if a package of suitable type is loaded.

(Content package template package)

 If the context menu is called up at a folder, then all of the lower level objects are

added to the package. If the folder contains objects already integrated into another

package then those objects are not added to the new package.

5.7.2 Removing from a package (master project)

A node or object can be removed directly from a package using the "Remove from package"

menu item. The "Remove from package" function is, of course, only available to objects that are

already part of a package. Clicking the menu item opens a confirmation prompt.

Affirming the confirmation prompt with Yes removes the highlighted element from the package

and closes the window. A package symbol is no longer displayed after the object name in the

tree view and the highlighted object is no longer part of the package.

Clicking the No button cancels the process. The object is not removed from the project and the

window is closed.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 108

 If an object is removed from a package, then the namespace extension remains, but

the package symbol after the name indicating assignment to a package disappears. The

object can now be added to a new package. In this case, the namespace extension also

changes (a @ with the name of the new package is appended) and a symbol once again

appears after the name in the project tree.

It is certainly possible to disable namespace extension (see section 5.1.1.3.1, page 58). In

this case, the reference name remains unchanged when removing the object.

5.7.3 Removing a package relationship (target project)

While the first two context menu items are only relevant for source projects, i.e. for projects

where packages are created, the third "Remove package relationship" menu item is used in

target projects. The menu item can be carried out on all subscribed objects that have been

imported into a target project from a package. These objects are shown in the target project with

a blue dot and a package symbol after the name in the project tree.

Clicking the menu item removes the package relationship for an imported object. This means an

object's relationship to a package is removed. This makes it possible to import objects from one

package and to modify them in a target project even though write protection has been defined for

the subscription.

If the Overwrite identically named objects when importing in a target project package property is

enabled, then changes made are overwritten during the next update. If this option is disabled,

then the object is created again in the target project as a copy during the next update. The

modified object continues to remain intact.

 Permission to remove a package relationship is only available to project

administrators.

 If a subscribed object's package relationship is removed, the package symbol after

the object name in the project tree disappears. However, the namespace extension

remains intact. As a result, no modifications have to be made in the referenced node. If

namespace extension is disabled, then the reference name remains unchanged.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 109

 The "Remove package relationship" context menu function only removes the

currently highlighted object – not any subordinate objects.

5.7.4 Change status (target project)

The change status for a node or object can be set in this area. This option is only available in

target projects and only for objects that are already part of a package. The options for the change

status are only active if a package is marked as "Modifiable"; otherwise the corresponding

options are grayed out.

The status values set in the target project are required for conflict handling when importing the

package (see section 5.6.4.2, page 87, "Conflict handling" option). If, for example, changes are

made to an imported page, a conflict can be triggered during the next subscription update by

setting the "Modified" changes status. Conflict handling always depends on the status value set

here:

 Unmodified: This status is set as the default for each object that is content for a

package. The object is overwritten with the contents from the package the next time the

package is updated. A conflict cannot occur with this setting.

 Modified: Setting this value triggers a conflict when the package is updated regardless of

whether or not the package version has changed. Subsequent actions during conflict

handling depend on the subscription's conflict settings (see section 5.6.4.2, page 87).

o Overwrite conflict handling: The conflict is resolved by overwriting the object

modified in the target project with the object from the package version imported

during the update (this can be a new version with contents that have been

modified in the master project or the same version that has already been

imported). Changes made to the object in the target project are lost. After

overwriting, the object in the target project matches the object from the master

project.

o Cancel conflict handling: The conflict is resolved by canceling the update to the

subscription with an error message. No objects are updated.

o Copy conflict handling: The conflict is resolved by creating a copy for the object

being modified in the target project before the object is imported from the package

version during updating. Numbering is appended to the object's reference name.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 110

The original object from the target project remains intact; however, it is removed

from the package link automatically (also refer to 5.7.3, page 108).

 Locked: The object is locked for updating with this setting; this means it is explicitly

excluded from the subscription update. A copy of the object is created if a new package

version is imported into the target project. The modified object remains intact in the target

project, but it is removed from the package link automatically (also refer to 5.7.3, page

108). The new object is imported into the target project as a copy.

 A change status can be set only if the package is marked as "Modifiable", otherwise

the corresponding options are grayed out.

The results of conflict handling and the change status in brief:

Change

status

Conflict

handling

Result

Unmodified All Only when modifying the package version:

The object is updated; changes are lost.

Modified Overwrite When updating with a package version that is new or

has been imported already:

The object in the target project is updated with the

contents from the master project; changes made to

the object in the target project are lost.

Modified Cancel When updating using a package version that is new

or has been imported already: The import is

canceled; the object is not updated; changes from

the target project remain intact.

Modified Copy When updating with a package version that is new or

has been imported already: The object in the target

project is removed from the package relationship and

changes remain intact; a new object is created as a

copy from the master project.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 111

Locked All Only when changing the package version:

The object in the target project is removed from the

package relationship and changes remain intact; the

new object is created as a copy from the master

project.

The change status is required for such tasks as conflict handling when importing contents into

different project languages (see section 5.9.2.1.2, page 126). If, for instance, a master project

contains the project language English but the target project has the languages German and

English, then the English contents are imported into the target project language only. The English

contents then have to be translated into the German target project language. In this case, the

change status for the translated pages should be set to "Modified" or "Locked". Otherwise the

contents that have already been translated are overwritten again during the next subscription

update.

 If no change status is set for the object, then the changes are overwritten in the

event of a subscription update.

5.7.5 Reintegrating an original (target project)

In contrast to the "Start adding to package" (see section 5.7.1, page 106) and "Remove from

package" (see section 5.7.2, page 107) context menu items, this function is available only in

target projects that have subscriptions and only for objects that have a package link. The

"Reintegrate original" function removes the object node where it was called from the package link

and integrates a new object node into the package in its place. When doing so, the object should

be an object that was part of this package previously but that does not currently have a package

link.

The object node newly integrated into the package is selected from a list of all of the target

project's objects. The combo box is limited by only displaying the store where the context menu

was called (see Figure 5-42).

The "original" has to be compatible with the object node that is removed from the package link.

This means, it has to be the same type of object node, such as a page from the page store

based on identical templates.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 112

 The object node selection is not reviewed automatically, but rather is the

responsibility of the editor. Removing or adding a package link is a sensitive action. If the

wrong object is "reintegrated", like an object that was never a part of the respective

package, this can lead to errors in the target project since the page and section templates

do not fit the new object.

Figure 5-42: Selecting the original node to be reintegrated

A potential application area is integrating objects again, such as pages, after translation into a

language not contained in the package. In order to protect this page from being overwritten again

during translation, the change status for the section in the target project is set to "Modified" or

"Locked" (see section 5.7.4, page 109). Then the configured "Copy" conflict handling in the

subscription takes effect during a subscription update and creates a copy of the newly imported

page. The changes in the translated page remain intact this way while the "old" page is removed

from the package link. The page should be put back under package control after translation. The

"Reintegrate object" function is required for this. The function is called on the currently imported

page, i.e. the copy. The translated original page is then selected in the "Select original" list. The

page is put back under package control after confirming the selection. The imported copy of the

page loses the package link and can, if desired, be deleted from the target project (for

translations, see section 5.9.2, page 124).

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 113

5.8 Transferring existing projects into package master projects

Generating a separate master project where package contents are managed exclusively is

necessary in order to utilize the functionality of the package store. Each existing FirstSpirit

project can take on the role of a master project and prepare package contents for import into

other projects. Thus, a company subsidiary could take over maintaining the company display for

its own web presence, thus becoming the master project for the corresponding package. Other

subsidiaries would then subscribe to the company display package from this project. Afterwards,

the master project continues to exist as a normal project.

Transferring an existing project to a package master project has to be planned carefully since

temporary inconsistent intermittent states can occur due to the restructuring. It is also possible

that references in the form and output tabs of templates and the like may have to be changed

manually so that the master and target project work without error. This is because reference

names can change due to package functionality. The process explained below (from section

5.8.1.1 through to and including section 5.8.1.9) should be followed precisely to avoid problems

as part of the conversion.

5.8.1.1 Using the reference graph

As already explained in section 2.2.2, page 9, packages can only be imported successfully and

used in a target project if they contain all required objects. In addition to the objects that the

package developer explicitly adds to a package, there can also be dependent objects that are

necessary for successfully working with the package in the target project. Content dependencies

are automatically resolved in the so-called reference graph. This means that if objects from the

page and site store are added to a package ("content package"), all dependent objects from the

site store, page store and media store are taken over in the package ("implicit").

In contrast, dependencies to objects from the template store and the content store for this

content package are not resolved automatically. Dependent objects from the template and

content store, for example, a section template which is required for maintaining a section from

the content package, have to be packed into their own package. The dependency between the

content package and the template package is then defined in the content package. In order to be

able to identify all dependences between contents package and template package, the reference

graphs can also be used.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 114

Reference graphs can be requested via the context menu Tools / Show dependences. The

reference graphs for individual data records of the content store are queried via the context menu

of the respective data record.

 This function is only available to project administrators.

The tab in which open windows are located shows the dependencies of the object in the form of

incoming and outgoing edges, for the current state (tab current state) and for the last state

released (release state), as long as the project uses the release option:

Figure 5-43: Display of dependencies via the reference graph

Each object for which a dependency exists is shown with ID and the object icon that belongs to it.

By double-clicking on "Show the next element", additional dependent elements can be shown. By

double-clicking on an element, the references to this object are also shown.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 115

Additional information on reference graphs is in the FirstSpirit Manual for Editors.

5.8.1.2 Structuring the package contents

In order to simplify creation of a package, all content that is to later be integrated into one

package is to be moved to a separate folder in the master project. This is not possible for all

objects from the page, media, and template stores (not for objects from the Site Store). The

folders later serve to aid in structuring the content in the target project. With the aid of the folders,

it is more quickly visible what content was imported from a master project, and the content

bundled in the folder is more clearly differentiated from the original content of the target project.

All objects that are not bundled into packages in folders are added to the highest level in the

respective store in the target project, and with that, the structure is lost. Likewise, structuring with

folders is also beneficial for the clarity and transparency of the master project.

Alongside the explicitly added objects, there can also be objects implicitly added to the package

if there are dependencies between objects (see section 2.2.2, page 9 and section 5.8.1.1, page

113). These implicitly added objects must be checked by the package creator and likewise stored

in separate folders.

First, all templates needed must be stored in their own folders in the template store; this also

applies to every subnode ("Pages", "Section templates", "Format templates", etc.). Media from

the media store can be referenced within templates. These media objects which belong to a

template, so-called technical media, can be integrated into a template package and contain, for

example, JavaScript files (*.js), cascading style sheets (*.css) or graphic layout files (see section

2.2.1, page 9). In addition, in the media store, all technical media belonging to a template are

collected in a folder. Non-technical media are integrated in content packages, and should, for

example, also be stored in separate folders for this purpose.

 Every object can only be contained in a maximum of one package.

If, for example, technical media is needed in more than one package, then a second folder has to

be created for this package, which contains a copy of this object, in the media store.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 116

 A requirement for a successful package creation is therefore always comprehensive

project knowledge.

5.8.1.3 Limitation of image selection in templates

Due to the automatic display of dependencies within content packages, media files, for example,

media data integrated via the input component DOM-Editor in a section, are implicitly added to

the package as soon as the page is integrated with the corresponding section in the package.

Under such circumstances, in this way, a very large number of implicitly referenced media is

integrated into a package, which is available in the master project in different locations (for

example, in different (sub) folders in the media store). This is both non-transparent and can lead

to conflicts when importing the packages. A solution is offered by the limitation of the image

selection option for the input component "DOM Editor" and "FS_Reference".

For the "FS_Reference" input component, <FOLDER> or <SOURCES> tags are used in the

section or page template to set the limitation. Using the <SOURCES> tag makes it possible to limit

the selection or display to defined folders (including subfolders). This involves a positive list; in

other words, only the indicated folders are permitted. In order to allow a folder, a FOLDER tag is

to be specified with the parameter name and a valid folder name.

If, alongside the image selection, the option to upload media is to be limited to a certain folder,

then the uploadfolder attribute is also needed:

<FS_REFERENCE ...upload="yes" useLanguages="yes">

...

 <PROJECTS>

 <LOCAL name="." uploadFolder="test">

 <SOURCES>

 <FOLDER name="test" store="mediastore"/>

 <FOLDER name="test2" store="mediastore"/>

 </SOURCES>

 </LOCAL>

 </PROJECTS>

</FS_REFERENCE>

For the "DOM Editor" input component, the limitation is done via the link templates for internal

links.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 117

The image selection can in this way be limited to the folders which are also available in the

package and were structured for a package (see section 5.8.1.2, page 115).

 With this limitation, it should be noted that the folder names can be changed

through the namespace extension, and in this way would have to be manually adapted

later.

5.8.1.4 Limitation of template selection

Dependencies on templates are not resolved automatically. If input components which reference

templates are used in a package, these dependencies have to be resolved manually.

The input component "FS_LIST" serves to integrate section templates within the Content Store

or the Page Store. If this input component is to be used within the package store, the creator of

the package has to take care to ensure that all referenced templates are integrated in the

package and to create a dependent template package with the referenced section templates.

Here as well, the selection of templates should be limited in order to increase transparency and

to prevent user error.

For the "FS_LIST" input component, <TEMPLATE> or <TEMPLATES> tags are used in the section

or page template to limit the template selection. The <TEMPLATES> tag makes it possible to limit

the selection or the display to defined elements. This involves a positive list, in other words, only

the indicated elements are permitted. In order to allow a template, a TEMPLATE tag is to be

specified with the parameter name and a valid template reference name. In the package store

context, the limitation has to be done via the reference names. In doing so, the unique name

must be given for every section template in a separate TEMPLATE tag.

<FS_LIST name="st_downloadareas" ...>

 <DATASOURCE type="inline" maxEntries="6" useLanguages="no">

 ...

 <TEMPLATES source="sectiontemplates">

 <TEMPLATE uid="downloadcenterarea"/>

 <TEMPLATE uid="teaserlistelement"/>

 </TEMPLATES>

 </DATASOURCE>

 ...

 </FS_LIST>

As is made clear in the example, in this case also, the namespace extension, which is created by

integration in a package, must be taken into account. These changes have to be carried out

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 118

manually. With changes made frequently, a script can be created which automates this process.

5.8.1.5 Preventing language-dependent structures in templates

In general, multilingualism of templates is not supported by the package store. As long as the

packages contain unified languages from the master project and the target projects subscribed

to, such language-dependent structures present no problems. Multilingualism in templates

always leads to problems if a language used in the target project does not appear in the master

project, and thus was also not implemented in the templates. If in such a project environment

templates have to be exchanged via the package store, then it must absolutely be ensured that

no multilingualism is implemented in the templates. An exact explanation is given in section

5.9.2.3, page 128.

5.8.1.6 Automatic conversion in the Page Store

With the transfer of an existing project into a package master project, the reference names

change through the namespace extension (as long as the namespace extension is not

deactivated, see section 5.1.1.3.1, page 58). Reference names with namespace extension

likewise have to be modified at all locations at which they are referenced in the project. In the

Page Store, these references are automatically adapted to the package contents.

If, for example, a link to an object from the Site Store is stored within a page, then this reference:

<CMS_LINK language="DE" linktemplate="Interner_Link.standard"

sitestoreref="pageref:thisPage" text="Dieser Verweis" type="Interner Link"/>

is automatically adapted to the namespace extension when adding the page "this page' to a

content package:

<CMS_LINK language="DE" linktemplate="Interner_Link.standard"

sitestoreref="pageref:thisPage@package" text="Dieser Verweis" type="Interner

Link"/>

5.8.1.7 Manual conversion of templates

The behavior of the automatic conversion of references described in section 5.8.1.6 is not

available in the template store. These must be adapted manually to the new package

namespace extension.

If, for example, a page template (here: "onlycontent") is transferred into a package which

references a link template (here: "WEBeditIncludeJS"), then the references within the template

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 119

are automatically added to the template package:

Figure 5-44: Package content when adding a page template with references

The references within the template are not adapted automatically. The page template

"onlycontent" furthermore references:

$CMS_RENDER(template:"WEBeditIncludeJS")$

The references within templates have to therefore be adapted manually from the package

developer:

$CMS_RENDER(template:"WEBeditIncludeJS@package")$

The adaptation has to be run for all applications of the link template in the master project. The

applications in the project can best be determined via the reference graphs (see section 5.8.1.1,

page 113). For the example mentioned, three references have to be manually edited later in

three different page templates in the master project:

Figure 5-45: Dependencies of a format template

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 120

References in presentation channels: In templates, all references within the presentation

channels that are indicated via the instruction $CMS_REF(...)$ or $CMS_RENDER(...)$ have to

be edited manually. This affects the following object types:

 Media (media:...)

 Page references (pageref:...)

 Scripts (script:...)

 Templates (template:...)

Example:

src="$CMS_REF(media:"logo",abs:3)$"

has to be manually adapted after adding the medium "logo" to package "package".

src="$CMS_REF(media:"logo@package",abs:3)$"

References in the form area: Within the form area, references likewise have to be edited later.

If, for example, a format template that is referenced within a DOM input component is added to a

package, then the reference in the form area is manually adapted to the new reference name:

 <CMS_INPUT_DOM name="st_text" rows="8">

 <FORMATS>

 <TEMPLATE name="format@package"/>

 </FORMATS>

With standard format templates, the namespace extension has to be viewed critically. If

references to standard format templates are changed, for example, „b@package“, these are also

no longer recognized during an adaptation of the template <TEMPLATE name="b@package"/>

within the input component. With that, for example, the assignment to the corresponding buttons

in the DOM Editor (here: "Bold") is lost. There can be errors in the master and in the target

project.

5.8.1.8 Manual conversion in the content store

As in the template store, references are not automatically converted in the content store. That

means that, within the content store, all references to package contents have to be adapted

manually.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 121

If, for example, in an input component in the content store a link to an object from the site store is

stored, then this reference:

<CMS_LINK language="DE" linktemplate="Interner_Link.standard"

sitestoreref="pageref:thisPage" text="Dieser Verweis" type="Interner Link"/>

is not automatically adapted to the namespace extension when adding the page "thisPage" to a

content package. The namespace extensions have to be adapted manually by the template

developer (compare to the example in section 5.8.1.6).

If the previous steps were carried out successfully, all requirements are fulfilled to transfer the

existing project to a package master project. In the next step, the first package can be created in

the new master project (section 5.1.1.1, page 49).

5.8.1.9 Checking the function in a test project

Creating and importing packages is a complex task. Before importing packages to a productive

environment is used, the function is therefore to first be tested in a test project.

After the first package is created in the master project (section 5.1.1.1, page 49), the package

properties were configured and the package content was added, and finally, a first package

version was generated (section 5.1.2, page 60); then it must first be checked in the master

project that the project still works correctly.

If implicit or explicit objects are added to a package, there is always extensive restructuring, for

example through the name extension (section 5.1.1.3.1, page 58). If the name of a media object

changes, the reference to the media file is also adapted in all pages, sections, templates, etc. For

content packages, this restructuring is automatically adapted in the project via the reference

graph (section 5.8.1.1, page 113). However, in individual cases, it can happen that references

cannot automatically be resolved by the system or that the manual adaptation of the templates is

faulty (see section 5.8.1.7, page 118). In this case, the master project no longer works as

intended. If a media file is no longer referenced according to the namespace extension, then

there will be errors when displaying the page.

If, after package creation, errors arise during generation in the master project, then the master

project must first be repaired, for example, by changing the reference name. If the master project

is functioning flawlessly, the package can first be imported into an "empty" target project. In the

target project, as well, it is then checked whether the import was carried out properly and

completely or whether possible required templates or referenced objects are missing in the

package. If that is the case, these objects have to be added to the package and a new package

version created and imported.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 122

Only after this initial test is the master project to provide packages for the actual target project.

Afterward, as well, there are to be comprehensive tests on every package version. These are not

to be omitted (publication groups: section 2.2.4, page 13).

5.8.2 For similar projects

If multiple projects share the same content, the structure of a preconfigured project for the roll-out

makes sense (here: division across multiple, similar target projects). In this roll-out project, a

standard project structure and all required subscriptions can be centrally configured once. In

connection with this, the project can be exported and is available as the base project for all target

projects (for example, subsidiaries of a company). When importing the project, all required

subscriptions in the project are created directly with it. In the case that all company subsidiaries

would like to maintain their own website, but want to use the templates to create the pages and

the entire, company-wide, unified company profile via a centrally administered package content,

the use of a roll-out project makes sense.

5.8.3 Import / export

Exporting and importing via the ServerManager is also possible for package master projects and

subscribed projects. These functions however have effects on the existing package and

subscription structure.

5.8.3.1 Package master projects

 If a package master project is exported and then re-imported, all previous package

information gets lost. After importing the project, the symbols behind the object names in

the project tree continue to be displayed and the namespace extensions are preserved

(as long as these were not deactivated). However, the package information (as shown in

Figure 5-26: Edit package – Package list) is no longer present. No more packages are

displayed in the package overview. Thus the project is no longer a master project.

Therefore, the existing, original master project should by no means be deleted. If it is, both the

package information and the subscriptions in the target projects will be lost.

The only option for recovering the package information and thus the master project is a file

system backup .

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 123

If subscriptions to contents of other projects in the package master project exist, these remain

even after the import, but have to be manually updated (see the following section 5.8.3.2).

5.8.3.2 Subscribing projects

If a subscribing project is exported and then re-imported, the contents subscribed to from other

projects are retained and continue to be displayed with a blue color coding behind the object

name in the project tree. The subscriptions existing before the import are all set to the status "not

up-to-date" and provided with an orange color coding, even if no version modification occurred in

the master project before (see Figure 5-33: Edit subscriptions).

 The subscriptions have to be updated manually after importing the target project.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 124

5.9 Corporate Content for developers

5.9.1 Individualization of the package contents in the target projects

Corporate Content can be used to import contents of a master project into different projects. In

many cases, however, these contents are supposed to be displayed differently in the individual

target projects. It is possible to make a direct intervention using the templates.

The layout in the target projects can be changed afterwards by directly modifying the templates.

Here, the package contents must not be write-protected; that is, they are set as "modifiable "in

the package version and in the subscription.

If templates from a template package in the target projects are modified, that can lead to

problems. On the one hand, the project-specific modifications have to be redone after every

update of the subscription; on the other hand, conflicts can arise when updating with a new

package version, because innovations in the master project cannot be linked by force also with

the modified states in the target project. One solution for these problems is an appropriate

conflict resolution, which can be configured in the subscription (see section 5.6.4.2, page 87).

Here, the "Copy" option has to be selected under "Conflict resolution"; this is used to create a

copy of the modified template in the target project. This copy now has to be manually revised by

the developer in the target project. Thus the modifications in the layout have to be done manually

in the new template. If the old template is retained here, it can cause the project to stop

functioning correctly.

 Modifications to templates in the target projects should be carried out only in

exceptional cases! The safe way to individualize contents in the target projects is to adapt

them using structure variables.

5.9.2 Support for multiple languages

Since the implementation of FirstSpirit was designed very consistently for multilingual projects,

these are also supported in the package store. However, the different languages do not have to

be maintained in the master project; translations can also be made in the individual subsidiaries

in the respective local language. In doing so, projects with a homogeneous language structure

and projects with a heterogeneous language structure are differentiated.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 125

5.9.2.1 Page contents

5.9.2.1.1 For projects with a homogeneous language structure

With a homogeneous language structure, the package supports the unifying quantities of all

languages used in the projects subscribed to.

Figure 5-46: Packages with a homogeneous language structure

For example:

 German subsidiary: DE, EN

 French subsidiary: FR, EN

 Swiss subsidiary: DE, EN, FR

The package with a homogeneous language structure contains all three languages. Import

into the target projects is thus uncomplicated, because each of the languages needed in the

project is also contained in the package. If there are more languages in one package than are

used in a target project, the extra languages are simply ignored in the target project. In the

example above, the project of the Swiss subsidiary is the ideal candidate for the role of the

master project.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 126

5.9.2.1.2 For projects with a heterogeneous language structure

With a heterogeneous language structure, not all of the languages used in the projects

subscribed to are also contained in the package.

Figure 5-47: Packages with a heterogeneous language structure

For example:

 German subsidiary: DE, EN

 Spanish subsidiary: ES, EN

Only the languages German (DE) and English (EN) are contained in the package. This means

that when importing a package into the Spanish target project (ES), the Spanish-language

content has to be specially translated. If this content is to be translated for the target project, that

can be realized via a workflow which is started directly upon package import.

In addition, the following settings have to be configured:

1) First, the project settings in the target project with the untranslated language have to be

configured. In The ServerManager, select the "Use master language" option for

"Language substitute" in the project properties under the "Substitutions" item. The

master language has to be a language contained in the package, such as English. If

objects not existing in the proper language are imported into the project now, only the

English language objects that will still have to be translated are imported.

2) The actual translation can be started after the initial import via a workflow. Using a

"Translate new page" workflow, for example, the newly imported page can be sent to a

translation office via XML export and then the translated result can be re-imported into the

project. In this case, it is important whether or not the check marks on the language tabs

(for the setting "Page for this language completely translated") are activated on pages of

the Page Store.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 127

o For all new pages that are initially imported into the project, the language option

must be deactivated! The workflow should configure this setting for all new pages

before the import. If the translation has been done, then the language option is

reactivated for all new pages.

o For untranslated changes to a page already in the target project, the language

option has to be activated. If the language option is deactivated, the contents are

overwritten again in the next import.

5.9.2.2 Menu structures

All menu structures in a package, thus menu levels and page references, are taken over into the

target projects from a package. There is a critical difference here between projects with a

homogeneous language structure and projects with a heterogeneous language structure.

5.9.2.2.1 For projects with a homogeneous language structure

For projects with a homogeneous language structure, all menu structures contained in the

package, including the language-dependent labels, are taken over for each language. If a menu

level from the Site Store is integrated into a content package, the page references below the

package and the accompanying pages from the Page Store are also added to the package. If the

accompanying pages are moved from the Page Store into folders, only the referenced pages are

taken over into the package with them, not the higher-level folders.

If there are more languages in one package than are used in a target project, the extra

languages are simply ignored in the target project.

5.9.2.2.2 For projects with a heterogeneous language structure

For projects with a heterogeneous language structure, the same problems arise for menu

structures as for page contents (see section 5.9.2.1.2, page 126). The target project supports

languages for which there are menu structures in the package, but the respective menu labels

are not translated.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 128

In this case, a language substitution setting does not affect the master language available in the

package. When importing menu structures of a package (only EN) into a target project (EN and

DE), no substitution of the German menu names takes place. For the languages not included in

the package (here, DE), the menu names are preassigned by the display name from the master

language of the target project (here, EN). For projects with a heterogeneous language structure,

the menu structures are not permitted to be displayed in either the navigation menu or the

navigation overview for all languages that are in the target project, but not incorporated in the

package. In the Site Store, therefore, the "Displays" setting at the folder level must be

deactivated. This setting is automatically configured when importing the menu structures into a

target project for every structure folder contained in the package for the unsupported language.

Figure 5-48: Display options at the folder level of the Site Store

After translating the labels, the boxes have to be manually checked again in order to make the

navigations visible.

5.9.2.3 Templates

In general, Corporate Content does not cover multiple languages for templates. If templates are

supposed to be exchanged via Corporate Content, it is imperative to ensure that the templates

are not multilingual. Multiple languages always lead to problems if a language used in the project

was not implemented in the templates, thus in target projects without a heterogeneous language

structure.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 129

5.9.2.3.1 Via common database access

One option for centrally maintaining language-dependent return values is to use a translation

table in the Content Store.

Unlike the usual procedure for maintaining multilingual contents in the Content Store, here all

languages are maintained via their own input fields. To do so, a column must be created for each

individual target project language in the content source schema of the master project, and an

input component has to be assigned to this column. The label of the individual input components

is provided for only in the master language, in most cases "English". Now the language-

dependent return values can be maintained centrally in the master project. Via a common

database access, all target projects can gain (read) access to these language-dependent

contents (see section 5.10, page 135).

If we proceed from the previous example of the combo box, the master project initially has two

input components of the "text" type for the languages DE and EN. In the table, for each language

included in the target projects, the language-dependent display value, such as "red", is assigned

to a language-independent return value, such as "1". Now the language-independent return

value "1" is all that is stored in the template. Then the language-dependent assignment is made

for each language based on the translation table in the Content Store:

Example: Return value in the template "1" and key "DE" = Return value "red"

 DE EN

1 Rot Red

2 Blau Blue

If a new language is added, for example, by a new Spanish subsidiary, the table schema in the

master project has to be expanded by one column for ES and another input component of the

"text" type has to be added. Then the table looks like this:

 DE EN ES

1 Rot Red ZERO

2 Blau Blue ZERO

Now the language-dependent return values for ES can be added in the master project. No more

changes have to be carried out in the templates.

 DE EN ES

1 Rot Red Rojo

2 Blau Blue Azure

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 130

 The master language of the target project must be in the package.

 For all target projects, a common database layer has to be specified in the project

settings in the ServerManager. For the database layer, the boxes for "No schema sync"

and "Write-protected" must also be checked (cf. section 5.10.1).

Again, substitution of the label is possible only via a template change.

5.9.2.3.2 Local differences in the same language

In principle, it can also happen that conflicts arise when importing templates if the same

language is used in both the package and the target project. While different countries can use a

common language, for example English, there is nevertheless a number of aspects that can

differ in the countries. A prominent example is local formatting differences, such as different date

or currency formats in countries that otherwise have the same language.

Example:

 Date Germany: Tuesday 14.08.2001 16:47:48

 Date Switzerland: Tuesday 2001-08-14 16:47:58

When importing a package from a German master project into a "Swiss" target project, only the

same language "DE" is recognized. Country-specific formats, however, are not taken into

account here.

These problems can be circumvented by introducing a "new" language that takes such local

differences into account; in the example, the new language "CH" would be introduced in the

target project.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 131

5.9.3 Using workflows and events

Within Corporate Content, "standard events" can be assigned to workflows. The assigned

workflows are then carried out when the event occurs during or after the updating of a

subscription in the target project (see section 5.6.4.4, page 90).

One way to apply this is to use a workflow to release all objects imported via a subscription.

Since a workflow can always be started for one object only instead of for several objects

simultaneously, a script is required to determine all nodes affected (see section 5.9.3.1, page

131).

 So that both the workflow and the script can be carried out in the target project, both

the workflow and the script also have to be in the target project.

5.9.3.1 Determining the nodes affected

Within a script in a workflow, one is in the WorkflowScriptContext.

First, the current session is required. This is obtained with

m_session = context.getSession();

Then get the ImportInfo object from the session:

m_importInfo = m_session.get("importInfo");

Finally, the UserService is required and the ImportInfo object is initialized:

m_userService = context.getUserService();

m_importInfo.setUserService(m_userService);

With the initialized ImportInfo object, now it is possible to determine the number of

 new nodes (getNewNodeCount()),

 modified nodes (getUpdatedNodeCount()),

 deleted nodes (getRemovedNodeCount()), and

 the nodes, at which a conflict arose (getConflictNodeCount())

The number determined is required in order to iterate across all nodes using a loop and to return

nodes in index-related form.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 132

NewNode = m_importInfo.getNewNode(index);

If, for example, the script is supposed to return the first new node, the call looks like this:

firstNewNode = m_importInfo.getNewNode(0);

Other operations can be carried out at the nodes determined using Access API.

Please refer to the API documentation for the complete syntax of ImportInfo.

After all operations have been carried out, the workflow has to be advanced by the script. To do

so, use the method doTransition:

context.doTransition(NAME OF THE TRANSITION);

5.9.3.2 Exemplary workflow for the release

An exemplary workflow for the release of imported objects can be seen in the release workflow.

Figure 5-49: Release workflow

In order to use the release via a workflow in the release target project, the release has to be set

in the subscription via a workflow (see also section 5.6.4.2, page 87):

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 133

Figure 5-50: Setting the release in the subscription

In addition, under events, you have to use the Configure button to specify the "Release" event of

the workflow specified under Figure 5-49 (see section 5.6.4.4, page 90):

Figure 5-51: Configuring events

If, in the release target project, the release is configured via a workflow, this is started as a

context-free workflow as soon as there are new or updated nodes in the project. This means that

the release does not take place in context-related form on an object in the project tree, but in

context-free form via the task list.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 134

If the editor advances the workflow with "reviewing", the script "packagePoolRelease" determines

the number of the new or modified nodes in the target project. If there is at least one new or

modified node, a list dialog opens in which the modified nodes are shown.

If the release is granted by confirming this dialog, all listed objects are released at once. (By

double-clicking a node, the associated object can be displayed beforehand.)

If the release is not granted in this dialog, the listed objects are not released. However, they can

be reviewed "again" in the task list (see Figure 5-49: Release workflow).

 If the newly imported nodes have been released, an update of the stores should be

carried out, after which the new or modified nodes are then shown as "released" (black

font).

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 135

5.10 Shared database access

FirstSpirit has powerful mechanisms for connecting databases (see FirstSpirit Manual for

Administrators). Within the editing environment, the connected databases are identified as

content sources. The data records stored in the content sources can be integrated seamlessly

into the web pages and (via the Page and Site Store) edited seamlessly in FirstSpirit without

leaving the editing environment.

The tables that are displayed within the Content Store are only views of the database. To do so,

it is first necessary to create a database schema in the FirstSpirit template store (new or

generated from an existing database). Using a graphic editor, the project administrator can

create the required tables in FirstSpirit SiteArchitect and place them in relationship to each other

(or take them over from a connected database). For each table modeled within the schema, a

table template can be generated (below the schema node). These table templates contain

definitions of which input elements the editor can use later to enter the data into the

corresponding tables or which input elements the editor can use to take over data of a reference

table. In addition, the assignment of contents maintained via an input component to a database

table in the physical database can be established using the "Mapping" tab.

Depending on the project administrator's settings for the configured database, the changes to a

schema in SiteArchitect, such as adding a table to the physical database, can be applied

("Sync") or prevented ("No sync"). The contents maintained by the editors within the Content

Store can also be written back to the database; alternatively, they can also not be written (write-

protected). This is likewise dependent on the configuration.

For more information, see FirstSpirit Manual for Developers (Basics).

The following contents can be integrated into a Template package and distributed to other

FirstSpirit projects via the package store:

 FirstSpirit database schemata

 FirstSpirit table templates

 FirstSpirit database queries

The following content can be integrated into a Content package and distributed to other

FirstSpirit projects via the package store:

 Views of the database (nodes of the Content Store)

 Pages or page references that have a reference to a content source of the Content

Store

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 136

The following applies here:

Shared access to the database (read-only): To exchange content via the package

store, shared access must be configured in the project settings (ServerManager) of all

participating projects (master project and target projects).

The package store supports distribution of database views (nodes of the Content Store)

into multiple target projects for shared, read-only access to the corresponding database

content. This means that during configuration of the corresponding database layer, the

"Write-protected" and "No schema sync" boxes must be checked for the target projects.

The configuration for joint use is described in the following sections (see section 5.10.1

starting on page 137 ff.).

Consider dependencies: If database views (nodes of the Content Store) are to be

distributed via the package store to multiple target projects, it is first necessary to ensure

that dependent objects, such as the corresponding database schemata, table templates

and queries from the master project, are also part of the package (or a dependent

package). Here, the sequence of adding can also be critical. If these dependencies are

not considered, mistakes can appear when packing or importing a package. Example:

A section template that contains a content list (FirstSpirit input component for selection

and output of data records) is added to a template package. If the corresponding

database schema was not added to the package earlier, an error occurs.

These dependencies cannot be removed automatically, as they can be for the content

packages (see section 2.2.2), as this would have very far-reaching effects. Continuing

with the example above, when adding the section template, for example, the schema and

all table templates and table queries below it would become part of the package.

However, this behavior is usually not desirable. Therefore, the package developer should

give some thought in advance to making the package structure as effective as possible.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 137

5.10.1 Configuring the target projects (read-only DB access)

Figure 5-52: Configuring a database layer in the target projects

First, the database layer of the master project (indicated by the red frame in the illustration) must

be enabled under the "Databases" item. To do so, check the corresponding box in the "Selected"

column.

 For this database layer, the boxes for "No schema sync" and "Write-protected" must

also be checked.

"No schema sync" defines that when importing a template package, the database tables

are not recreated in the database.

Checking the box for "Write-protected" prevents shared write access from the target

projects to the database. Read-only access to the database contents is then possible in

all target projects (views of the database); however, changes to the database contents

cannot be initiated from target projects.

For more detailed information about the "Multilingualism" use case with regard to shared

database access via the package store, refer to section 5.9.2.3.1, page 129.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 138

 Changes to the database schema always have to be made in the master project, as

the option "No schema sync" is not enabled here, and the changes have to be distributed

to the target projects from there.

 Incompatible schema changes in the master project lead to problems in target

projects, even if no subscription update has yet taken place!

 The master and target project should always use the same database schema.

 The following applies for multilingual projects: When transferring a schema to a

package, the language structures of both the master project and the target project must

be taken into account in the master project (see section 5.10.5.1, page 140 and section

5.10.5.2, page 141).

5.10.2 For existing databases

If shared database access is to be implemented for projects with an already existing database

and/or existing data records, some adjustments are necessary.

Assume for instance that a data record that references an object from the media store by name

exists in the database. When importing a data record, the "test" media file, which is not yet part

of a package, would be selected and referenced by "media:test" in the data record. If shared

database access for multiple projects is to be implemented at this point, all of the referenced

objects have to be available in one package as well. As soon as the "test" media file is added to

a package, the name changes to "test@PackageName" (if namespace extension has not been

disabled, see section 5.1.1.3.1, page 58). However, the existing reference in the data record

continues to reference "media:test" with the result that the media file for this data record can no

longer be found. In order for the media file to be displayed again when displaying the data

record, the reference has to be configured to the new name ("media:test@PackageName")

manually or automatically using a script.

All objects referenced in an existing database have to be available in the target projects.

Therefore, it is recommended that all objects be made available to target projects using a

package when sharing a database. Then the references are subsequently adjusted in the

database. In this case, the media selection limitation explained previously in section 5.8.1.3,

page 116 should be implemented for all of the templates used in the Content Store. These media

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 139

may only be selected from defined package directories (see 5.8.1.1, page 113) since this is the

only way to ensure that the required media are available in all projects.

If new objects, such as media, are to be inserted, then these are to be imported in the master

project and made available to the target projects by creating a new package version. This can be

achieved using automatic updating via publishing (section 5.1.2, page 60 and section 5.6.3, page

85) or by updating in the target project manually (section 5.6.6, page 93).

In addition, the mapping of languages for the master project and target projects should be taken

into account when transferring a schema for a multilingual project into a package in the master

project (see 5.10.5, page 140).

5.10.3 New databases

In contrast to using an existing database, referential integrity does not come into play for a new

database since the database does not yet contain any data.

The mapping of the master project's languages has to be taken into account when transferring a

multilingual project's schema to a package (see 5.10.5, page 140). Even for new databases, the

media selection limitation explained previously in section 5.8.1.3, page 116 is recommended

for all of the templates used in the Content Store. These media may only be selected from

defined package directories (see 5.8.1.1, page 113) since this is the only way to ensure that the

required media are available in all projects.

5.10.4 "contentSelect" function

The "contentSelect" function requires special attention for projects with shared database access.

Adjustments in the <CMS_PARAM> tags within a function have to be made manually. This

applies to all of the master project's templates, i.e. including templates that are not integrated into

a package. The reason for this is the namespace extension for the jointly used database

schema. If namespace extension has not been disabled, then the schema name changes if the

schema is distributed to target projects using the package store.

<CMS_PARAM name="schema" value="News"/>

becomes:

<CMS_PARAM name="schema" value="News@MyPaket"/>

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 140

All of the master project's templates that use the "contentSelect" function have to be adapted

manually in this case. Even templates that are not used in a package have to access the

News@MyPackage schema immediately.

Advantage: If the templates have been adjusted in the master project once, then the target

projects do not need any further changes. They take on the already updated templates via the

package store.

<CMS_FUNCTION name="contentSelect" resultname="fr_sc_news">

 <CMS_PARAM name="schema" value="News"/>

 <QUERY entityType="News">

 <ORDER>

 <ORDERCRITERIA attribute="Datum" descending="1"/>

 </ORDER>

 </QUERY>

</CMS_FUNCTION>

becomes:

<CMS_FUNCTION name="contentSelect" resultname="fr_sc_news">

 <CMS_PARAM name="schema" value="News@MyPackage"/>

 <QUERY entityType="News.Overview@MyPackage">

 <ORDER>

 <ORDERCRITERIA attribute="Datum" descending="1"/>

 </ORDER>

 </QUERY>

 </CMS_FUNCTION>

5.10.5 Language-dependent content

The data from individual input components visible in the Content Store is stored in a database

table when using shared database access. Since the schema should not be modified in the

target project, the languages for an input component have to be defined in the master project.

You can choose between two different processes for mapping languages:

1. Implicit modeling of language-dependency

2. Explicit modeling of language-dependency

5.10.5.1 Implicit modeling of language-dependency

For implicit modeling of language-dependency, all of the languages for the target projects have to

be added to the master project languages. This set union of all project languages is then taken

into account when creating a database schema.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 141

The languages are added to the "Project properties" under the "Languages" item in the

ServerManager. The "Generate language" option should be disabled to prevent languages

added via target projects from also being used when generating the master project.

Then a column for each language has to be created in the database schema and the columns

are referenced in the mappings for the table template.

Figure 5-53: Implicit modeling of language dependency

Example:

If a master project has German and English, the first target project has Spanish and English and

the second target project has French and English, then:

1. The languages Spanish and French have to be added to the master project's properties,

2. Columns for German, English, French and Spanish have to be created in the database

schema for the input component and they have to be referenced in the mappings for the

input component.

5.10.5.2 Explicit modeling of language dependency

In contrast to implicit modeling, languages are not mapped using a project property for explicit

modeling; this is done using a database schema instead. This means, a column is created in the

database schema for each language's input component. Then an input component has to be

defined on the table template's form tab for each column and referenced in the mappings.

5.10.6 Different database layers in the master and target project

Direct access to a database via target project is rarely desired in a production environment. If the

target projects are not intended to access a database directly but to access a copy of that

database instead, then the master project's database layer is managed by FirstSpirit in most

cases and the copy for the target projects is managed by a database administrator via an export.

In this case, the master project works on a database layer managed by FirstSpirit and the target

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 142

projects are managed on a layer that has to be updated manually by the database administrator.

This results in the states between the master and target project often being asynchronous and

results in errors in target projects.

 During an initial import, the option "No schema sync" under the "Databases" item

has to be disabled in the project settings (ServerManager). This option must then be re-

enabled after the initial import (see section 5.10, page 135).

If the target projects are to work off of a copy of the original database, the database schema

should be duplicated in the master project. A separate database layer is assigned for target

projects for this database schema. If just the duplicated database schema is deployed now, then

master and target projects always work on one state.

In order to circumvent this problem, the original database schema should be duplicated in the

master project and another layer should be assigned to the duplicate. Only the duplicate schema

is then made available to the target projects during deployment.

Advantage: The database is managed using FirstSpirit.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.1 CONT51EN_FirstSpirit_CorporateContent 1.13 RELEASED 2015-02-04 143

6 Legal notices

The "CorporateContent" and "ContentTransport" functions are products of e-Spirit AG,

Dortmund, Germany.

Only the license agreed upon with e-Spirit AG is valid with respect to the user for using the

functions.

Details regarding potential third-party software products in use not created by e-Spirit AG, their

separate licenses and, if applicable, their update information can be found on the start page of

every FirstSpirit server in the "Legal notices" area.

	1 Introduction
	1.1 Topic of this documentation

	2 Terms and concepts
	2.1 ContentTransport functionality
	2.1.1 Feature combining in ContentTransport
	2.1.2 Cross-server transport of features

	2.2 CorporateContent functionality
	2.2.1 Package types in CorporateContent
	2.2.2 Package dependencies in CorporateContent
	2.2.3 Package definition and package version
	2.2.4 Publication groups
	2.2.5 Subscription
	2.2.5.1 Updating packages in the subscription
	2.2.5.2 Subscribing to metadata and project settings templates
	2.2.5.3 Release

	2.2.6 Integrating workflows and scripts

	3 Configuration
	3.1 Checking the license file
	3.2 Starting the "PackageManager" service

	4 ContentTransport
	4.1 Creating or loading a feature
	4.2 Adding objects to a feature
	4.2.1 Using the tree structure of stores
	4.2.2 In the feature combination

	4.3 Feature combination
	4.3.1 Overview
	4.3.2 "Included objects" area
	4.3.3 "Required missing references" area
	4.3.4 "Optional missing references" area

	4.4 Flyout menu
	4.5 Graphical representation of dependencies (references)
	4.5.1 Icon bar
	4.5.2 Display of relation graph
	4.5.3 Context menu on objects

	4.6 Updating a feature in a target project
	4.7 Limitations and Notes
	4.8 Configuring storage locations
	4.9 Automatic creation, updating and installation of features
	4.9.1 Exporting existing feature bundles by schedule ("Create new feature bundle")
	4.9.2 Importing feature bundles by schedule ("Install/Update feature bundle")

	5 CorporateContent (package store)
	5.1 Creating or loading a package
	5.1.1 Creating a new package
	5.1.1.1 Selecting a package type
	5.1.1.2 Creating a package – Settings tab
	5.1.1.2.1 Configuring events for a package

	5.1.1.3 Creating a package - Advanced tab
	5.1.1.3.1 Namespace extension
	5.1.1.3.2 Adding new element types

	5.1.2 Creating a package version
	5.1.2.1 Editing package availability
	5.1.2.2 Create a version

	5.1.3 Publishing a package

	5.2 Adding objects to a package
	5.2.1 Using the tree structure of the stores
	5.2.2 In the package combination

	5.3 Package combination
	5.3.1 Overview
	5.3.2 "Integrated objects" area
	5.3.3 "Unfulfilled dependencies (own package)" area
	5.3.4 "Unfulfilled dependencies (foreign packages)" area

	5.4 Flyout menu
	5.5 Graphical representation of dependencies
	5.5.1 Icon bar
	5.5.2 Display for dependency charts
	5.5.3 Context menu on objects

	5.6 Functions via the "CorporateContent" menu item
	5.6.1 Overview menu item
	5.6.1.1 Detailed information on subscriptions
	5.6.1.2 Detailed information on packages
	5.6.1.3 Showing a log

	5.6.2 Package menu item - Edit packages
	5.6.3 Package menu item - Publish packages
	5.6.4 Subscription menu item - Create subscription
	5.6.4.1 Selecting a package
	5.6.4.2 Creating a subscription for a package
	5.6.4.3 Limiting package content in a subscription
	5.6.4.4 Configuring events for a subscription
	5.6.4.5 Subscription is created

	5.6.5 Subscription menu item - Edit subscription
	5.6.6 Subscription menu item - Update subscription
	5.6.7 Publication groups menu item
	5.6.7.1 Editing a publication group
	5.6.7.2 Adding a publication group
	5.6.7.3 Deleting a publication group

	5.6.8 Combining package and target project contents
	5.6.8.1 General
	5.6.8.2 Combining sections
	5.6.8.3 Order when importing objects into target projects

	5.7 CorporateContent content menu in the stores
	5.7.1 Starting adding to a package (master project)
	5.7.2 Removing from a package (master project)
	5.7.3 Removing a package relationship (target project)
	5.7.4 Change status (target project)
	5.7.5 Reintegrating an original (target project)

	5.8 Transferring existing projects into package master projects
	5.8.1.1 Using the reference graph
	5.8.1.2 Structuring the package contents
	5.8.1.3 Limitation of image selection in templates
	5.8.1.4 Limitation of template selection
	5.8.1.5 Preventing language-dependent structures in templates
	5.8.1.6 Automatic conversion in the Page Store
	5.8.1.7 Manual conversion of templates
	5.8.1.8 Manual conversion in the content store
	5.8.1.9 Checking the function in a test project
	5.8.2 For similar projects
	5.8.3 Import / export
	5.8.3.1 Package master projects
	5.8.3.2 Subscribing projects

	5.9 Corporate Content for developers
	5.9.1 Individualization of the package contents in the target projects
	5.9.2 Support for multiple languages
	5.9.2.1 Page contents
	5.9.2.1.1 For projects with a homogeneous language structure
	5.9.2.1.2 For projects with a heterogeneous language structure

	5.9.2.2 Menu structures
	5.9.2.2.1 For projects with a homogeneous language structure
	5.9.2.2.2 For projects with a heterogeneous language structure

	5.9.2.3 Templates
	5.9.2.3.1 Via common database access
	5.9.2.3.2 Local differences in the same language

	5.9.3 Using workflows and events
	5.9.3.1 Determining the nodes affected
	5.9.3.2 Exemplary workflow for the release

	5.10 Shared database access
	5.10.1 Configuring the target projects (read-only DB access)
	5.10.2 For existing databases
	5.10.3 New databases
	5.10.4 "contentSelect" function
	5.10.5 Language-dependent content
	5.10.5.1 Implicit modeling of language-dependency
	5.10.5.2 Explicit modeling of language dependency

	5.10.6 Different database layers in the master and target project

	6 Legal notices

