FirstSpirit™

Unlock Your Content

FirstSpirit™ CorporateContent
FirstSpirit™ Version 5.1

Version 1.13

Status RELEASED

Date 2015-02-04

Department FS-Core

Copyright 2015 e-Spirit AG

File name CONTS51EN_FirstSpirit_CorporateContent

e-Spirit AG

Stockholmer Allee 24
44269 Dortmund | Germany

T +49 231 .477 77-0
F +49 231 . 477 77-499

info@e-Spirit.com e’SPirit

www.e-Spirit.com

http://www.e-spirit.com/en
mailto:info@e-spirit.com
http://www.e-spirit.com/en

FirstSpirit™ CorporateContent Fi]_‘St Spirit

Table of contents

1 INtrOAUCTION e 5
1.1 Topic of this dOCUMENTALION ... 6

2 Terms and CONCEPLS s 7
2.1 ContentTransport funCtioNAlIty ... 7
2.1.1 Feature combining in ContentTranSPort...........cccocevveeveercveeeeecenenns 7

2.1.2 Cross-server transport of features............ccocovvvvvcccccececeeeeens 8

2.2 CorporateContent functionality.............cccceeeeecciiiiieeeeeee e 8
2.2.1 Package types in CorporateContent.............cccocovvvireeveeceeeeeeeenns 9

2.2.2 Package dependencies in CorporateContent...........ccoevvvieennnnenes 9

2.2.3 Package definition and package Version............cocvnnninnnnnns 11

2.2.4 PUDIICAION GrOUPS.....c.cuiiiiieieiniisinieeeteisise s 13

2.2.5 SUDSCIIPLION. ...ttt 14

2.2.6 Integrating workflows and SCIPLSc.cccovvivvviiscsc e 16

3 (@70] 01110 LU 1 = 1 o o 0 18
3.1 Checking the licenSe file ... 18
3.2 Starting the "PackageManager"” SErVICE.........coiennnnnieeeenessenes 19

4 ConNtentTranNSPOIT e ———————— 20
4.1 Creating or loading @ fEatUre ... 24
4.2 Adding objects t0 @ featUre...........ocevrriiiiere 25
4.2.1 Using the tree structure of StOres ... 25

4.2.2 In the feature combination ... 26

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

FirstSpirit™ CorporateContent Fi]_‘St Spirit

4.3 Feature COMDINALIONccoiiree e 26
4.3.1 OVEIVIEW .ottt 26
4.3.2 "Included ODJECES™ @ra@.........ccccvvvvvevereieeicccccceeee e 27
4.3.3 "Required missing references™ area.........ccccoeevevevvveivseisiesseeeeenens 28
4.3.4 "Optional missing references” area.........ccoveeinnnnecesnnncs 29

4.4 FIYOUL MENU ..ot 30

4.5 Graphical representation of dependencies (references)............ccocoeueee. 31
A.5.1 1CON DA ..o 32
4.5.2 Display of relation graph.............ccccceeeeecicccciieeeeee s 33
4.5.3 Context Menu 0N ODJECESccccccveveeeccccceceeee e 34

4.6 Updating a feature in a target project........cccocovvvvvvvivcsceeeeeeeeeeenns 35

4.7 Limitations and NOTES.........ccouiiiiiirrrce e 38

4.8 Configuring storage [0CatioNS ... 40

4.9 Automatic creation, updating and installation of featurescccccoeu... 42

4.9.1 Exporting existing feature bundles by schedule ("Create new feature
BUNGIE™)....e e 44

4.9.2 Importing feature bundles by schedule ("Install/lUpdate feature bundle™) 46

5 CorporateContent (package StOre)....nrsmssssssesesessnns 48
5.1 Creating or loading @ PACKAJEcccovvviririrrrrrere e 49
5.1.1 Creating @ NEW PACKAGEcccevvriiriiririririieieieisseseeseisis s 49

5.1.2 Creating a package VErISION.........ccoiiviriienneees s 60

5.1.3 Publishing @ package ..o 63

5.2 Adding 0bjects t0 @ PACKAGE.........cccoieieriiiicre s 65
5.2.1 Using the tree structure of the StOrescccovvvrrrrsceseeeeeenes 65

5.2.2 In the package combination ... 65

5.3 Package combination............cccconinr e 66

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

FirstSpirit™ CorporateContent Fi]_‘St Spirit

5.3.1 OVEIVIBW ..ot s 66
5.3.2 "Integrated ObJeCtS" area........cccoeeiiiiiciiiiiicce 67
5.3.3 "Unfulfilled dependencies (own package)" areaccocoeveererennes 68
5.3.4 "Unfulfilled dependencies (foreign packages)" area...........ccccceucuee. 69
5.4 FIYOUL MENU ..ot 70
5.5 Graphical representation of dependencies............cccccevvrrieinieierirnennenenenen. 71
5.5.1 ICON DI ..ottt 72
5.5.2 Display for dependency Charts.........ccccocovvviiicscceeeeeeeeeeens 72
5.5.3 Context menu 0N ODJECES ... 73
5.6 Functions via the "CorporateContent” menu itemccccocoeveveverirereeene, 75
5.6.1 OVEIrVIEW MENU IEIM ..o 75
5.6.2 Package menu item - Edit packages..........cccccoerrrirnnnninccnennens 82
5.6.3 Package menu item - Publish packagescovvvvinnniininnnns 85
5.6.4 Subscription menu item - Create SubSCription..........cccccovveennrinenes 86
5.6.5 Subscription menu item - Edit SUDSCHIPLioNccocovvvvniciiinns 91
5.6.6 Subscription menu item - Update subscription..............cccccceeccenenes 93
5.6.7 Publication groups Menu ite€Mccccooevivviiiiiiisese e 95
5.6.8 Combining package and target project contentsccccccoeeuenee. 100
5.7 CorporateContent content menu in the Stores ..., 106
5.7.1 Starting adding to a package (master project)ccccovervrnenes 106
5.7.2 Removing from a package (master project)cccoecvevvreersnnenes 107
5.7.3 Removing a package relationship (target project).........cccoeevvnenes 108
5.7.4 Change status (target Project)ccocvrerennnneeensseseessesenens 109
5.7.5 Reintegrating an original (target project)cccoceveeevvvecierevccenn 111
5.8 Transferring existing projects into package master projects................. 113
5.8.2 FOr SIMIlar ProjeCtS.......cccvrirereeeeecee s 122
5.8.3 IMPOIT / @XPOIT.....ooiieiieieeeeceiee ettt 122

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

FirstSpirit™ CorporateContent Fi]_‘St Spirit

5.9 Corporate Content for deVelOpers.........cccovveceecccceeeeeeee e, 124

5.9.1 Individualization of the package contents in the target projects.. 124

5.9.2 Support for multiple languages............ccccovvvvvvisicecceee e 124

5.9.3 Using Workflows and eVents...........cccoevvvvvvvvicsssse e 131

5.10 Shared database ACCESS.........ccccuriiieeri e 135
5.10.1 Configuring the target projects (read-only DB access).................. 137
5.10.2 For existing databasEesS..........cccvviiiirirniiiese s 138
5.10.3 NeW databases..........cccoiie e 139
5.10.4 "contentSelect” FUNCHON. ... 139
5.10.5 Language-dependent CONtENt..........cccccvvveiviviviriiicicce e 140
5.10.6 Different database layers in the master and target project........... 141

6 Legal NOLICES s 143

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

FirstSpirit™ CorporateContent Fi]_‘St Spirit

1 Introduction

n This document is provided for information purposes only. e-Spirit may change the
contents hereof without notice. This document is not warranted to be error-free, nor
subject to any other warranties or conditions, whether expressed orally or implied in law,
including implied warranties and conditions of merchantability or fitness for a particular
purpose. e-Spirit specifically disclaims any liability with respect to this document and no
contractual obligations are formed either directly or indirectly by this document. The
technologies, functionality, services, and processes described herein are subject to
change without notice.

The Multisite Management area includes functions that allow the distribution, and thereby the
reuse, of FirstSpirit content in SiteArchitect. In the process, the user is conveniently supported by
the user interface in an optimal way. This reuse is possible across both project and server
boundaries.

The essential use cases here are:

= Reusing editorial content and layouts between different projects (sites or clients)
= Simply reusing specific project solutions
= Supporting the development of quality assurance processes (DQP scenario)

Multisite Management includes the ContentTransport and Corporate Content functions.

The Corporate Content functionality is located on the vertical icon bar in the left area of

SiteArchitect under the ™ icon and on the menu bar under the menu item "Corporate Content".
The desired project contents are combined in the source project into what are known as
packages. These packages can be subscribed to in other FirstSpirit projects (target projects).

ContentTransport functionality is located on the vertical icon bar in the left area of SiteArchitect

under the ™ icon. The desired project contents are combined in the source project into what are
known as features. The feature combination can then be saved as an archive file and be
imported into other FirstSpirit projects (target projects).

The advantage of these functions: Objects can be managed at a central location (source project)
and can always be kept at the desired version in other projects (target projects).

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

FirstSpirit™ CorporateContent Fi]_‘St Spirit

1.1 Topic of this documentation

Chapter 2 explains the most important terms and concepts for working with packages, features
and subscriptions. The chapter offers a general overview of the operation of CorporateContent
and helps first-time users get started (starting on page 6).

Chapter 3 describes the configuration settings on the server. The chapter is only relevant for
administrators (starting on page 18).

Chapter 4 covers the ContentTransport area with all of the functions for creating, editing and
publishing ContentTransport features (starting on page 20).

Chapter 5 covers the Corporate Content area with all of the functions for creating, editing and
publishing packages (starting on page 38).

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

FirstSpirit™ CorporateContent Fi]_‘St Spirit

2 Terms and concepts

2.1 ContentTransport functionality

Different project content can be collected from all of the stores using Content Transport. In
addition to templates, FirstSpirit content can now also be transported. Here, content from the
content store can be selected for reuse in addition to content from the page, media and site
stores.

A feature and the elements it contains always relate to one specific project state. This can be a
state such as the release state or one of the past states. FirstSpirit also only transports content
from this state via the feature. These past contents can easily be viewed at any time. Both the
editing form and the inline preview of the SiteArchitect are displayed with the historical data.

An object explicitly added to a feature is used as the start node. All subordinate objects, including
entire folders, are also applied to the feature starting from this start node. The parent chain of the
object is also taken into account and implicitly applied to the feature. Necessary and optional
dependencies are detected automatically and can be added to the feature manually using the
"ContentTransport" store area. Once all desired objects are combined in the feature, the feature
can be saved as acompressed zip file and be provided for import into the FirstSpirit target
projects.

n For more information about limitations and for further notes on the
"ContentTransport" functionality please refer to Chapter 4.7 page 38.

211 Feature combining in ContentTransport

Feature combinations do not have to be closed, i.e. not all of the referenced objects have to be
included in a feature, since a link to existing objects is established in the target project. The user
interface visualizes these open edges at different spots:

Directly in the tree view:

The tree view shows the missing elements of the feature for both the entire feature and starting
from elements already in the feature. The missing elements can be added to the feature directly
by the user.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

FirstSpirit™ CorporateContent Fi]_‘St Spirit

In the graphical display for the combination

The graphical display provides a complete overview of the elements (open edges) that are in the
feature or are still missing. The feature combination is supported optimally by being able to add
elements to or remove them from the graphs directly.

21.2 Cross-server transport of features

Transporting combinations from Content Transport, called "Features”, is possible across server
boundaries, for example using external storages (see Chapter 4.8 page 40). Thus, Content
Transport also optimally supports DQP scenarios and the associated development and quality
assurance process which involve transferring new functions from a development system (D) to a
quality assurance system (Q) so that the function can be tested there. After being tested
successfully, the function is transferred further to the production system (P) starting from D.

Use schedules for automating the transfer of features between DQP systems (see Chapter 4.9
page 42). Moreover, there is an API available.

2.2 CorporateContent functionality

The FirstSpirit CorporateContent function represents a further development of the previous
"package management" function that could be used to distribute templates and content between
different projects on a server automatically. Content can be reused conveniently and across
projects with FirstSpirit this way. An important aspect when combining packages is that all
dependent objects also have to be included in the package.

Packages are created and edited in the source project. The project available for importing
packages into other projects is designated the source project. The objects are selected from the
source project's project tree. What is known as a start node is defined in the process. All
subordinate objects, even entire folders, are transferred to the package starting from this node. If
all desired objects have been combined, a new package version is created which is then
available for importing to all target projects with a valid subscription.

Likely the most important functional enhancement is the option for creating packages at the last
released state. Thus, all of the package's elements no longer have to have been released at the
time the version is created.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

FirstSpirit™ CorporateContent Fi]_‘St Spirit

2.21 Package types in CorporateContent
FirstSpirit distinguishes between two package types:

e Content packages: Content packages contain objects from the page store, the site store
and the media store. They do not contain templates or objects from the content store.

e Template packages: Objects from the template store are integrated into template
packages. In addition, a template package is allowed to contain objects from the content
store and the media store. Integrating objects from the media store into a template
package should, however, be limited to media that are referenced in the templates
directly, such as those used for the layout (cascading style sheets, spacer.gif, logos, etc.).
Other media objects continue to belong to a content package.

n Each object can only be integrated into one respective package!

2.2.2 Package dependencies in CorporateContent

Different objects are combined into packages. Most objects, excepting objects from the media
store, can reference additional objects. For instance, a page from the content store could
reference an image from the media store and a template from the template store. The
dependencies between objects have to be resolved in order to import objects into different
projects successfully. In other words, it must be ensured that all objects referenced in a package
are also contained in the package. This is the reason behind strictly separating content and
template packages.

A distinction is made between two dependencies in the process:

1. Content-related dependencies:

The dependencies within a content package are resolved automatically using what are
known as reference graphs (see section 5.8.1.1, page 113). For instance, which objects a
page references for each page that is to be taken over in a package is checked in the
process. The referenced objects are then also taken over in the package. If there is an
object that is to be transferred to a content package, such as a page reference or a folder
from the site store, then all associated pages from the page store are also transfered to
the package.

If referenced objects are already integrated into one content package, they cannot be
taken over in another context package since each object is only allowed to be included in

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

FirstSpirit™ CorporateContent Fi]_‘St Spirit

one single package. In this case, a dependency on this dependent content package is
established by the system. This is shown when creating a package version or in the
version list for a package and in the detailed information for the package. The dependent
content packages can then be subscribed to manually (see section 5.6.6, page 93). A
content package can have multiple dependent content packages.

2. Dependencies on templates

A content package's dependency on a template cannot be resolved automatically. The
relationship between a content package and a template package has to be specified in
the content package's properties. If there is a dependency between a content package
and a template package, a specific sequence has to be followed when creating a version
in the master project and when publishing from the master project (see section 5.6.3,
page 85).

Templates can also have dependencies on other templates. These dependencies cannot
be resolved automatically in each instance since the effects would be very far-
reaching in some cases. The package developer should put thought into dependencies
and the most effective package structure possible well in advance when packing a
template package. The sequence in which objects are added to a package also has to be
taken into account in the process. If, for instance, a template has a dependency on a
content source, the associated database schema (including table templates and queries)
has to be added to the package beforehand.

n For a subscription this means: A package can have a dependency on another
package (content or template package). In order to subscribe to a package, all dependent
template packages must be subscribed to and all dependent content packages can be
subscribed to as well. The import sequence is not arbitrary in this context:

Whenever a content package with a dependency on a template package is imported,
the template package has to be imported first and then the associated content package. If
this sequence is not followed, an error message appears and the user can restart the
import.

Whenever a content package with a dependency on another content package is
imported, the dependent content package has to be imported first and only then is the
content package that contains the references to the dependent objects imported. Errors in
the target project may result if this sequence is not followed during the import or if the
dependent content packages are not imported.

A specific sequence has to be followed for publishing dependent content packages.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

FirstSpirit™ CorporateContent Fi]_‘St Spirit

2.2.3 Package definition and package version

A package consists of one or more package versions depending on the specific type (content or
template package). Each package version has precisely one zip file used for importing into
target projects.

—

Package Zip file
version

Package

\ 4

Conceptual Physical

The zip file contains all of the data required for the package version and a meta description of the
package contents. This meta description is called a package definition. The package definition
is made hierarchically based on a list of start nodes. These start nodes determine which objects
are part of the package. All of the objects below this start node are taken over in the package
when it is created. Which objects this exactly entails depends on the structure and contents of
the master project.

In addition to the package definition, the dependencies between individual objects have to be
taken into account as well (see section 2.2.2, page 9). If there are dependencies between an
object contained in a package and another object that is not part of the package, then the
dependency is identified automatically using the reference graphs and the referenced object is
added to the package even though it is not explicitly part of the package definition. Thus, a
package cannot be defined solely via the selected package content. Therefore, a distinction
between the package definition and the package version is vital.

Package definition:
Describes the content of a package using the start node from the master project integrated in the
package. Referenced objects are not included in this node list and thus are not part of the
package definition. The complete content does not result until a package version is created using
a package definition.

Package version:

Contains all of the objects determined using the package definition and all manually referenced
objects. Thus a package version provides a complete description of the package contents. Unlike
the package definition, which always reflects the most up-to-date content, a package version is
only as up-to-date as the date of its last creation.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

11

FirstSpirit™ CorporateContent Fi]_‘St Spirit

The package contents change if:
e A new start node is explicitly added, i.e. when a package definition is modified.

o An object is implicitly added because it was created from scratch below a start node in
the master project (no change to the project definition).

In these two cases, the packages should be refreshed by creating a new package version (see
section 5.1.2, page 60). A package version can be released for one or more publication groups.

n If a new object is created below an already integrated start node in an existing
package, this object is added to the package automatically and applied in the next
package version.

n Overlap between package contents cannot occur when creating packages. This
means, each project node can only belong to exactly one package. Project nodes and
objects already wused in a package can be identified based on the
"ObjectName@PackageName" name extension (in reference names; if the namespace
extension has not been disabled, see section 5.1.1.3.1, page 58) and by a package
symbol in the project tree. This process increases clarity since otherwise multiple new
package versions would have to be created and published at the same time when
modifying a single object.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

FirstSpirit™ CorporateContent Fi]_‘St Spirit

2.24 Publication groups

Creating and publishing packages is a complex task. Incorrect operation can result in problems
and conflicts in target projects. Therefore, packages should be thoroughly tested before they are
used in a production environment. The concept of a "publication group" was instituted for this
purpose (also refer to section 5.6.7, page 95). A publication group is a sort of "marker” that can
be assigned to one or more package versions. Packages for specific publication groups can "be
released" on master project pages and which publication group a package is intended for is
defined on target projects' pages when subscribing to a package. Publication groups are defined
server-wide and thus can be used in both master and target projects.

For instance, the following publication groups could be defined:

¢ Development: For developing packages.
e Test: For projects used for testing packages.
e Production operation: For projects that use a package in a production environment.

The example flow then appears as follows:

Package version |Release for pub. group
Version 0.1 Development

Version 0.2 Development

Version 0.3 Development, Test
Version 0.4 Development, Test
Version 1.0 Production operation
Version 1.1 Development

The "Development” group begins developing a package. The initial 0.1 and 0.2 package versions
are only released for this group. The development continues until package version 0.3 is created
at some point, which is released for both the "Development” publication group and the "Test"
group. This makes this version of the package available to all projects whose subscription was
concluded with the "Development" and "Test" publication groups. An automatic or manual update
occurs in the target project depending on the project configuration. If the development of the
package is concluded, a new package version 1.0 can be released for the "Production operation"

group.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

13

FirstSpirit™ CorporateContent Fi]_‘St Spirit

As can be seen in the example, multiple versions can be released for one publication group. The
package version with the highest package number, i.e. the most up-to-date version, is always
used in this case. The package number is unique and is generated when creating a new package
version.

2.2.5 Subscription

Subscriptions are created and edited in target projects. Projects that can import packages from a
source project are designated as target projects. Only packages defined as "available" in the
source project can be subscribed to (see 5.1.1.2, page 51).

A distinction is made between two states for a subscription:

1. Initialization: With a subscription, all package contents (such as all of the source
project's media files) are initially taken over in the target project and can be edited further
by the target project's content editors depending on the package or subscription
configuration.

2. Update: A new package version has to be created as soon as some aspect of the objects
integrated into the package changes in the source project or new objects are to be made
available, such as a new image. Each new package version not only contains changes
from the preceding version, but also all the modified objects from the preceding version.
However, all of the objects contained in the package are no longer replaced when
updating a target project with a new package version. Instead, only the newly added and
modified objects are replaced.

2.2.5.1 Updating packages in the subscription
A package update can be carried out using two different processes:

1. Automatic update: With automatic updating, the decision to update a package is in
the hands of the source project administrator. From a central location, the
administrator initiates the update for all target projects that have a valid subscription
to this package by publishing the package (see section 5.6.3, page 85). This is also
referred to as a "push" process. Manual intervention on behalf of the person
responsible for the target project is not necessary.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

14

FirstSpirit™ CorporateContent Fi]_‘St Spirit

2. Manual update: With manual updating, the decision to update is in the hands of the
target project administrator. A new package is made available to the administrator
(such as in the package overview, see section 5.6.1, page 75, or in the subscription
list) and the administrator can update the project using the new package as needed
(see section 5.6.6, page 93). This is also referred to as a "pull" process. The
administrative burden is placed on the target projects by manual updating.

Three possible states are feasible during updating:
¢ An object from the source project is newly created in a target project.

¢ An object present in a target project is updated with content from the source
project.

e A conflict situation occurs (also see section 5.7.4, page 109).

Publication groups have been defined in order to simplify package updating and to avoid errors in
production packages (see section 2.2.4, page 13).

2.2.5.2 Subscribing to metadata and project settings templates

In most projects, in addition to standard page templates, there is also a template page for global
project settings and for what are known as metadata, if they are used in the project. These
templates can be part of a template package and thus can be imported into any target project
with a valid subscription. By integrating a project setting template, for example, it is possible to
define layout specifications uniformly for headlines and continuous text across an entire project.
By integrating metadata, for example, it is possible to work with personalized pages. If these
templates are imported into target projects, they can be expanded and adapted to project-
specific circumstances there without issue.

n Imported metadata templates have to be configured in the ServerManager in the
project settings under the "Options" item in the "Metadata template" field.

n These templates can, in fact, be imported into target projects in both cases, but
using them is also not mandatory. This can lead to problems if other packages are based
on these project settings or metadata.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

15

FirstSpirit™ CorporateContent Fi]_‘St Spirit

n Using CorporateContent only the templates are transfered, not the contents. Please
use the ContentTransport functionality for being able to transfer metadata or project
settings which have been entered by the editors into other projects (see Chapter 4 page
20).

2.25.3 Release

The project-specific concept of release control can also be used for working with packages.
Whether the subscribed contents are to be released automatically or not is already determined
when subscribing to a package. If automatic release is selected, all new or modified objects are
released automatically and immediately after being imported, without any action on the part of
the target project (for release via workflows see section 2.2.6, page 16). Which objects are
modified is not apparent to target project content editors in this case.

In contrast to this procedure, explicit release can also be defined. Modified or new objects are
shown in red in the target project's project tree in the process and have to be released explicitly
by a responsible editor. Advantage: The changes are visible at a glance. This solution does offer
more transparency, but would not be very convenient for a larger package scope. For this
reason, explicit release can be carried out using a single workflow. When updating a package, a
list of the released objects is created at the same time and announced throughout the
subscription. All of the objects from this list can then be released using just one workflow (also
see section 5.9.3.1, page 131 in this regard).

2.2.6 Integrating workflows and scripts

Packages are usually updated and imported in complex project environments. Integrating
workflows into target projects is vital in order to make working as convenient as possible. Specific
events are made known to each package in the process. A workflow or script that is started after
importing the package can then be assigned to each of these events. Examples of such events
include:

e Automatic release: Directly after importing, a workflow is started that releases all new or
modified objects automatically, without any action on the part of the target project (see
section 2.2.5.3, page 16).

¢ Resolving a conflict: If a package conflict occurs when importing a package, a workflow
that is intended to correct the conflict is started when this event occurs.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

16

FirstSpirit™ CorporateContent Fi]_‘St Spirit

e Report function: The report function is particularly interesting for large projects. It creates
a log file during import of a package and informs groups of responsible persons about
updates.

In the event of a subscription, the assignments created in the package for events are applied by
default but can be reconfigured in the target project.

In addition to being run in the target projects, workflows can also be used in the master project. A
package update can also basically be initiated using a workflow or a script.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

17

FirstSpirit™ CorporateContent Fi]_‘St Spirit

3 Configuration

"CorporateContent" is a license-dependent functionality; this means the "package store" (on the
FirstSpirit SiteArchitect menu bar) and the ContentTransport icon (on the FirstSpirit SiteArchitect
vertical icon bar) are only shown if a valid license for this functionality is present.

Two steps are needed to activate the functionality:

= Checking the license file and replacing it if necessary (see section 3.1, page 18)
= Activating PackageManagerService (see section 3.2, page 19)

3.1 Checking the license file

The applicable FirstSpirit functions of the license file fs-1icense.conf are shown using the
FirstSpirit Monitoring menu "FirstSpirit — Configuration — License". The parameter
license.PACKAGEPOOL has to be set to a value of 1 for using the "CorporateContent" or
"ContentTransport" functions.

If this is not the case, a new valid license can be requested from the manufacturer and be
exchanged using FirstSpirit server monitoring.

n Tampering with fs license.conf will result in an invalid license. If changes
become necessary, please contact the manufacturer.

The server does not have to be restarted when inserting a new fs license.conf configuration
file. The file is updated on the server automatically.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04 18

FirstSpirit™ CorporateContent Fi]_‘St Spirit

3.2 Starting the "PackageManager" service

The "PackageManager" service on the FirstSpirit server has to be started in the next step. The
service can be activated via FirstSpirit Server Monitoring in the "FirstSpirit — Control — Services"
area (or via the ServerManager).

The service is started by clicking the "Start" entry. The server does not have to be restarted.

The configuration for automatically starting the service each time the server is restarted can be
defined in the "FirstSpirit — Configuration — Services" area.

For configuring using FirstSpirit Server Monitoring, also see the documentation FirstSpirit Manual
for Administrators, Chapter 8.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

19

FirstSpirit™ CorporateContent Fi]_‘St Spirit

4 ContentTransport

The "Content Transport" area is used for creating new features and for editing existing features.

It can be opened using the ™ icon from the vertical icon bar in SiteArchitect. Creating and
combining a feature in a source project and updating one in a target project is described in the
following sections:

= Creating or loading a feature Section 4.1, page 24
= Adding objects to a feature Section 4.2, page 25
= [Feature combination Section 4.3, page 26
= Flyout menu Section 4.4, page 30
= Graphical representation of references Section 4.5, page 31
= Updating a feature in a target project Section 4.6, page 35
= Notes on Content Transport Section 4.7, page 38
= Configuring the storage location Section 4.8 page 40
= Automation Section 4.9, page 42

i Content Transport

+
[1]

Ho feature loaded yet

Create or load a feature

Install feature

Figure 4-1: Content Transport store

The Content Transport area's icon bar contains entries for creating and editing Content Transport
features.

The name of the opened feature is shown after this icon. Clicking the name opens a dialog
where the feature name can be modified. If no feature is loaded then "No feature loaded" is
displayed.

I&+ Create or load a feature; clicking this icon opens a dialog for creating a new feature or loading
a feature that already exists (see section 4.1, page 24). This icon is only active if no feature is

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

20

FirstSpirit™ CorporateContent Fi]_‘St SpiritTM

currently loaded.

F Save feature; clicking this icon saves the current feature's object combination. Saving is
required in order to enable automatic updating of this feature (refer to section 4.9.1, page 44 for
more information).

 Create feature Zip file; to use in a target project, the content of the feature is stored in a ZIP
file. Using this icon initiates generation of the feature ZIP file. The storage location for the ZIP file
can be selected in the following dialog:

& Target storage selection E

Flease choose a target storage.

FProject-Local-Storage (project local feature storage, type=Frojectlocal
File_system (File System, type=Filesysten)

Drophox (Dropboy, trpe=0Drophog

]2 Cancel

Figure 4-2: Selecting the target storage location

Possible target storage locations can be configured in FirstSpirit ServerManager in the project
properties under "Project = components"/'FirstSpirit Content Transport Storage
App"/"Configuration" or by double-clicking on the project component (refer to section 4.8, page
40). If no other storage location is configured, a default storage location is offered on the local
FirstSpirit server ("Project-Local-Storage" storage location).

Clicking "OK" generates the feature ZIP file and saves it to the selected storage location. The
user can then select whether the file should also be stored in another, local storage location:

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04 21

FirstSpirit™ CorporateContent Fi]_‘St Spirit

& Information :

m Do vou want to download the feature zip file as well?

Save locally Save in storage anly

Figure 4-3: Saving the ZIP file locally as well

Save locally: The desired target folder for the ZIP file can be selected in following dialog box.
The name of the ZIP file is created automatically.

Save in storage only: The ZIP file is only saved in the storage location previously selected.
A message box appears indicating that the feature was saved successfully.

Discard feature; clicking this icon closes the open feature — after affirming a confirmation
prompt. Unsaved changes to the object combination are lost.

il Install feature; clicking this icon opens a dialog for selecting the source. The call for this
function only occurs in the target project.

=" Information : E

m Please choose the source of the feature to he installed.

Local filesystem Storage

Figure 4-4: Selecting a source

Local file system: A dialog opens for selecting a feature ZIP file from the local workstation.

Storage: The feature to be installed can be selected in the following dialog. The storage location
from which the feature is to be loaded is selected first. The list is empty if no feature was
previously created (see the "Create feature Zip file" function, further up).

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

22

FirstSpirit™ CorporateContent Fi]_‘St Spirit

Storage Dropbox (Drophox, type=Dropbox) -
Feature |Feature name Projectname |[Revision released Server LD
MithrasHomepage Mithras Energy 20779 My Server 26180612-370b-4100-8a60-88cdd3d1 df
Productimages Mithras Enerdy 20777 My Server ae233077-2cal-451b-8093-0552df99¢1
4 [
0]24 Cancel

Figure 4-5: Feature selection

Storage: Storage location selected for feature generation (for configuring
storage locations, see section 4.1, page 24). Default storage
location on FirstSpirit server: "Project-Local-Storage”

The available features at the particular storage locations are displayed with the following
information:

Feature name: Name given to the feature when it was created

Project name: Specifies the name of the source project on the server.

Revision: Feature revision selected when generating the feature.

released: Release state selected when generating the feature.

Server: Specifies the name of the server where the feature was created.
UuID: unique ID across servers that was assigned automatically by the

system when the feature was generated.

Clicking "OK" installs the selected file in the target project (see section 4.6, page 35).

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

™

FirstSpirit™ CorporateContent Fi]_‘St Spirit

41 Creating or loading a feature

Clicking the Ik icon or the entry "Create or load a feature" in the empty feature area opens a
dialog for creating a new feature or for editing or loading an existing feature.

%" Create or load a feature x|

Create or load a feature
& Create new feature
Load feature from server
Load feature from local Zip file
Feature settings
Mame MEW_FEATURE
Revision 19953 (Jun 29, 2012 12:38 PM)
Release status

Objects

Diata records

] Cancel

Figure 4-6: "Create or load a feature" dialog

Create or load a feature

The choice of creating a new feature of FirstSpirit objects or loading an already created feature
(feature or feature zip file) is made in the upper area of the dialog. Existing feature zip files can
be loaded from the local workstation and existing features can be loaded from the FirstSpirit
server.

Create new feature: Activating this option creates a new empty feature.

Load feature from server: A dialog for selecting an already existing feature opens. The combo
box contains all of the features that have previously been saved on the FirstSpirit server.

Load feature from local Zip file: A dialog for selecting a feature zip file from the local
workstation opens.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04 24

FirstSpirit™ CorporateContent Fi]_‘St Spirit

Feature settings
The settings for the newly created or loaded feature can be edited in the dialog's lower area.

Name: A unique and legible name should be specified when creating a new feature. The name is
used to save the feature file on the FirstSpirit server, on the local workstation, or externally.

Revision: A feature always relates to a specific revision of the object (the current revision when
being added). The field is used for selecting a maximum revision for all of the FirstSpirit objects
contained in the feature. When added to a feature, all objects are stored with the revision in the
feature that is directly below this maximum revision.

Release status: If this option is enabled then only the last release state is taken into account for
each included object.

Elements: This field specifies how many elements have already been added to the selected
feature.

Datasets: This field specifies how many datasets in the selected feature have already been
added.

4.2 Adding objects to a feature

4.21 Using the tree structure of stores

New objects compatible with Content Transport can be added to a Content Transport feature
using the tree structure of the corresponding stores in one of two ways:

= using the object's context menu item Add to Content Transport feature or
= using drag-and-drop to copy an object to the "Included objects" area (see section 4.3.2,
page 27).

The selected object is then added explicitly to the feature. Furthermore, all of the selected
object's higher level parent elements are implicitly added to the list of included objects and all
child objects are added explicitly.

The user works on a view of the datasets in the Data Store when adding datasets. Data sources,
filtered data sources (each without contents or datasets) or even individual datasets can be
added as objects here.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

25

FirstSpirit™ CorporateContent Fi]_‘St Spirit

4.2.2 In the feature combination

Additional objects can also be added to the feature using the areas for required or optional
references. The checkbox in front of the respective object just has to be selected for the desired
objects, then the objects are included in the feature by clicking the Add selected button.

4.3 Feature combination

4.3.1 Overview

il Content Transport

k 3 Feature2 A & X i
Revision 20275
E] Date Sep 10, 2012 8:54 AM
B Included objects | datasets 110
Missing references a1

Figure 4-7: Feature - Overview

Revision: The maximum revision of all included objects is displayed here (with/without release
state).

Date: The date and time when the maximum revision was configured is specified here.

Included objects | datasets: The number of objects explicitly added by the user that are present
in the feature is specified here.

Missing references: How high the number of missing references in the entire feature
combination is specified here. The number of absolutely necessary objects is shown here in red;
the number of optional objects is in yellow.

n Missing references always refer to the entire feature — A detailed view of the
missing references can be called up using the flyout menu (see section 4.4, page 30).

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

26

FirstSpirit™ CorporateContent Fi]_‘St Spirit

4.3.2 "Included objects" area

All objects included for the feature are listed in this area. There is a distinction between explicitly
and implicitly added objects. If an object is added explicitly, then all higher level parent objects
are implicitly added automatically to the feature as well. Child objects, on the other hand, are
added explicitly even though they were not added separately by the user.

o Objects added by the user are shown in hormal text; this indicates that they can be removed
from the list again by using the * icon.

o Explicit objects that are the child elements of an explicitly included object are also shown in
normal text but cannot be removed from the list.

¢ Implicitly added objects that are at a higher level than an explicitly included object are shown
in text with less contrast and cannot be removed from the list either.
Included objects

- =] -
+ Wl FirstSpirit

F E] Implementation with FirstSpirit
- .
-
b IZ) Products overview

e . .

Figure 4-8: Feature — Included objects

Clicking on an object in the list opens a tab with that object's forms in the SiteArchitect edit area
for viewing. The object cannot be edited at this point; this is indicated by a L? clock symbol on

the object icon.

== Show relation graph; clicking this icon opens a tab in the AppCenter area with a graphical
representation of the hierarchical structure and the references (dependencies) of the selected
object (see section 4.5, page 31).

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

27

FirstSpirit™ CorporateContent Fi]_‘St Spirit

Delete; this icon is only displayed if the associated object was explicitly included by the user.
Clicking this icon removes the selected, explicitly added object from the list along with all
automatically included child objects, after the user affirms a confirmation prompt. Higher level
objects that are not used by other explicitly included objects are also removed.

Missing optional references; the yellow exclamation mark indicates that the respective object or
a child object has missing optional references. The objects are listed in detail in the "Optional
missing references" area.

! Missing required references; the red exclamation mark indicates that the respective object or a
child object has missing hard references. The objects are listed in detail in the "Required missing
references" area.

Object details; clicking this icon opens a flyout menu with object-specific information (see
section 4.4, page 30). Clicking the icon again closes the flyout menu.
4.3.3 "Required missing references" area

All of the objects that are required to install the feature combination in a target project
successfully are shown in this area. If all of the required references are found, then this area
remains empty.

Required missing references
E Iext ! Picture <
E Iext i P.l_ctﬁj.ria. <

LI Lo]| e R

Figure 4-9: Feature — Required missing references

Required objects are displayed in list form, each with a checkbox for selecting each individual
object. Clicking on an object in the list opens a tab with that object's forms in the SiteArchitect

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

FirstSpirit™ CorporateContent

edit area for viewing. The object cannot be edited at this point; this is indicated by a L? clock
symbol on the object icon.

Required missing references: If this checkbox on the top end of the area is selected, then the
checkbox for selecting an object is selected for all of the objects in the list.

Clicking on the Add selected button integrates all of the objects selected in this area into the
feature combination.

n Required dependent objects have to be added. But this only applies to an empty
project. If missing references are already found in the target project, then these objects do
not absolutely have to be added; the feature can be applied regardless.

4.3.4 "Optional missing references" area

All of the objects that are not absolutely required for successful installation in a target project but
are desired are shown in this area. If all of the optional dependencies are fulfilled then this area
remains empty.

Missing references (dependant package)

D Product (Flash animation) —

i
[q

Figure 4-10: Feature — Optional missing references

Optional objects are displayed in list form with a checkbox for selecting each individual object.
Clicking on an object in the list opens a tab with that object's forms in the SiteArchitect edit area

for viewing. The object cannot be edited at this point; this is indicated by a L? clock symbol on
the object icon.

Optional missing references: If this checkbox on the top end of the area is selected, then the
checkbox for selecting an object is selected for all of the objects in the list.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

FirstSpirit

29

FirstSpirit™ CorporateContent Fi]_‘St SpiritTM

Clicking on the Add selected button integrates all of the objects selected in this area into the
feature combination.

4.4 Flyout menu

The flyout menu contains object-specific information displayed in the same way as the
information for the feature combination.

[FirstSpirit
Fevision 11332
Date 1M 609 1:25 PM
¥ Include child objects 13
Missing references 1113
Show relation graph
[Required missing references
r Text / Pict
| E _e : icture <
Section templates
[Optional missing references
r | Compilation -
FirstSpirit
r i FirstSpirit =
FirstSpirit
r | Front end
FirstSpirit
r | Back end
FirstSpirit
r | Concept and design
FirstSpirit -

Figure 4-11: Flyout menu

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04 30

FirstSpirit™ CorporateContent Fi]_‘St Spirit

The flyout menu always contains at least a tabular listing of object-specific data the same way as
the feature overview.
¢ |con and language-dependent display name for the displayed object

¢ Revision of the object (object-specific state included in the feature) as well as the date and
time of the revision.

¢ "Include child objects" checkbox — If this checkbox is selected, then the missing references
for the displayed object are displayed along with all of the object's child objects. If the
checkbox is not selected, then only the missing references of the displayed object are
displayed.

o Number of child objects
e Number of missing references (required and optional)

¢ A tab with a graphical representation of an object's references can be displayed using the
Show relation graph button in the AppCenter area (see section 4.5, page 31).

The Required and Optional missing references areas are the same as the areas in the feature
combination with the same name (see sections 4.3.3 and 4.3.4, starting from page 28).

4.5 Graphical representation of dependencies (references)

The graphical representation is used to provide a flexible view of the hierarchical structure and
dependencies of a feature's embedded objects. Furthermore, objects can be added/removed in
the graphical representation.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

31

™

FirstSpirit™ CorporateContent Fi]_‘St Spirit

= vorschau: Mithras- Wi ContentTransport x
[j Mithras Homepage
Gruppierungsgrofie: 10 12
== DS 1200 modular et |
== Das Dunnschichtmodul 120 a
| Konzept fur Solarauto e Anzeige der optionalen,
Homepage abhangigen Objekte
Home-Teaser
Formatvorlagen/Mithras Energy Fd
@ Standard Kontakt
Formatvorlagen/Allgemeine Forma \Bl Hapen Sie Fragen zur Sola
Neu Willkommen bei Mit| m E rechter Bereich Pressemitteilungen (Teaser)
'8! Sonnenenergie ist die Zulk \ W withras Homepage '8 mithras Homepage/linker Bereich
D Homepage —-'-E Firstspirit
Seitenvariagen | '8 Die Website mithras-eneragy.de ist
|E o | Nachhaltigkeit fur die eigenenE
" I8l Es gibt viele Optionen, das eigencjil
linker Bereich Zum Aufbau eines Solarf 6 E
W81 Mithras Homepage I8l solarpanele bestehen aus
mittlerer Bereich E Alles lber Wechselrichhmu
18l \vithras Homepage Bl \wechselrichter gliedern sic
Anzeige der nctwend'\gen,/
abhdngigen Objekte

Figure 4-12: Show dependencies

The relation graph is integrated as a reusable tab in the SiteArchitect AppCenter area.

451 Icon bar

Layout; clicking this icon automatically arranges the displayed objects in a uniform layout. In
the process, layout changes made by the user are discarded without prompting.

Update; clicking this icon updates the information displays in the relation graph. Changes to
the hierarchical structure of the objects and the feature's new or removed objects are taken into
account in the process.

Zoom out/1:1/in; clicking on these icons changes the view of the relation graph by
increasing it, shrinking it or changing it back to its original size.

Fit to Screen; clicking this icon adjusts the zoom level so that the entire relation graph is
visible at the current tab size.

Save as image; clicking this icon opens a dialog box for selecting the name and save location
for creating an image file in PNG format. The created picture file contains the entire relation
graph at the selected zoom level.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04 32

FirstSpirit™ CorporateContent Fi]_‘St Spirit

Grouping size: How many objects are to be displayed at the same time using the "Show linked
objects" context menu function or by double-clicking can be specified in this field.

2./ Follow mode; clicking this icon switches to follow mode. Two states can be configured:

. Clicking on an object in the feature's tree structure also displays the object in the

workspace and selects it in relation graphs.

* Clicking on an object in relation graphs also then displays the object in the workspace.

4.5.2 Display of relation graph

The relation graph displays objects from the stores and their connections to each other. These
connections can be relationships between parent and child objects as well as references
between different objects.

The object that the relation graph was retrieved for is used as the root node for the view and
appears at the far left in the relation graph. When expanding outgoing connections for an object,
the target nodes are arranged to the right of the object. Each link between two objects is
represented by an arrow that points to the child or referenced objects.

Each object is shown as a rectangle and contains the following information:

Object icon; the same icon that is also displayed in the tree structure of individual stores.
Suitcase symbol (id1); specifies whether the object is currently included in the feature. It is
placed on the object icon for identification

Display name; the language-dependent display name from the relevant stores is displayed.
Alternatively, the developer can set another text as the display name.

Preview symbol; if present, a preview of the object or included images is shown as a symbol.
Exclamation mark (*/!); displayed if missing references exist for the object or a child object.
The color rules match the tree view in the "Included objects" area of the feature combination
(see section 4.3.2, page 27).

Edge lines are drawn between objects that are related to each other. These lines are shown
differently depending on the missing or found status:

Solid line; used for explicitly added objects (references).

Dashed line; used for child elements that are child elements of an explicitly included object.
Gray; used between objects if their connection is intact in the current feature combination (i.e.
always child objects, referenced objects if the reference target is included in the feature).
Red; used between objects if a missing required reference is present.

Yellow; used between objects if a missing optional reference is present

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04 33

FirstSpirit™ CorporateContent Fi]_‘St Spirit

4.5.3 Context menu on objects

A context menu can be called up on each object. The functions of the context menu are active or
grayed out depending on the state of the object.

Add to feature: The selected object and all of its child elements are included in the feature.

Remove from feature: Explicitly included objects and their automatically included child objects
are removed from the feature.

n Objects that have been added to fulfill the dependencies of a removed object are
not implicitly removed.

Show element in workspace: Calling this function opens a tab with this object's forms in the
SiteArchitect edit area for viewing. The object cannot be edited at this point; this is indicated by a

L? clock symbol on the object icon.

Add all required edges: Calling this function integrates all of the required missing references of
the selected object into the feature combination.

Add all optional edges: Calling this function integrates all of the optional missing references of
the selected object into the feature combination.

Expand related objects (double-click): If there are connections to other objects that are not yet
displayed, calling this function triggers the display of these objects. The maximum number of
objects that are displayed there is specified on the icon bar under "Grouping size". Another group
of objects can be displayed by calling the function (or double-clicking) again.

If not all linked objects were able to be displayed, this is indicated by an extra object with the
label "Show next elements (X total)". Another group of objects can also be displayed by double-
clicking this extra object.

Collapse related objects: All linked objects currently being displayed can be hidden by calling
this function. All of a linked object's subordinate objects are also hidden in the process. Thus, if
an object is hidden and then immediately displayed again, then its subordinate objects continue
to be hidden

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

34

FirstSpirit™ CorporateContent Fi]_‘St SpiritTM

4.6 Updating a feature in a target project

A Content Transport feature can be installed in a target project in two ways. Either using the
"Install feature" entry in the empty feature area or using the il icon on the icon bar of the Content
Transport area.

After selecting a feature zip file from the file system, a dialog box opens with an overview of the
combination for the selected feature and its included objects.

=" Install feature - Paket_1 x|

Senver localhost (Wa.0_BETA 30.51426) Project [SHa] Mithras Energy 5.0 (10)
Package revision 19927 (Jun 11, 2012 1113 AM) Release status Mo

Objects | data records 26| 0 Errors 1(2)

Object Status Errors

- E Templates (root)
w |zl Page Templates
D standard Update 0 (0)
- E Section Templates

~ B8 marginal_column

& textbildteaser Update 0 (0)

E tagcloud Update 00

E contact Update 00

E relatedproducts Mew 02)

E pressreleasesteaser Update 00 -
Display in the First3pirit Client Cancel

Figure 4-13: Target project - Installing updates

Feature overview
Server: Specifies the name of the server where the feature was created.

Project: Specifies the name of the source project on the server.

Package revision: The maximum revision for all of the objects included in the feature and the
date and time of the maximum revision are displayed here.

Release status: Specifies whether the objects included in the feature are installed in a released
version.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

35

FirstSpirit™ CorporateContent Fi]_‘St SpiritTM

Objects | data records: Specifies the number of objects that are included in the feature.

Errors: Specifies the number of errors that are expected upon installing the feature in the target
project. The number in front of the parenthesis specifies missing references in the feature; the
errors are marked in red and the feature cannot be installed. The number in parentheses
specifies the optional missing references; the errors are marked in yellow and it is possible to
install the feature despite them.

List of included objects

Object: The objects included in the feature are listed in their hierarchical structure sorted by
stores. As in the SiteArchitect tree structure, the individual objects can be expanded or collapsed
here.

Status: Each object can assume the "New" or "Update” state. For "Update”, the object is already
present in the target project and may have changed since the last feature installation. The object
can be checked using the Display in FirstSpirit Client button.

Errors: The type and number of errors can be read for each object here. The number in front of
the parentheses specifies the required missing references and the number in parentheses
specifies the number of optional missing references for this object.

After each object with errors, a dialog with a detailed list of the errors can be called up via the =
icon.

& Errors - homepage (id=434298) El

Error: Invalid ID Reference (id=434300, projectinternalld=10, vid="hometextimageteaser, type=SectionTemplatelmpl)
Warning: Invalid ID Reference (id=434545, projectinternalld=, vid="icon_info", type=Medialmpl)

Warning: Invalid ID Reference (id=434552, projectinternalld=, uid=icon_InfoLink’, type=Medialmpl)

Warning: Invalid ID Reference (id=434956, projectinternalld=, uid="formedit_js’, type=Medialmpl)

OK

Figure 4-14: List of object-related errors

Errors occurring due to required missing references are marked in red in this dialog.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04 36

FirstSpirit™ CorporateContent Fi]_‘St Spirit

General warnings
General warning that do not refer to a specific object are displayed in the lower area of the dialog
box. These warnings include mismatches in the project settings, such as for project languages or
image resolutions.

The Display in FirstSpirit Client button is only active if an object that has the "Update" state is
selected and could be overwritten by installing the feature. Clicking this button displays the
selected object in the FirstSpirit Client edit area.

Clicking the OK button carries out the update. The button is only active if no required missing
references exist for installing the feature. The user is prompted to select a database layer if one
is not yet present in the target project; then the update is carried out.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

37

FirstSpirit™ CorporateContent

4.7 Limitations and Notes

Objects included via Content Transport do not have a feature relation or namespace
extension and also cannot be protected from being overwritten. However: A distinction is
also made between explicitly and implicitly added objects when installing a feature in a target
project.

o Explicitly added objects are always created in the target project. If an object
already exists in a target project, then the changes are reset again as soon as
another update is carried out.

o Implicitly added objects are always created in a target project if they were not
present in the project until now. If an object already exists in a target project, then
the changes to the target project remain intact when an update is carried out next.

Preservation of a node structure which is to be transported is dependent upon the node
which is explicitly added to a feature. All child nodes of that parent node are considered to be
explicitly added to the feature as well.

When such a parent node is updated in a target project and the parent node’s child element
structure in the target project differs from that included in the feature, child elements which
are present in the target project but not present in the feature will be handled differently
depending on the following criteria:

a) Child elements will be deleted if they are either objects which do not
possess an UID (e.g. folders in the Templates store, sections) or are
objects which can never exist directly in a folder (i.e., query elements and
table templates).

b) Other child elements will be moved into an automatically created folder
“"Lost & Found".

C) If a child element, which would normally be deleted according to the above
rules, is referenced by other elements (e.g. a section which is referenced
by a section reference), this element will be preserved — i.e. neither deleted
nor moved — in the target project although it is not explicitly contained in
the feature.

If such an object cannot be deleted because of inbound references, feature installation will
abort with an error message (“Unable to install feature file: Error installing feature. Unable to
delete element XYZ. The element is still referenced by the following elements: [...]"). In order
to install the feature, references from other elements to elements which should be deleted
due to feature installation must be removed manually, or the referencing elements must be
deleted manually.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

FirstSpirit

38

FirstSpirit™ CorporateContent Fi]_‘St Spirit

= If missing references have already been found in a target project, then the feature
combination can be applied regardless.

= If objects (such as templates) are in edit mode in the target project, the import process for
these objects cannot be carried out. Therefore, it should be ensured that no objects are in
edit mode!

= Different numbers of languages are possible between a source and target project using
Content Transport. If a language channel does not available in the source project, it is not
overwritten in the target project.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

39

FirstSpirit™ CorporateContent Fi]_‘St Spirit

= Settings made in a source project when assigning permissions cannot be applied to a target
project. Permissions have to be assigned in the target project manually. The permissions in
the target project only have to be assigned once; all settings remain intact during future
update processes.

= Workflow states are not transported.

= Metadata is transported but, depending on the configuration in the target project, can be
incompatible with the selected metadata template.

= Settings made in the ServerManager cannot be applied to the target project by using
Content Transport.

= In the case of the adoption behavior of start node information (start folders/start pages), a
distinction is made between explicitly and implicitly added objects.

o If in the case of the corresponding information carrier (parent node) it is an
explicitly added object, the start node information will be set as it is in the source
project.

o |If in the case of the corresponding information carrier (parent node) it is an
implicitly added object, the start node information will not be transported and the
corresponding start nodes in the target project will remain as they are.

o An exception to this behavior would be in the case of objects that are directly
underneath the root node. During the initial installation of a feature in the target
project, the start node information is set automatically if:

- no start node exists yet, or
- it is a page reference (in the case of the transported node).

4.8 Configuring storage locations

Different locations can be configured for saving created ZIP files. In addition to the local file
system and network drives, external storage locations can be used, including Internet-based
locations such as Dropbox. To be able to use external storage media, the relevant modules need
to be created. This type of module will then handle Internet service authentication, for instance.

Storage locations are configured in the ServerManager project properties under "Project
components"/"FirstSpirit Content Transport Storage App". Each project must have its own
storage locations configured. The "FirstSpirit Content Transport Storage App" project component
is installed automatically during a new install or a server update to version 5.1 if the
license.PACKAGEPOOL license key is present in the fs-1icense.conf license file with the
value 1. This system project component cannot be removed.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

40

FirstSpirit™ CorporateContent Fi]_‘St Spirit

After clicking "Configure" or double-clicking on the "FirstSpirit Content Transport Storage App"
project component, the following window appears:

=" Configure

Content transport storages
Project-Local-Storage (project local feature storage, type=FrojectLocal)

Add

0] 4 Cancel

Figure 4-15: Configuring storage locations for Content Transport content

A default storage location called "Project-Local-Storage" is offered on the local FirstSpirit server.
Other directories can be configured as an alternative. As with external storage locations, the
following "Add" and "Configure" functions are used for these:

Add: A dialog appears in which the user can select from the available storage locations.
The "File system feature storage" entry can be used to specify a directory that can
be accessed from the FirstSpirit server. Access to external storage locations must
be modified in the FirstSpirit module. A reference name and a display name can
be specified for the storage location in the following dialog:

&= Name

Marme |

Display name

Cancel

Figure 4-16: Specifying a name for the storage location

Clicking "OK" opens a dialog where the storage can be configured.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04 41

FirstSpirit™ CorporateContent Fi]_‘St Spirit

Configure: A dialog appears in which access to the storage location can be configured. If it is
"File system feature storage", the path to the desired directory can be entered in
the following dialog:

& Configuration: 'File_system'

FPath into local file system

Path into local file system

0] 4

Figure 4-17: Specifying a path

Access to external storage locations must be provided by FirstSpirit modules. The
external storage configuration dialog may therefore vary from implementation to
implementation. Advanced configuration of the "Project-Local-Storage" default
storage location is not possible.

Remove: Removes access by the Content Transport function to the selected storage
location.

The storage locations configured using this project component are then offered as selection
options when generating and installing feature ZIP files in SiteArchitect, for example (see Figure
4-2).

4.9 Automatic creation, updating and installation of features

FirstSpirit schedule management can be used to set an automatic update of Content Transport
content at predefined times. To do this, the feature ZIP files must be stored in an external
storage location (refer to section 4.8, page 40 for more information).

For this purpose, a schedule with the "Content Transport (create, update, install)" action must be
created in the FirstSpirit ServerManager project properties:

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

42

FirstSpirit™ CorporateContent

& Schedule entry planning: New activity

Create which activity?
Archive old project states
¢ Content Transport (create, update, install)
Enterprise backup: Project data backup
Execute Script
Execute deployment
Execute generation
Execute project hackup
Rebuild search index
Fepair references

Send e-mail

0] 4 Cancel

Fig

ure 4-18: New activity

When using this activity, two options are available to choose from in the following dialog:

Create new feature bundle (refer to section 4.9.1, page 44)
This option allows for regular generation of a feature ZIP file with the current state of the
feature's content, e.g. the current development state of templates, at predefined times. The
feature ZIP file with the current state is then stored at the selected storage location ("push™).
From there the content is then made available for import to other projects (on the same or
other FirstSpirit servers).

Install/Update feature bundle (refer to section 4.9.2, page 46)
This option allows the user to regularly import features to the current project at predefined
times ("pull”). If only the local file system is available as a storage location, the features can
be exchanged between projects on a FirstSpirit server using the relevant schedule; if external
storage locations are available (refer also to section 4.8, page 40 for more information), the
exchange can take place across server boundaries.

In schedules where activities are already present, this option is no longer displayed.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

FirstSpirit

43

FirstSpirit™ CorporateContent Fi]_‘St Spirit

49.1 Exporting existing feature bundles by schedule ("Create new feature bundle")

%" Content Transport {create, update, install)

¢ Create new feature bundle

InstallilUpdate feature bundle

Create new feature bundle

Task name FEATURE_CREATE
Feature Feature name Project name Revision released gid
Templates Mithras Energy 20771 far19adb-c0Ge-4c21-hE
Froduct images Mithras Energy 20769 d887¥dras-edca-43c3-8
{]
Storage Choose feature storage -
Halt an missing reguired references aptional references

Cancel

Figure 4-19: Content Transport activity — Create new feature bundle

Name: A name for the activity must be specified here.
This will be used on the "Actions" tab of the Content Transport
schedule and distinguishes it from the schedule's other actions.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04 44

FirstSpirit™ CorporateContent Fi]_‘St Spirit

Feature: The features available on the current FirstSpirit server are listed
here. To ensure that a desired feature appears here, it first needs
to be saved in the FirstSpirit SiteArchitect on the server (refer to the
"Save feature" function in chapter 4 for more information).

Storage: Here is where the user selects the desired location where the
feature is to be stored.
A default storage location called "Project-Local-Storage" is offered
on the local FirstSpirit server.
Additional storage locations can be configured in the project
properties (see section 4.8, page 40).

At the time a feature is created, a check is made to determine if there are any required or
optional references missing (see section 4.3.3, page 28 or section 4.3.4, page 29 for more
information). After creating a feature that is selected in this activity, the content is usually edited
further. In particular deleting or moving nodes can result in new inconsistencies. When a
current feature version is created automatically, the references (dependencies) are therefore
rechecked. The following two options can be used to handle possible inconsistencies:

Halt on missing required references: If this option is active, generation of the selected feature
is canceled if the feature is missing required references.

Halt on missing optional references: If this option is active, generation of the selected feature
is canceled if the feature is missing optional references.

The specified configuration can be tested by clicking on the "Test configuration" button. Clicking
"OK" saves the applied settings.

Execution time(s) and intervals for generating the feature are configured in the schedule on the
"Properties"” tab (for more information on schedules, refer to "Schedule entry planning" Chapter
in the FirstSpirit documentation for administrators).

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

45

FirstSpirit™ CorporateContent

4.9.2

Importing feature bundles by schedule ("Install/Update feature bundle")

FirstSpirit

& Content Transport {create, update, install)

Create new feature bundle

InstallilUpdate feature bundle

Installilpdate feature bundle

Task name

Storage Choose feature storage -
Feature Feature name |Project name Revision |released Server LIUID

Analyze anly

Cancel

Figure 4-20: Content Transport activity — Install/Update feature bundle

Name:

Storage:

Feature:

A name for the activity must be specified here.
This will be used on the "Actions" tab of the Content Transport
schedule and distinguishes it from the schedule's other actions.

The location where the feature was stored and will be imported is
specified here.

A default storage location is offered on the local FirstSpirit server:
"Project-Local-Storage".

Additional storage locations can be configured in the project
properties (see Chapter 4.8, page 40).

If a storage location from the "Storage" drop-down list is selected,
the features available at the selected storage location will be listed
here. To ensure that a desired feature appears here, it must be
stored at the selected storage location first (via the "Create new

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

46

FirstSpirit™ CorporateContent Fi]_‘St Spirit

feature bundle" schedule (see section 4.9.1, 44) or via the
"Save feature" SiteArchitect function).

Analyze only: When manually installing a feature in the target project, a check is
made to determine if there are any required or optional references
missing (refer to section 4.6, page 35 for more information). If there
are required references that are missing, the feature will not be
installed. If the installation of a feature is automatic due to the
schedule described here, this option can be used to handle it. If this
checkbox is active, it will only check for missing references. A script
that follows can then evaluate the results of the analysis, for
instance, and then halt or continue an installation depending on the
results.

& Schedule entry planning: Edit schedule entry

Properies | Actiohs

Active Action Farallel |Execute evenin case of errar
v Content Transport Analysis
W Script: Evaluation v

v Content Transpart Installation

Add Copy action Mew from template

(9] Cancel ¢

Figure 4-21: Example of a Content Transport schedule

If there are missing required references, the feature will not be
installed.

The specified configuration can be tested by clicking on the "Test configuration" button. Clicking
"OK" saves the applied settings.

Execution time(s) and intervals for generating the feature are configured in the schedule on the
"Properties” tab (for more information on schedules, refer to "Schedule entry planning” Chapter
in the FirstSpirit documentation for administrators).

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

47

FirstSpirit™ CorporateContent Fi]_‘St Spirit

5 CorporateContent (package store)

The "CorporateContent" store area is used for creating new packages and for editing existing

=

packages. It can be opened using the icon from the vertical icon bar in SiteArchitect.

In parallel to the package store known from previous versions, some functions can also be called
up using the "CorporateContent” menu item on the SiteArchitect menu bar.

Creating and combining a package in a source project and creating and editing a subscription in
a target project are described in the following sections:

= Creating or loading a package Section 5.1, page 49
= Package combination Section 5.3, page 66
= Flyout menu Section 5.4, page 70
= Graphical representation of dependencies Section 5.5, page 71
= Functions using the "CorporateContent” menu item Section 5.6, page 75
= CorporateContent context menu in stores Section 5.7, page 106
= Transferring existing projects into package

master projects Section 5.8, page 113
= CorporateContent for developers Section 5.9, page 124
= Shared database access Section 5.10, page 135

B- Corporate Content

no package loaded o

No package loaded yet

Create or edit a package

Figure 5-1: CorporateContent store area

There are entries for creating and editing ContentTransport features on the ContentTransport
area's icon bar.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

48

FirstSpirit™ CorporateContent Fi]_‘St Spirit

The name of the opened package is displayed after this icon. "No package loaded" is
displayed if no package is loaded.

#. Create or load package; clicking this icon opens a dialog for creating a new package or
loading a package that already exists. (For creating a package see section 5.1.1, page 49)

= Create version; clicking this icon opens a dialog with an overview of all versions that have
been created from the package. (For creating a package version see section 5.1.2, page 60)

* Close package; clicking this icon closes the opened package — after affirming a confirmation
prompt.

€< Ppublish; clicking this icon opens a dialog with all of the package versions available for
publication

5.1 Creating or loading a package

Clicking the &= icon or the "Create or edit package" in the empty package area displays a prompt
for whether a new package is to be created or an existing package is to be loaded.

5.1.1 Creating a new package

The process of creating a new package follows multiple steps explained below.

5.1.1.1 Selecting a package type

x

Which package type would you like to create?

?

Content package Template package

Figure 5-2: Dialog for selecting a package type

The package type for the new package can be assigned here. The package type is also
displayed in the "Edit package properties” dialog box but cannot be modified any further there.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

49

FirstSpirit™ CorporateContent Fi]_‘St Spirit

Content package: Clicking this button selects a content package as the package type. A content
package is only allowed to contain objects from the page store, media store and site store and
these are also the only stores displayed when selecting package contents.

Template package: Clicking this button selects a template package as the package type. A
template package is allowed to contain objects from the template store, content store and media
store and these are also the only stores displayed for selecting package contents. The media
integrated here should be limited to media referenced directly in the templates. Other media
objects should be integrated into a content package.

Depending on the selected type, the "Create package" dialog then opens. All of the initial settings
for the package are set by the administrator of the master project there.

n If objects from a database schema are to be integrated into the package, the
database configuration has to be adjusted in the target project's project properties (see
section 5.10, page 135). Otherwise a corresponding error message will be output when
importing the package into the target project later on (see section 5.6.6, page 93).

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

50

FirstSpirit™ CorporateContent

5.1.1.2 Creating a package — Settings tab

=" Create package

Settings Advancer

Package available:
Package name:
Comment:

Events:

Permissions

MyF‘ackage|

Configure

Responsible users:

Qualified users:
Publish users:
Type

Package type:
Depends on:

Changeable: [

Ok

Cancel

E B

Figure 5-3: Create/edit package - Settings

FirstSpirit™

Package available: The new package is made available to all target projects if this checkbox is
checked. If the checkbox is unchecked, the package is not made available and cannot be

selected for subscribing in target projects.

Package name: Unigue name for the package; specified initially during creation and cannot be
changed afterwards.

Comment: Optional comment for the package.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

51

FirstSpirit™ CorporateContent Fi]_‘St Spirit

Events: Clicking the Configure button opens the "Configure events" dialog box (see section
5.1.1.2.1, page 53).

Permissions

Editing permissions for the package are configured in this area. A new package is initially created
by the master project's administrator, who also assigns permissions for the package. Package
properties can also be edited by all authorized persons once the permissions have been defined
here.

Responsible: These are the persons responsible for the package in the master project.
Responsible persons are informed via e-mail if a new package version is available or a new

package version has been imported. Using the icon, another user can be added to the list of

responsible persons and they can be removed from the list using the m icon.

Authorized: These persons may edit the package properties (permissions, dependencies, etc.)
and make content changes in the package such as adding events or deleting start nodes. Using

the icon, another user can be added to the list of responsible persons and they can be

removed from the list using the icon.

Publisher: These persons may publish packages and thus make them available for import into

target projects. Using the icon, another user can be added to the list of responsible persons

and they can be removed from the list using the m icon.

Type
In this area, the selected package type can be read or a package dependency can be defined.

Package type: Specifies the package type that was selected in the "Select type" dialog box
when creating the package (content or template package).

Dependent on: Only active for content packages. Manual dependencies on template packages
are set here. If the content package is subscribed to, then the customer also has to subscribe to
the specified, associated template package here. Template packages do not have any
dependencies. Thus the field is disabled for the template package type. A content package

dependency on an existing template package can be defined using the icon. The desired
template package can either be selected from a list of all packages subscribed to in the same

project (source project) or from another project. Clicking the icon removes the selected

dependency again.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

52

FirstSpirit™ CorporateContent Fi]_‘St Spirit

Modifiable: Write permission to the imported objects is granted for target projects if this
checkbox is checked. If the checkbox is unchecked, the imported objects can be seen and
used in target projects but they cannot be modified.

n Since only one template package can be selected here, it is absolutely essential
that all templates (page, section, link templates, etc.) used as a basis for pages and
sections from the content package are included in this template package. Also refer to
section 5.8.1.2, page 115 in this regard.

n A content package can also have dependencies on other content packages. These
content-related dependencies are not shown here! They are, however, visible in the
version list for a package and in the detailed information for a package.

5.1.1.2.1 Configuring events for a package

x

Configure events

Event Waorkflow

QK -
Error

Conflict

Release -

Edit O Cancel

Figure 5-4: Dialog - Configuring events

All of the events defined for the package are listed in the table and the scripts or workflows
assigned to the event are shown. There are two types of events: Default events and what are
known as package-specific events. Default events are provided by the system and handle the
most common procedures when importing packages. Default events are:

e OK: The assigned workflow is carried out after the package version is imported
successfully.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

53

FirstSpirit™ CorporateContent Fi]_‘St Spirit

e FError: The assigned workflow is carried out if the package version is imported
incorrectly.

e Conflict: The assigned workflow is started if there is a conflict situation after the package
version is imported.

e Release: The assigned workflow is carried out after the package version is imported
successfully, if no automatic release is configured in the subscription (see section
5.6.4.2, page 87). Thus, for example, all of the objects contained in the package can be
released in the target project automatically.

e Update: The assigned workflow is carried out after the package version is imported
successfully. The selected workflow is initiated for all of the nodes that have not been
newly imported into the project but have been changed instead.

Clicking the Edit button opens a list with all known workflows from the source project. The
desired workflow is selected from this list.

Clicking the OK button saves the changes and closes the dialog.
Clicking the Cancel button closes the dialog; any changes made are not applied.

All events configured in the package store are taken over in target projects with a subscription.
However, the option of once again changing the event configuration for a package is present in
the subscription store. The workflows that have been defined for the package in the source
project can be changed again in the target projects (see section 5.6.4.4, page 90). These
changes are not visible in the source project and are not applied to other target projects either.

n The workflows from the source project can be assigned to a package. The
workflows are not known in the target project during the first import. In this case, the
required workflows have to be imported into the target project using a template package
first. Only afterwards can events in additional packages be configured and implemented.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

54

FirstSpirit™ CorporateContent Fi]_‘St SpiritTM

5.1.1.3 Creating a package - Advanced tab

& Create package x|

Seftings | Advanced
Mame space enhancement
[¥ Activate namespace enhancement for all package contents

Change settings for specific types of element

Store + |Type | Type identifier Activate
Media folder [

Add

Owverwrite objects with same UID during import to slave
[¥ Activate globally

Owverwrite package contents with same LID.

Store + |Type |Type identifier Activate
Media folder [

Add

O Cancel

Figure 5-5: Creating/editing a package - Advanced

Namespace extension:
In this area, namespace extensions for package contents can be activated or deactivated

globally or for individual element types.

Enable namespace extension for all package contents: If this checkbox is checked,
namespace extension is enabled for all package contents. This means that if an object is added
to a package, the reference name is provided with a "@PackageName" extension. Afterwards,
potential references to the added object have to be adapted in the project (see section 5.8.1.7,
page 118 ff.).

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

55

FirstSpirit™ CorporateContent Fi]_‘St Spirit

If the checkbox is unchecked, namespace extension is disabled for all package contents. If an
object is added to the package, the reference name remains unchanged (i.e. the reference name
does not receive a "@PackageName" extension). Whether a master project's package contents
overwrite the objects present in the target project or they are to be created under a different
name in the target project can be defined using conflict handling for importing package contents
into a target project (see section 5.8.1.7, page 118) in this case.

Change settings for specific element types: Enabling or disabling namespace extension is
usually only desired for specific element types. Therefore, the global setting for package contents
can be limited to specific element types.

Store: Representation of the store areas as an icon (the same as the tree display in FirstSpirit
SiteArchitect). The column can be sorted.

Type: Representation of the element type as an icon (the same as the tree display in FirstSpirit
SiteArchitect). The column can be sorted.

Type identifier: Name of the element type. The column can be sorted.

Enable: Namespace extension can be enabled or disabled for the respective element type by
checking or unchecking this checkbox. If the checkbox is checked, namespace extension is
enabled for the selected element type. If an object of the selected type (such as a format
template) is added to a package, the reference name is provided with a "@PackageName"
extension. Afterwards, potential references to the added object have to be adapted in the project
(see section 5.8.1.7, page 118 ff.).

If the checkbox is unchecked, the namespace extension is disabled for the selected element
type. If an object of the selected type (such as a format template) is added to a package, the
reference name remains unchanged (i.e. the reference name does not receive a
"@PackageName" extension). Whether a master project's package contents are to overwrite
objects present in the target project or not can be defined using conflict handling for importing
package contents into a target project in this case.

Clicking the Add button opens a dialog for selecting the desired element types that are to be
added to the list (see section 5.1.1.3.2, page 59).

Clicking the Delete button can remove a selected element type back out of the list. The global
settings for namespace extension again apply for this element type after it is removed.

Overwriting identically named objects during import into a target project
In this area, overwriting can be enabled in the target project for identically named objects or just
for identically named objects of a specific type (e.g. format templates).

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

56

FirstSpirit™ CorporateContent Fi]_‘St Spirit

Enable globally: If this checkbox is unchecked, overwriting contents in a target object with
identically named package contents is prevented (default setting). Conventional conflict handling
that is also used when creating identically named objects in a project takes effect in this case: If a
reference name (Uid) that has already been specified in a namespace is used, FirstSpirit
automatically replaces the name with a unique name, usually by attaching a number. Thus, the
package contents are created under another name in the target project in this case.

If the checkbox is checked, identically hamed contents in the target project are overwritten by
package contents from the master project during importing. Thus, if the package contains a
format template with the unique name "b", then if an identically named format template is
imported into the target project it is overwritten by the identically named format template from the
master project.

Overwriting package contents with the same Uid: In most cases, overwriting identically
named contents in a target project is only desired for specific element types. Therefore, the
global setting for package contents can be modified for specific element types.

Store: Representation of the store areas as an icon (the same as the tree display in FirstSpirit
SiteArchitect). The column can be sorted.

Type: Representation of the element type as an icon (the same as the tree display in FirstSpirit
SiteArchitect). The column can be sorted.

Type identifier: Name of the element type. The column can be sorted.

Enable: The default settings for import handling can be modified by checking or unchecking this
checkbox. If the checkbox is checked (default setting), overwriting identically named objects in a
target project is enabled for the selected element type. In this case, existing contents in a target
project can be overwritten.

If the checkbox is unchecked, overwriting identically named objects in a target project is
prevented for the selected element type. If an identically named object of the selected type (such
as a format template) already exists in the target project, the object remains intact in the target
project and the new package content is imported into the target project under a different name.
Adjustments in the target project may be necessary in this case.

Clicking the Add button opens a dialog for selecting the desired element types that are to be
added to the list (see section 5.1.1.3.2, page 59).

Clicking the OK button opens the new package for further editing in the CorporateContent store.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

57

FirstSpirit™ CorporateContent Fi]_‘St Spirit

5.1.1.3.1 Namespace extension

Overlap between package contents is not permitted when creating packages; each project node
is only allowed to belong to just one package. In order for the affiliation of an object to a package
to be unique and as transparent as possible for the package developer, what is known as
"namespace extension" has been introduced for package objects. When using it, an "@" and the
package name are appended to the reference name of a package's objects
("ObjectName@PackageName").

n The reference names with namespace extension can be displayed in the tree
structure using the option "Show reference names in tree" in the "View" / "Preferred
display language" menu.

After being added to the package, all of the objects receive this namespace extension.
Subsequently, all of the objects in the project that use the "old" reference hame have to be
changed; this means that the old reference name has to be replaced by a new reference name
(with "@PackageName") everywhere. Sometimes these changes have to be made manually
(see section 5.8.1.6, page 118 to section 5.8.1.8, page 120).

Namespace extension is problematic for package contents with identical reference names in the
master and target project. This primarily affects standard format templates ("Bold", "Italics", etc.)
that are present in every FirstSpirit project and combined into a folder under the "Format
templates" node in the template store. They are used for formatting text and are used in the
DOM editor and DOM table input components, for instance (also see FirstSpirit Manual for
Developers (Basics)). Assignment to the corresponding buttons (e.g. "Bold") is lost in these input
components by using namespace extension. Namespace extension can lead to errors in the
master and target project in this case (see section 5.8.1.7).

The template developer can disable namespace extension for standard format templates as well
as for other objects that have identical reference names in the master and target project.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

58

FirstSpirit™ CorporateContent

5.1.1.3.2 Adding new element types

Clicking the Add button opens the "Element selection" dialog:

& Element selection

Element selection

Store ¢ |Type Type identifier
Content source
Content store folder
Medium

Media falder

Store folder

Fage

Site store folder
Fage reference
Fage template
Section template
Templates falder
Link template

Link configuration
Format template
Farmat template falder
Tahle farmat template
Style termplate
Secripts folder

Script

Database schema
Query

Table template

&m

0 (= O (D

=

.ﬁ .mﬂﬁ .

Wiorkflow
Winrkflow folder

W T T T e) 2

8154 Cancel

Database schemata folder

Selection

Figure 5-6: Element selection for namespace extension

FirstSpirit

For a description of the Store, Type and Type identifier columns see section 5.1.1.3.1, page 58.

Selection: Checking this checkbox applies the selected elements to the list of selected element
types. Only element types that are intended to be content for the package later on have to be
selected in the process. For instance, no element types from the template store or content store

(pink or brown icons) have to be selected in content packages.

The default setting for transfer to the table is always the opposite of the global settings that have
been defined via the "Enable namespace extension for all package contents" checkbox.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

™

59

FirstSpirit™ CorporateContent Fi]_‘St SpiritTM

This means, if namespace extension for package contents is disabled globally, then namespace
extension is enabled directly when transferring the selected element types.

If, on the other hand, namespace extension for package contents is enabled globally, then
namespace extension is disabled directly when transferring the selected element types.

5.1.2 Creating a package version

Clicking the = icon opens a dialog with an overview of all of the versions that have been created
from the package.

.- Edit package "Mithras_Medien’ x|

Versions

Version history: "Mithras_Medien’

Mo. © |version |Update |Date Available Comment Dependent packages |Log file
210 8M5M2 11... Production,... Initiale Ver... E;
‘ i ’
Edit availability Create version Delete

Figure 5-7: Editing package versions

No.: The unique version number that is assigned automatically when creating a new package
version.

Version: The version designation specified by the package's creator.

Update: This check shows that the most recently released state of the integrated objects was
used for the version.

Date: Date and time the package version was created.
Available: Shows the publication groups that the package version is available to.

Comment: Optional comment on the package version.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04 60

FirstSpirit™ CorporateContent Fi]_‘St Spirit

Dependent packages: Shows the dependent packages (templates and content packages, also
see section 2.2.2, page 9) for the respective package version.

Log file: The appropriate log file can be displayed in a separate dialog here.

Using the Edit availability button or double-clicking the desired package version opens the "Edit
package version" dialog box (see section 5.1.2.1, page 61).

Using the Create version button opens the "Create package version" dialog box (see section
5.1.2.2, page62).

The selected version is removed from the package using the Delete button.

5.1.2.1 Editing package availability

x|
Number: 2
Package version: 1.0
Comment: Initiale Version
Updateversion:

Available for publication groups

v Production + Development

v Test

OK Cancel

Figure 5-8: Edit package version dialog

Number: Unique version number. The field is inactive and cannot be edited.

Package version: Manually specified version designation when creating a new package version.
The field is inactive and cannot be edited.

Comment: Optional comment. An existing comment can be modified or a new comment can be
inserted at this point.

Update version: If this is checked in this field, then the most recently released state of the
integrated objects is used for this version.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

61

FirstSpirit™ CorporateContent Fi]_‘St Spirit

Available to publication groups: All of the available publication groups are shown as
checkboxes here. The availability of the package version for the edited publication group
changes by checking or unchecking a checkbox. If a checkbox is checked, the package version
is available for import. If the checkbox is unchecked, the package version is not available to this
publication group.

Clicking the OK button applies the changes to the existing package version.

5.1.2.2 Create a version

x|
Number: Mew
Package version: 1.1
Comment:
Updateversion: v
Available for publication groups
¥ Production Development

« Test

OK Cancel

Figure 5-9: Create package version dialog

Number: In place of a unique version number, the entry "New" is shown here. The version
number is specified by the system automatically when creating a new package version (field is
inactive). Since, at this point, there still is not a new package version, a number cannot be
displayed at this point.

Package version: Optionally, in addition to a version number assigned by the system, a
"descriptive" (more meaningful) version number can be specified here.

Comment: Optional comment for the new package version.

Update version: The most recently released state of all integrated objects is used when creating
the new version if this checkbox is checked. The current state of all integrated objects is used
when creating a new version if this checkbox is unchecked.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

62

FirstSpirit™ CorporateContent Fi]_‘St Spirit

n If the package contains objects that

¢ have never been released and the checkbox is selected or

¢ the objects have not currently been released and the checkbox is not selected,
then an error message will appear to cancel the creation of a new version.

Available for publication groups: All available publication groups are shown as checkboxes
here (see section 5.6.7, page 95). The availability of the package version for the respective
publication group changes by checking or unchecking a checkbox. If the checkbox is checked,
the package version is available for import to that publication group. If the checkbox is
unchecked, the package version is not available to that publication group. A package version
can be available to multiple publication groups; subscriptions, on the other hand, are always
concluded for precisely one publication group (see section 5.6.4.2, page 87). If a package
version is available to the "Test" and "Production” publication groups, a subscription for the
"Test" publication group and a subscription for the "Production" publication group can access the
package version.

5.1.3 Publishing a package

Clicking the % jcon opens a dialog where the respective most up-to-date package versions are
listed in a tabular overview for known publication groups.

. Publish package 'Mithras_Medien® il
Gro... + Mo, Currentversion |last published |subscribing projects
Test 21.0 LPV

Publish all

Figure 5-10: Publishing a package — Current version

Group: Publication group for which the package version has been marked as "available".
No: Unique package version number assigned automatically by the system.

Current version: Manually specified version designation.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

FirstSpirit™ CorporateContent Fi]_‘St Spirit

Last published: Shows the last published version.

Subscribed projects: Shows all of the projects that have concluded a valid, active subscription
for this package version and this publication group.

A package version goes through final publication using the buttons in the lower portion of the
dialog box. Packages can only be published if:

e The person doing editing has publication permissions for the package.

¢ An active subscription exists for the package version and the publication group.

If the desired package version is marked in the table, it can be published by clicking the Publish
button. Importing contents from the master project starts at this moment in all target projects that
have concluded a valid, active subscription, with automatic updating, for this package version
and the specified publication group.

The button is inactive and publication is not possible if one of the conditions listed above is not
met.

Alternatively, all of the package versions shown in the window can be published together as well.
The Publish all button is always active; however, only package versions that meet all of the
conditions listed above are published.

n Package dependencies should absolutely be determined before publication (see
section 2.2.2, page 9). Dependencies on template packages are defined in the package
properties. These dependencies are checked automatically. If the dependent template
packages are not published or are published in incorrect order, publication is canceled
and an error message is displayed.

Optional dependencies on other content packages are shown in the "Detail info" dialog box (see
Figure 5-22: Detailed information on a package), which can be called up via the package
overview. These dependencies are not checked automatically during publication. If the
dependent content packages are not updated or are not updated in the correct order
(1. importing the dependent content package, 2. importing the package containing the references
to the dependent package), they can cause errors in the target project: For instance, if the
referenced page and page reference are in different packages when publishing page references.
If, in this example, the package with the page reference were published and then the package
with the referenced page, this would cause an error in the target project. In order to resolve the
error, the page reference would have to be locked for editing in the master project and then

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

64

FirstSpirit™ CorporateContent Fi]_‘St Spirit

directly unlocked again. Then a new package version (from the package with the page reference)
is generated and republished, in the correct order this time.

5.2 Adding objects to a package

5.21 Using the tree structure of the stores

Adding new objects for a CorporateContent package can be started directly using the tree
structure in the corresponding store. There is a "CorporateContent — Start adding to package"
entry in the context menu for this purpose.

Clicking this menu entry displays the selected object as a dependency chart in the AppCenter
area of SiteArchitect and it can finally be added to a package using another context menu there
(see section 5.7.1, page 106).

If an object in a store is copied to an area that is already part of a CorporateContent package,
then a prompt appears asking whether this object is to be added to the corresponding package
as well. Confirming this prompt adds the object to the package.

5.2.2 In the package combination

Additional objects can also be added to the package using the areas for necessary or optional
dependencies. The checkbox in front of the respective object just has to be selected for the
desired objects, then the objects are integrated into the package by clicking the Add selected
button (see section 5.3.3 and 5.3.4 starting on page 68).

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

65

FirstSpirit™ CorporateContent Fi]_‘St Spirit

5.3 Package combination

5.3.1 Overview

g- Corporate Content

Mithras_Medien B- B x

Package type: Caontent package

Depends on: Seitenvorlagen_standard
Configuration

Included content objects 26

Included media 29

Included structures 16

Missing references 1

Figure 5-11: Package — Overview

Package type: The package type configured when the package was created is specified here.

Dependent on: Manual dependencies on template packages are specified here. If the content
package is subscribed to, then the associated template package specified here has to be
subscribed to as well. Template packages do not have any dependencies. Thus the field is
disabled for the template package type.

The package properties set when the package was created can be edited using the Settings
button. A dialog for editing package properties opens (see section 5.1.1.2 and 5.1.1.3 starting on
page 51).

Integrated content objects: How many objects are integrated into the package from the page
store is specified here.

Integrated media: How many objects are integrated into the package from the media store is
specified here.

Integrated structures: How many objects are integrated into the package from the site store is
specified here.

Unfulfilled dependencies: How high the number of unfulfilled dependencies is in the entire
package combination is specified here. The number of absolutely necessary objects is shown
here in red; the number of optional objects is in yellow.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

66

FirstSpirit™ CorporateContent Fi]_‘St Spirit

5.3.2 "Integrated objects" area

All objects integrated for the package are listed in this area. There is a distinction between
explicitly and implicitly added objects. If an object is added explicitly, then all of the objects at a
lower or higher level are implicitly added to the feature as well.

o Explicitly added objects are shown in normal text; this indicates that they can be removed
from the list again by using the * icon.

o Implicitly added objects are shown in text with less contrast and cannot be removed from the
list.
Included objects

=] -

w Wl FirstSpirit

F E) Implementation with FirstSpirit
~
+
b =] Products overview

mml ¥ ¥ v

Figure 5-12: Package — Integrated objects

Clicking on an object in the list opens a tab with that object's forms in the SiteArchitect edit area
for viewing.

== Display dependency charts; clicking this icon opens a tab in the AppCenter area with a
graphical representation of the hierarchical structure and the dependencies of the selected object
(see section 5.5, page 71).

Delete; this icon is only displayed if the associated object was explicitly integrated by the user.
Clicking this icon removes the selected, explicitty added object from the list along with all
implicitly integrated subobjects, after the user affirms a confirmation prompt. Higher level objects
that are not used by other explicitly integrated objects are also removed.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

67

FirstSpirit™ CorporateContent Fi]_‘St Spirit

Unfulfilled optional dependencies; the yellow exclamation mark indicates that the respective
object or a subordinate object has unfulfilled optional dependencies. The objects are listed in
detail in the "Optional unfulfilled dependencies" area.

! Unfulfilled required dependencies; the red exclamation mark indicates that the respective object
or a subordinate object has unfulfilled hard dependencies. The objects are listed in detail in the
"Required unfulfilled dependencies" area.

Object details; clicking this icon opens a flyout menu with object-specific information (see
section 5.4, page 70). Clicking the icon again closes the flyout menu.

5.3.3 "Unfulfilled dependencies (own package)" area

All of the objects that have a dependency and belong to the same package type are shown in
this area. If all of the dependencies are fulfilled then this area remains empty.

Missing references (own package)

= Welcome to Mithras Energy _
| il o W“'i

-

Figure 5-13: Package — Unfulfilled dependencies (own package)

Dependent objects are shown in list form, each with a checkbox for selecting each individual
object. Clicking on an object in the list opens a tab with that object's forms in the SiteArchitect
edit area for viewing.

Unfulfilled dependencies (own package): If this checkbox on the top end of the area is
selected, then the checkbox for selecting an object is selected for all of the objects in the list.

Clicking on the Add selected button integrates all of the objects selected in this area into the
package combination.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

68

FirstSpirit™ CorporateContent Fi]_‘St Spirit

n Objects can be added only to a package with a suitable package type,

5.3.4 "Unfulfilled dependencies (foreign packages)" area

All of the objects that have a dependency but belong to a different package type are shown in
this area. If all of the dependencies are fulfilled then this area remains empty.

Missing references (dependant package)

D Product (Flash animation) &
Page Templates/Technical template

fg4 List

....... Format Templates/Common format template

o4 List entry

"""" Format Templates/Common format template

Figure 5-14: Package — Optional unfulfilled dependencies

Dependent objects are shown in list form, each with a checkbox for selecting each individual
object. Clicking on an object in the list opens a tab with that object's forms in the SiteArchitect
edit area for viewing.

Unfulfilled dependencies (foreign packages): If this checkbox on the top end of the area is
selected, then the checkbox for selecting an object is selected for all of the objects in the list.

Clicking on the Add selected button integrates all of the objects in the package combination
selected in this area for which a dependency has been defined in the package settings (see
section 5.1.1.2, page 51).

n Objects can be added only to a package with a suitable package type,

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

69

FirstSpirit™ CorporateContent

5.4 Flyout menu

FirstSpirit™

The flyout menu contains object-specific information that is shown in the same way as the

information for the package combination.
[Marketing

[Include child objects 63
Missing referances 111
Show relation graph

[Missing references (own package)

= Welcome to Mithras Energy ".
Solar energy is the energy of the futu

[Missing references (dependant package)

Line break
Format Templates/Common format templates

Figure 5-15: Flyout menu

The flyout menu always contains at least a tabular listing of object-specific data the same way as

the feature overview.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

70

FirstSpirit™ CorporateContent

FirstSpirit

Icon and language-dependent display name for the displayed object

"Include child objects" checkbox — If this checkbox is selected, then the unfulfilled

dependencies for the displayed object are displayed along with all of the object's subobjects.
If the checkbox is not selected, then only the unfulfilled dependencies of the displayed object

are displayed.

Number of subobjects

Number of unfulfilled dependencies (own package and foreign package)

A tab with a graphical representation of an object's dependencies can be displayed using the

Show dependencies button in the AppCenter area (see section 5.5, page 71).

The Required and Optional unfulfiled dependencies areas are the same as the areas in the
package combination with the same name (see section 5.3.3 and 5.3.4 starting from page 68).

5.5 Graphical representation of dependencies

The graphical representation is used to provide a flexible view of the hierarchical structure and
dependencies of a package's embedded objects.

iE vorschau: Mithras- B< Corporate Content x

L) mithras Homepage

Gruppierungsgrofie: 10

mittlerer Bereich
4
AW s Homepage

:] = rechter Bereich

. = e I e oc Homepage

) e Willkommen bei Mitf g, e d
Sonnenenergie it die Zukun

Verwandte Produkte

3 : ®
S Datenbank-Schematatntern =

) Standard
=% Formatvorlagen/Allgemeing Formatyy

Homepage

——
8¢ Seitenvorlagen

Konzept fur Solarauto | jagy
8% Homepage

Figure 5-16: Show dependencies

Anzeige der optionalen,
abhangigen Objekte

]

Alles iiber Wechselrichte m

Test Absatz [
Withras Homepage nittlerer £

=

B

Vechselrichter gliedern sich

= |

bau eines

& besteher

gkeit firr die eigenen vi
/& Optionen, das eigene Hi

S% FormatverlagenMithras Energy Forr|
Kontakt ‘
S | open Sie Fragen zur Solart] o2 E
,,,,,, eerrsl [= linker Bereich o] £ FirstSpirit
! ® nithras Homepage H s S Die VWebsite mithras-eneray.de ist eil

/

Anzeige der notwendigen,
abhédngigen Objekte

_. FlieBtextverweis (intern)

Netzgeriit
53 He age

N Verweis

| =] Pressemitteilungen (Teaser)

erweisvorlagen

Text /Bild (Homepage-Te ,
< AbsatzvorlagenHomepage-

Produkte im Uberblick
= ProdukteMVechselrichter

Pressemitteilungen
< Presse/Pressemiteiungen

=

Formatvorlagen/Allgsmeins Formatvg

Home-Teaser

Mithras Homepage finker Bereich

The dependency chart is integrated as a reusable tab in the SiteArchitect AppCenter area.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

71

FirstSpirit™ CorporateContent Fi]_‘St Spirit

5.51 lcon bar

Layout; clicking this icon automatically arranges the displayed objects in a uniform layout. In
the process, layout changes made by the user are discarded without prompting.

Update; clicking this icon updates the information displays in the dependency chart. Changes
to the hierarchical structure of the objects and the package's new or removed objects are taken
into account in the process.

Zoom out/1:1/in; clicking on these icons changes the view of the dependency chart
by increasing it, shrinking it or changing it back to its original size.

Fit to Screen; clicking this icon adjusts the zoom level so that the entire dependency chart is
visible at the current tab size.

Save as image; clicking this icon opens a dialog box for selecting the name and save location
for creating an image file in PNG format. The created picture file contains the entire dependency
chart at the selected zoom level.

Grouping size: How many objects are to be displayed at the same time using the "Show linked
objects" context menu function or by double-clicking can be specified in this field.

5.5.2 Display for dependency charts

The dependency chart displays objects from the stores and their connections to each other.
These connections can be relationships between parent and child objects as well as references
between different objects.

The object that the dependency chart was retrieved for is used as the root node for the view and
appears at the far left in the dependency chart. When expanding outgoing connections for an
object, the target nodes are arranged to the right of the object. Each link between two objects is
represented by an arrow that points to the child or referenced objects.

Each object is shown as a rectangle and contains the following information:

= Object icon; the same icon that is also displayed in the tree structure of individual stores.

= Suitcase symbol (il); specifies whether the object is currently integrated in the feature. It is
placed on the object icon for identification

= Display name; the language-dependent display name from the relevant stores is displayed.

= Preview symbol; if present, a preview of the object or integrated images is shown as a

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

72

FirstSpirit™ CorporateContent Fi]_‘St Spirit

symbol.

» Exclamation mark (!/!); displayed if unfulfilled dependencies exist for the object or a
subobject. The color rules match the tree view in the "Included objects" area of the feature
combination (see section 4.3.2, page 27).

Edge lines are drawn between objects that are related to each other. These lines are shown
differently depending on the fulfillment status:

= Solid line; used for explicitly added objects.

= Dashed line; used for implicitly added objects that are subelements of an explicitly integrated
object.

= Gray; used between objects if their connection is intact in the current feature combination (i.e.
always subordinate objects, referenced objects if the reference target is integrated in the
feature).

= Red; used between objects if an unfulfilled required dependency is present.

= Yellow; used between objects if an unfulfilled optional dependency is present.

5.5.3 Context menu on objects

A context menu can be called up on each object. The functions of the context menu are active or
grayed out depending on the state of the object.

Add to package "xyz": The selected object and all of its subelements are integrated into the
package.

Show element in edit area: Calling this function opens a tab with this object's forms in the
SiteArchitect edit area for viewing.

Show linked objects (double-click): If there are connections to other objects that are not yet
displayed, calling this function triggers the display of these objects. The maximum number of
objects that are displayed there is specified on the icon bar under "Grouping size". Another group
of objects can be displayed by calling the function (or double-clicking) again.

If not all linked objects were able to be displayed, this is indicated by an extra object with the
label "Show next elements (X total)". Another group of objects can also be displayed by double-
clicking this extra object.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

73

FirstSpirit™ CorporateContent Fi]_‘St Spirit

Hide linked objects: All linked objects currently being displayed can be hidden by calling this
function. All of a linked object's subordinate objects are also hidden in the process. Thus, if an
object is hidden and then immediately displayed again, then its subordinate objects continue to

be hidden.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

74

FirstSpirit™ CorporateContent Fi]_‘St Spirit

5.6 Functions via the "CorporateContent" menu item

Some of CorporateContent's functions can also be called up in the FirstSpirit menu bar under the
"CorporateContent” menu item and its submenu items.

5.6.1 Overview menu item

The "Package store overview" dialog box opens via this menu function. The same information is
shown here in the master project and target project(s).

=" Dverview Package Management O] x|

Overview Package Management &
c8383c cB393t Inhalt
Community #8393 - 22TM2 -1 22TM2 -1
(Master)
- s ~ Active ¥ Active
UL " | ¥ Uptodate + Upto date
(Slave)))
v Automatic ¥ Automatic
4 1 b
M Master project of the package Mo imported versions exist
Subscription is up to date B An error occurred during import

Figure 5-17: Package store overview

The window shows the most important information about packages, projects and the current
state of subscriptions in an overview window. All of the projects on the server are shown on the
vertical axis and all packages that are known server-wide are shown on the horizontal axis here.
The intersection between a package and a project displays quick information about the state of
the subscription for the package in the corresponding project.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

™

75

FirstSpirit™ CorporateContent Fi]_‘St Spirit

v Active v Active v Active
Ipto date v Llpto date IIp to date
¥ Autormatic ¥ Automatic ¥ Autormatic

Figure 5-18: Quick information on a subscription in a target project

Subscriptions in target projects are shown with the following information:

Active — A checked checkbox indicates that the subscription to the package is active. The status
can be modified directly in this overview by double-clicking the subscription or using the Edit
button; this opens a dialog box with detailed information (see section 5.6.1.1, page 78). The
detailed information could also be opened using the Details button in the "Edit subscriptions"
dialog box (see Figure 5-33).

Current — A checked checkbox indicates that the current package version has already been
imported into the target project. The checkbox is only checked for subscriptions marked in green;
the checkbox is unchecked for subscriptions marked in orange or red (see below for subscription
color coding).

Automatic — A checked checkbox indicates that the package contents are updated in the target
project automatically as soon as a more up-to-date package version is made available (push
process, also see section 2.2.5.1, page 14). The state can be changed using the Update
parameter in Figure 5-29: Creating a subscription for package 'xyz'.

Packages from master projects are displayed with the following information:

23.11.07 -9
16.11.07 - 8
16.11.00 23 11 07 - 9 (Test, Development)

16.11.07 - & (Test, Development, Production
16.11.07 - 7 (Test)

Figure 5-19: Quick information on a package in a master project

Packages from master projects show the last three package versions in the blue box. This allows
the user to see at a glance how up-to-date the package version is in the respective project and
which package version should be updated in the target projects. A tool tip with the associated
publication groups is shown as additional information if the user hovers the mouse over the blue
box.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

76

FirstSpirit™ CorporateContent Fi]_‘St Spirit

If the intersections between package and project are empty, there is no subscription to the
package in the target projects (for information on creating a new subscription: see section 5.6.4
starting on page 86). If only an empty blue box is shown, then no package version has been
created for the package in the master project.

In order to show the state of a subscription in a clear and concise manner, color coding has been
introduced in addition to quick information. This is shown as a colored box in the overview.

B Master project ofthe package Mo imported versions exist

Subscription is up to date B Anerror occurred during import

Figure 5-20: color coding for the state of a subscription

Blue box — Marks the master project for the respective package.

Green box — Means that the currently most up-to-date package version has already been
imported into the target project successfully.

Red box — Marks an import into the target project that has an error. In this case, the log file from
the detailed information (see section 5.6.1.1, page 78) should be called up (see section 5.6.1.3,
page 81).

Orange box — Means that a more up-to-date package version has become available for import
but the target project has not yet been updated (for information on updating the subscription
starting from a target project: see section 5.6.6, page 93, for information on updating the
subscription starting from a master project: see section 5.6.3, page 85).

Clicking the Edit button or double-clicking the desired package-project relationship opens the
"Project/Package detailed information" dialog box. Information in addition to that from the
overview can be viewed here for each intersection in the overview. A distinction is made here
between information on subscriptions (green, orange and red boxes, see section 5.6.1.1, page
78) and information on packages (blue box, see section 5.6.1.2, page 80).

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

77

FirstSpirit™ CorporateContent Fi]_‘St Spirit

5.6.1.1 Detailed information on subscriptions

. Detail Info: Community #8393 (Slave) f cB393c x|

Detail Info: Community #8393 (Slave) / c3393c (395614)

Subscription activated: [+

Automatic:

Last update: 2I2TNZ2 423 FPM

Yersion: 2 f

Update status: Up to date Show protocols
FPublish group: Production

Package publisher project: Community #8393 (Master)

QK Cancel

Figure 5-21: Detailed information on a subscription

The name of the target project being subscribed to and the subscribed package with ID are
shown on the window's title bar and as a header in the content area.

Subscription active: If this checkbox is checked, then the subscription is active for the package.
This means that all new package versions are made available for importing in this project (also
shown in the quick info). The checkbox is active and can be edited in this dialog (also see section
5.6.4.2, page 87).

Automatic: If this checkbox is checked, the target version is updated to a new package version
automatically. The checkbox is disabled and is only used to provide information. The state can
be madified in the subscription properties (see section 5.6.4.2, page 87).

Last update: Shows the date and time of the last update to the package in the target project.

Version: In the first field, shows the unique version number for the package version assigned by
the system. In the second field, a version number manually specified by the master project's
package developer is shown as well.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

78

FirstSpirit™ CorporateContent Fi]_‘St Spirit

Update status: Shows the status of the update in the target projects. The information follows the
color coding in the overview window. The three known states for a subscription are specified
here:

e Current — The most up-to-date package version has been imported successfully.
¢ Outdated — A more up-to-date package version is available for import.
e Error — Incorrect import into the target project.

Clicking the Show log button opens the "Show log file" dialog box. The log file records the
specific process while the packages are imported and, if an import has an error, is of particular
interest for being able to evaluate the error that occurred. Additional information in section
5.6.1.3, page 81.

Publication group: Shows the publication group(s) for which the subscription has been
concluded.

Package publication project: Shows the master project, i.e. the project where the package was
created.

Clicking OK closes the "Detailed info" dialog box; any change to the "Subscription active"
checkbox is applied to the subscription.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

79

FirstSpirit™ CorporateContent Fi]_‘St SpiritTM

5.6.1.2 Detailed information on packages

. Detail Info: Community #8393 (Master) [c8393c (395614) ﬂ

Detail Info: Community #8383 (Master) / c8393c (395614)

Mo. © wersi.. Date Available Comment Dependent packages Logfile
2f Feb 27,2012 Production, Develo.. c8393t

Import protocols: | Wiew

OK

Figure 5-22: Detailed information on a package

Additional information on a package can be called up in the blue box in the "Package store
overview" dialog box by double-clicking.

n Before updating subscriptions in a target project (see section 5.6.6, page 93), the
detailed information about the package should be checked using this dialog in order to
discover potential dependent content packages ("Dependent packages" column) that
have to be imported before the content package that contains references to dependent
objects.

The name of the master project being subscribed to and the subscribed package with ID are
shown on the window's title bar and as a header in the content area.

The table shows the created package versions for the different publication groups (see section
2.2.3, page 11). The most up-to-date package version is shown at the top by default in the
process.

No: Shows the unique version number assigned by the system.

Version: Shows the manually specified version name.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04 80

FirstSpirit™ CorporateContent Fi]_‘St Spirit

Date: Shows the date of version creation.
Available: Shows the publication group(s) that this package version is "available" for.
Comment: Optional comment on the package version.

Dependent packages: Shows the dependent packages (templates and content packages, also
see section 2.2.2, page 9) for the respective package version.

Log file: The log file for package version creation can be viewed here.
Import log: The "Show log file" dialog box is opened using the Display button (see section

5.6.1.3, page 81).

5.6.1.3 Showing a log

|
Subscriber Ver.. v .- Date File name Size
Community #8393 (Slave) 2 021272 42324 PM 395614_395577_2.log 2887 KB

Figure 5-23: Show log file

A log file is created each time a package version is imported into a target project. The log file
records all of the information during the import process and is important for correcting any errors.
A log file can be selected for each subscription and each imported package version using the
"Show log file" dialog box. The table can be sorted by clicking the respective column.

Subscriber: Specifies the target project where the package was imported.
Version: Shows the version number assigned by the system.

No: Shows the number of attempts to import into a target project. The number is normally "0" if
automatic importing is configured. However, if an error occurs when importing a package version,
the import is initiated again and the number is increased by "1".

Date: Shows the date and time of the import.

File name: Shows the name of the log file. The name is a combination of:

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

81

FirstSpirit™ CorporateContent

Zielprajelkt-10 Import-“ersuche
+

1 i
1994222 1896738_12_1.10g

— N
Faket-10 “Wiar siansnd m mer

Figure 5-24: Log file name combination

Double-clicking an entry opens the associated log file:

%" Log - V: 2, No.: 0, Community #8393 (Slave) [c8393c, (39

INFO 27.02.2012 16:23:24.250 (de.espirit.firatapirit.service.ppool.
INFO 27. 2012 16:23:24.250 (de.espirit.firstspirit.service.ppool.
INFO 27.02.2012 16:23:24.252 (de.espirit.firstspirit.service.ppool.
INFO 27. 2012 16:23:24.254 (de.espirit.firstspirit.service.ppocl.
INFO 27. 2012 16:23:24.254 (de.espirit.firstspirit.service.ppool.
INFO 27.02.2012 16:23:24.254 (de.espirit.firstspirit.service.ppool.

4

Close

=10l

PPoolLo =~

PPoolLo

PPoollo

PPoolLo

PPoolLo

PPoolLo «
4

Figure 5-25: Log file

FirstSpirit

Log entries with the status ERROR are of particular interest. If there is an error during importing or
updating, you may be able to find out here whether additional referenced objects from the master

project are needed so that the import can then run successfully.

The log outputs can also be opened in an external editor. To do so, all of the outputs first have to
be highlighted using the key combination Ctrl+A and then copied to the clipboard using Ctrl+C.
Then the external editor is opened and the content in the clipboard is pasted into the editor using

Ctrl+V. This process is particularly advantageous when analyzing larger files.

5.6.2 Package menu item - Edit packages

The "Edit package" dialog is opened using this menu function. All of the packages present in the

source project are shown in this dialog box.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

82

FirstSpirit™ CorporateContent Fi]_‘St Spirit

x|
Edit package &
Package Type Available [Comment
Mithras_Medien Content Produkte
Paket2 Content v
Seitenvorlagen_sta... Templates Seitenvorlagen aus Mit...
Edit Delete

Figure 5-26: Edit package — Package list

The table provides the following information on each package:
Package: Unique package name.

Type: Shows whether this is a content package or template packages.

Available: If this checkbox is checked, the package is available for target projects and can be
subscribed to. A subscription can even be created if no package version exists for a package. If
the checkbox is unchecked, the package is available to be subscribed to in the target projects.

Comment: Optional comment for the package.

Clicking the Edit button (or double-clicking the table row) opens the selected package for further
editing in the CorporateContent store (see section 5.3, page 66).

Packages can be deleted from the table using the Delete button. In order to prevent a package
from being deleted accidentally, a confirmation prompt is displayed before it is permanently
deleted.

n Deleting a package also removes all of the package versions! Therefore, it is not
possible to directly delete packages where subscriptions have already been concluded. In
this case, the following confirmation prompt is displayed first.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

83

FirstSpirit™ CorporateContent Fi]_‘St Spirit

Affirming the confirmation prompt first deletes all existing subscriptions to the package and then
the package itself.

The package cannot be deleted if a dependency on a template package is present. In this case,
the link to the template package has to be removed in the content package's properties first. Only
then can the content package be deleted.

n If namespace extension has been enabled, the extended reference names
("ObjectName@PackageName") remain intact after a package is deleted; they are not
reset to their original reference names.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

84

FirstSpirit™ CorporateContent Fi]_‘St Spirit

5.6.3 Package menu item - Publish packages

This menu function is used for updating package contents in target projects using what is know
as the "push" process (also see section 2.2.5.1, page 14). The "Publish package" dialog box
opens listing all of the existing packages in one table.

%.- Publish package x|

Publish package &,
Package Type Available Comment
Mithras_Medien Content Produkte
Seitenvorlagen_sta... Templates Seitenvorlagen aus ..

Properties Publish

Figure 5-27: Publish package — Overview

Package: Unique package name.
Type: Shows whether this is a content package or template packages.

Available: If this checkbox is checked, the package is available for target projects and can be
subscribed to. A subscription can even be created if no package version exists for a package. If
the checkbox is unchecked, the package is available to be subscribed to in the target projects.

Comment: Optional comment for the package.

Clicking the Properties button opens a dialog with the package properties that were set when
the package was created (see section 5.1.1.2 and 5.1.1.3 starting on page 51). The package
properties cannot be modified at this point; they are only for informational purposes.

Clicking the Publish button opens a dialog where the most up-to-date package versions for each
known publication group are listed in a tabular overview. This dialog can also be called up using

the &< icon in the "CorporateContent" store (see 5.1.3, page 63).

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

85

FirstSpirit™ CorporateContent Fi]_‘St Spirit

5.6.4 Subscription menu item - Create subscription

A new subscription in a target project can be created using this menu function. Creating a new
subscription takes a multi-step process; the steps are explained below. Only a target project's
administrator can carry out the initial creation of a subscription.

5.6.4.1 Selecting a package

x

Choose package

Package Type Comment Publisher

1297435_2_inhalte Content TS#AT435 1 =

1597435 _2 vorlagen Templates TSH#AT435 1

1297435_inhalte Content TS#A7435

1597435 vorlagen Templates TS#97435 -
OK Cancel

Figure 5-28: Selecting a package

The "Create subscription” menu item opens the "Select a package" dialog box. All of the
packages available on the server are shown in this dialog box. Only one package can ever be
selected at a time. The table provides the following information on each package:

Package: Unique package name.

Type: Specifies whether this is a content package or a template package.
Comment: Optional comment for the package.

Publisher: Shows the name of the master project where this package was created.

Clicking Cancel closes the window. A dialog for editing the subscription opens (see section
5.6.5, page 91).

Clicking OK opens another dialog box for creating a subscription (section 5.6.4.2, page 87).

n No new subscriptions can be created if no packages are available for subscribing. A
dialog box appears with a corresponding error message.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

86

FirstSpirit™ CorporateContent

5.6.4.2 Creating a subscription for a package

% Create subscription for package "ts119615M

Subscription activated: | [

Publication group: Production
pdate: Automatic
Release: Automatic
Caonflict handling: Chwerwrite
Changeable:
Package content: Delimitate
Events: Configure

OK Cancel

Figure 5-29: Creating a subscription for package 'xyz'

FirstSpirit

All of the settings for the subscription are set by the administrator of the target project in the

"Create subscription for package 'xyz" dialog box:

Subscription active: An update that can be initiated manually or automatically is provided for
each new package version if this checkbox is checked. If the checkbox is unchecked, the
package is not updated automatically in the target project. If a manual update is provided for the
subscription, the administrator of the target project can update the subscription even if it is not

"active" (see section 5.6.6, page 93).

n A subscription can only be deleted starting from the source project. Therefore, in
order to "cancel" a subscription, the "Subscription active" option should be unchecked
here. In this case, the subscription can only still be updated manually; this prevents an

update initiated from the master project.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

™

87

FirstSpirit™ CorporateContent Fi]_‘St Spirit

Publication group: A publication group can be selected for the subscription in the drop-down list
(see section 2.2.4, page 13). All available publication groups are shown. If a publication group for
which no package version has been made "available" is selected at this point, a subscription can,
in fact, be created. However, an update (see section 5.6.6, page 93) only takes place if a
package version for that publication group exists as well:

Update: The type of the update for the package in the target project can be selected in this drop-
down list. If automatic update is set, importing is initiated from the master project and runs in
the target project automatically. If, on the other hand, manual update is set, importing is initiated
from the target project using the "Update subscription" menu item (see section 5.6.6, page 93). A
manual update can also be carried out if the subscription is not "active".

Release: Release control for the package can be adjusted using this drop-down list. The release
can be automatic, i.e. all included objects are released in the target project automatically after
importing the package. However, the release can also be configured via a workflow. Both
settings only apply if the target project is also working with releases (see section 2.2.5.3, page
16). If this is not the case, then the entries are simply ignored.

n Different release states can occur when using releases in a target project if a
package is imported again after the "Release" workflow is started. At this point, the newly
imported object no longer corresponds to the initial released state.

Conflict handling: This drop-down list controls the process in the event of a conflict when
importing a package. These conflicts can only arise if the "Modifiable" checkbox is active (see
below). This means that the package contents may be changed locally in the target project. A
conflict situation could occur during the next update due to these local changes. The conflict is
triggered only if the change status for an object is set to "Modified" or "Locked" (see section
5.7.4, page 109). The change status is configured manually using the context menu for the
respective objects.

Depending on the change status that is set and the way conflict handling is configured, changes
to objects are overwritten, copied or the update for the entire subscription is prevented.

o Overwrite — The local changes are overwritten by the new package contents.

e Cancel — The import is canceled.

e Copy — A copy of the node where the conflict occurred is created. An exception is made
for nodes in the site store: Copies of the node are not created here, instead they are
overwritten.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

88

FirstSpirit™ CorporateContent Fi]_‘St Spirit

The exact results of conflict handling, depending on the change status that is set, are described
in section 5.7.4 on page 109.

Modifiable: Write permission to the imported objects is granted for the target project if this
checkbox is checked. If the checkbox is unchecked, the imported objects can be seen and used
in the target project but they cannot be modified. An error message appears when trying to block
the object in a target project. This setting also affects the order when importing objects into target
projects (see section 5.6.8.3, page 101).

Package content: Using the Limit button opens the "Select node list" dialog box for limiting
package contents during importing (see section 5.6.4.3, page 89).

Events: Using the Configure button opens the "Configure events" dialog box for editing or
deleting events already present in the package (see section 5.6.4.4, page 90).

Clicking the OK button creates a new subscription.

5.6.4.3 Limiting package content in a subscription

Clicking the Limit button in the package content row opens the "Select node list" dialog box:

x

Choose node list

Import Name] Path
v &8 abc@me_cont 433862 Page content / test@. .
v cl page_2@me_cont 433865 Page content / test@...
v &8 test@me_cont 433861 Page content / test@...
OK Cancel

Figure 5-30: Selecting a node list

All of the objects included in a package version are listed in the dialog box.

Import: This checkbox is checked by default for each object. If specific objects are not intended
to be imported into the target project, then the associated checkbox has to be unchecked. Pages
from the page store can only ever be deactivated together with the child elements (sections) in
this context.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

89

FirstSpirit™ CorporateContent Fi]_‘St Spirit

n Caution: If package contents are limited manually here, then the dependencies
between package contents absolutely have to be taken into account (see section 2.2.2,
page 9). If nodes that have to be included in the package are deleted manually here, then
this will result in errors during importing.

Name: Shows the name of the object from the master project. Objects integrated into a package
are provided with a namespace extension.

VYerwaltung Paketname
I 1

—
wirench_soldout@FirstTools_products_mediaStore
L]
Knoten

Figure 5-31: Namespace extension for package contents

It is possible to deactivate namespace extension (see section 5.1.1.3.1, page 58). In this case,
the objects are shown without the appended "@PackageName".

ID: Shows the object ID from the master project.

Path: Path to the object in the master project's project tree

5.6.4.4 Configuring events for a subscription

Clicking the Configure button in the Events row opens the "Configure events" dialog box.

ﬂ

Configure events

Event Workflow

QK o
Error

Conflict

Release -

Edit O Cancel

Figure 5-32: Configuring events (in a target project)

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

90

FirstSpirit™ CorporateContent Fi]_‘St Spirit

Events, such as errors or releases, that have already been defined when creating a new package
version in a source project can be assigned workflows here. The workflows can be deleted for
the target project or be replaced by other workflows using this dialog. New events cannot be
created.

m deletes an existing workflow from the event table.
Clicking the Edit button opens a dialog for selecting a new workflow.
Clicking the OK button saves the changes and closes the dialog.

Clicking the Cancel button closes the dialog; any changes made are not applied.

5.6.4.5 Subscription is created

Once existing configurations have been made (as explained in sections 5.6.4.1 to 5.6.4.4), the
subscription is initially shown in an overview (see Figure 5-33: Edit subscriptions) with orange
highlighting (see section 5.6.6, page 93 for color coding subscriptions) and initially created using
the Update button.

5.6.5 Subscription menu item - Edit subscription

The "Edit subscription" menu item opens the "Edit subscription" dialog box. A list of all packages
subscribed to for the project is shown in this window.

x|
Edit subscriptions &
active »+ |Package Type Lastupdate Version Comment Publish group
[me_content Content - - Production
[TS89580 Vorlagen Templates - - Production

Details Add Edit Update

Figure 5-33: Edit subscriptions

Active: This checkbox is identical to the "Subscription active" box in the "Creating a subscription
for package 'xyz™ dialog. If it is checked, then the subscription for the corresponding package is

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

FirstSpirit™ CorporateContent Fi]_‘St Spirit

active and can be updated if a new package version is available (orange marking). If the
checkbox is unchecked, then the subscription can no longer be updated (starting from the
master project, see section 5.6.3, page 85). The status in the "Active" column can be changed in
this view by clicking on the checkbox. Refer to section 5.6.6, page 93 and section 5.6.1, page 75
for subscription color coding.

Package: Unique package name.

Type: Specifies the type of the package (content package or template package — see section
2.2.1)

Last update: Date and time of the last subscription update in the target project using a new
package version. If no entry has been made there, then an import has not yet taken place in the
target project.

Version: Both the unique version number (assigned by the system) and the self-defined version
number during package creation are shown here. The number assigned by the system is in
parentheses here (e.g. "MyVersionA(No.12)"). If there is no entry present here, then there is not
yet a package version for this package in the specified publication group.

Comment: Optional comment on the package version.

Publication group: Each subscription is concluded for precisely one publication group. Then a
package version can be imported only if the subscription is active and the package has been
marked as "Available" for the specified publication group.

Clicking the Details button opens the "Detailed info: project/package"” dialog box. The window
corresponds to the detailed information for the subscription from the "Package store overview"
(see section 5.6.1.1, page 78). The window is used only for information; the displayed values
cannot be modified.

Clicking the Add button opens the "Select package" dialog box; a new subscription is added to
those already present in the list. The sequence is the same as for the "Create subscription” menu
item (see section 5.6.4, page 86).

Clicking the Edit button opens the "Edit subscription for 'PackageName' package" dialog box. All
of the settings for the subscription are defined in this dialog box (see section 5.6.4.2, page 87).

Clicking the Update button can be used to update a subscription directly from the "Edit
subscription" menu item. The specific procedure for updating a subscription is described in
section 5.6.6, page 93.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

92

FirstSpirit™ CorporateContent Fi]_‘St Spirit

n Subscriptions are also initially created using this button.

5.6.6 Subscription menu item - Update subscription

The "Update subscription” menu item is needed only for manually updating (see section 5.6.4.2,
page 87) a subscription in a target project. However, all of the subscriptions can be updated this
way depending on whether a manual or automatic update has been configured in the
subscription or whether a subscription is marked as active or inactive. Thus, this function is used
for updating using what is known as the pull process (also see section 2.2.5.1, page 14).

If a subscription is active and set to automatic Update,then the "Update subscriptions" button is
normally not needed. In the event of an automatic update, the import is initiated from the master
project by publishing a new package version (see section 5.6.3, page 85). However, if an error
occurs during automatic updating in a target project, the update can be repeated easily using a
manual update in the target project.

If a subscription is, in fact, set to automatic update, but was in the inactive state at the time of a
new package publication, then the update is not carried out automatically. In this case, the
subscription is marked as "Not up-to-date" and has to be updated manually.

If a subscription is set to manual update, the update always has to take place in the target
project. The active or inactive status is not relevant for a manual update.

The "Update subscription” menu item opens the "Edit subscriptions" dialog box (see Figure
5-33). The window should already be familiar from the "Edit subscriptions” menu item (see
section 5.6.5, page 91). Only the "Update" button is relevant for manually updating a subscription
at this point.

n Before updating, the package dependencies should be checked (see section 2.2.2,
page 9). Dependencies on template packages are defined in the package properties.
These dependencies are checked automatically. If the dependent template packages are
not updated or not updated in the right order, then the update is canceled and a
corresponding error message is displayed.

Optional dependencies on other content packages are shown in the "Detail info" dialog box,
which can be called up via the package overview. These dependencies are not checked
automatically during updating. If the dependent content packages are not updated or are not

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

FirstSpirit™ CorporateContent Fi]_‘St Spirit

updated in the correct order (1. importing the dependent content package, 2. importing the
package containing the references to the dependent package), they can cause errors in the
target project: For instance, if the referenced page and page reference are in different packages
when updating page references. If, in this example, the package with the page reference were
updated and then the package with the referenced page, this would cause an error in the target
project. In order to resolve the error, the page reference in the target project has to be deleted
and then the package with the page reference has to be updated again.

n If the subscription is for a template package that contains objects from a database
schema, then the database configuration in the target project's project properties has to
be adjusted before updating (see section 5.10, page 135). Otherwise a corresponding
error is output.

Clicking the Update button initiates a manual update of a subscription starting from the target
project (see section 2.2.5.1, page 14). Since updating a subscription is a sensitive step, a
confirmation prompt appears before updating.

Affirming this confirmation prompt starts the subscription update. An update only makes sense
for subscriptions that do not have an up-to-date status. The update status can easily be seen
using the color coding for the subscriptions in the "Edit subscriptions" dialog box (see Figure
5-33).

The default setup for an update is:

(orange) — The subscription is currently not up-to-date. A new package version is available
for the subscribed package and the configured publication group that can be imported into
the target project.

n The orange coding (or green for "up-to-date”, see below) only refers to contents; the
package's properties (see section 5.1.1.2, page 51) or even the subscription's properties
(see section 5.6.4.2, page 87) can be modified in relation to the last update even though a
"green" status is displayed.

The log for the package import into the target project can be displayed as needed after running
an update. All possible errors are listed in detail here.

Then click on the = ' icon on the right upper edge of the window in the "Edit subscriptions"
window. The new color coding for the subscription is displayed only after updating the view. The

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04 94

FirstSpirit™ CorporateContent Fi]_‘St Spirit

subscription is in either the "red" or "green" status after updating.
From [(orange) to B2 (green) = subscription was updated successfully.

From 2 (orange) to L (red) = an error occurred during the update. The subscription is not in an
updated state. In this case, the log for the import should be displayed and evaluated.

A special case for an update occurs if the color coding is orange but no package version is
available for importing yet. This error can occur if a subscription has already been created even
though no package version is exists, likely because there are not any package versions but also
because there are no available package versions for the subscribed publication group. An error
message is displayed in this case:

n If a new package version has been imported into the target project successfully, the
editing environment for the target project still shows an old view of the project. Therefore,

the view should be updated using F5 or the % button after each import. Only after this are
all contents contained in the package shown with a corresponding symbol in the project
tree. The symbol is only visible if the option "Show symbols (metadata, packages,
permissions)" is active in the "View" menu item.

For additional information on color coding subscriptions see section 5.6.1 starting from page 75.

5.6.7 Publication groups menu item

The "Publication groups" menu item simplifies the process of publishing and importing packages
in complex operating environments for users (see section 2.2.4, page 13). For instance, by
separating into three publication groups, Development, Production and Test, packages can be
published in a test environment first and only then be implemented in a production environment
as a tested, stable package version.

The publication groups are defined server-wide and thus are available in both master projects
and target projects. Thus there are two different implementation areas for working with
publication groups:

Publication groups in a source project: Which publication groups a package version is to be
available for is assigned to each new package version during creation. (see section 5.1.2.1, page
61). The package versions can then be published for all of the publication groups or just for
individual available ones. They are then ready for import into target projects.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

95

™

FirstSpirit™ CorporateContent Fi]_‘St Spirit

Publication groups in a target project: Each subscription is concluded for exactly one
publication group (see section 5.6.4.2, page 87). Thus, the most up-to-date package version
available for this publication group is always imported into the target project. If, for instance, a
subscription is concluded for the "Test" publication group, then only the most up-to-date package
version made available to the "Test" publication group is imported.

5.6.7.1 Editing a publication group

The "Publication groups" menu item opens the "Edit publication groups" dialog box:

x

Edit publication groups &,
Default Mame Crescription
Development Publish group for development ...
> Production Publish group for productive use
Test Publish group far testing use

Add Delete Edit

Figure 5-34: Editing publication groups - Overview

All publication groups present on the server are shown here in a table with the following
information:

Default: The checked checkbox indicates the default (server-wide) publication group. This is
selected by default when creating a subscription (section 5.6.4.2, page 87, "Publication group").
Exactly one publication group has to be defined as the default group at all times. This publication
group cannot be deleted without first selecting a new publication group as the default group.

Name: Unique name for the publication group.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04 96

FirstSpirit™ CorporateContent Fi]_‘St Spirit

Description: Optional description of the publication group.

Clicking the Add button opens the "Create new publication group” dialog box. The rest of the
process is described under the "Add publication group" menu item (see section 5.6.7.2, page
98).

Clicking the Delete button deletes a publication group. The rest of the process is described under
the "Delete publication group” menu item (see section 5.6.7.3, page 99).

Clicking the Edit button opens the "Edit publication group" dialog box. The publication group
highlighted in the table can be edited here.

x

Default group |+
Mame Production

Description |Publish group for productive use

] Cancel

Figure 5-35: Editing a publication group

The information from the "Edit publication group" dialog box can be edited at this point for the
selected publication group.

Default group: If this checkbox is checked, then this publication group is set as the default
group. Exactly one publication group has to be defined as the default group at all times.

Name: A new name for the publication group can be specified in this field. Existing subscriptions
under the publication group's old name remain intact and are now concluded for the new
publication group name automatically. Thus, if needed, the publication group name only has to
be changed here; manual adjustments at other points are not needed.

Description: A new optional description can be specified in this field.

Clicking OK confirms the changes and closes the window.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

97

™

FirstSpirit™ CorporateContent Fi]_‘St Spirit

5.6.7.2 Adding a publication group

Clicking the Add button in the "Edit publication groups" opens the "Create new publication group”
dialog box.

%" Create new publication group ﬂ

Default group [+
Mame QA

Description Publish group for quality assurance

Ok Cancel

Figure 5-36: Create new publication group.

Default group: If this checkbox is checked, then this new publication group is created as the
default group. The previous default group then loses this status since only one publication group
at a time can be defined as the default group.

Name: Unique name for the new publication group. The new group cannot be added if the
desired name is already assigned. The "Name" label is marked in red at this point in order to
show the source of the error and, at the same time, the OK button is not active. Thus it is not
possible to input two publication groups with the same name.

Description: Optional description of the new publication group.

Clicking the OK button creates the new publication group. It then appears in the "Edit publication
groups" dialog box.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04 98

FirstSpirit™ CorporateContent Fi]_‘St SpiritTM

5.6.7.3 Deleting a publication group

A previously highlighted publication group can be deleted by clicking the Delete button in the
"Edit publication groups" dialog box. In order to prevent a publication group from being deleted
accidentally, a confirmation prompt is called up before it is permanently deleted.

=" Really delete x|

Do you really want to delete publication group ‘Development 7

?

Yes Mo

Figure 5-37: Deleting a publication group - Confirmation prompt

Clicking the Yes button deletes the publication group.

Clicking the No button cancels the dialog; the publication group is not deleted.

n Publication groups can be deleted only if they are not used in any subscriptions.

A publication group that has been defined as the default group cannot be deleted. If a default
group is to be deleted, a new publication group has to be defined as the default group in the "Edit
publication group" dialog box first.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

99

FirstSpirit™ CorporateContent Fi]_‘St Spirit

5.6.8 Combining package and target project contents

5.6.8.1 General

Contents can be transferred from a master project to multiple target projects using a package
store. To do so, objects from a package are imported into the respective target project. In the
target project, the package contents mix with the contents already present in the target project in
the process. Thus, for instance, a page from the page store is maintained directly in the target
project, however, another page is maintained in the master project and just imported into the
target project. For most content, this combination of package and target project contents is
possible without issue if certain rules are followed (e.g. dependencies). However, structures that
normally cannot be created by themselves in a target project can also be combined using the
package store, such as an individual section (see the following section of this document).

5.6.8.2 Combining sections

In the target projects, contents that are imported from a package can be supplemented by adding
individual content, such as adding any number of sections to an imported page from a package.
The "Modifiable" checkbox has to be checked in the subscription (see Figure 5-29) and in the
package settings for this. This setting grants write permission to imported objects for the target
project.

For instance, company-wide uniform terms and conditions pages can be distributed to individual
subsidiaries using the package store. These pages and sections can then be supplemented
within the subsidiaries by adding additional company-specific sections that are included in the
target projects (subsidiaries) but not in the package. The general portion of the contents, the
terms and conditions pages in this example, is maintained using the package store and updated,
the specific sections are added in the target projects and maintained there as well. Sections
inserted into the target projects remain intact when updating the subscription. If the order of the
sections changes in the master project, then this can also affect the order of sections in the
target project (see section 5.6.8.3, page 101).

Package contents can also certainly be reduced instead of being expanded. The package
contents to be imported are simply restricted in the subscription for this purpose (see 5.6.4.3,
page 89).

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

100

FirstSpirit™ CorporateContent Fi]_‘St Spirit

5.6.8.3 Order when importing objects into target projects

The order in which the objects in the master project are present in the object chain is taken into
account as well when importing objects (such as sections) into target projects. This has to be
adhered to to the greatest extent possible during the initial import into a target project as well as
when importing modified objects, as well as in cases where object chains in a target project are
expanded (see section 5.6.8.2, page 100).

Changes to imported objects in a target project can only be made if the "Modifiable" checkbox for
subscriptions has been checked (see section 5.6.4.2, page 87). This setting also affects the
order when importing objects:

If a subscription is marked as "Not modifiable", the contents from the master project cannot be
modified in the target project (no write permission in the target projects). Change authority is in
the master project in this case. This setting affects the import order of objects in the target
project. If the order — such as the sections of a page — in a master project changes, then this
modified order is also applied in the target project when updating a subscription. This applies to
both the first roll-out of contents into a target project as well as updating content that already
exists into the target project.

If a subscription is marked as "Modifiable", the contents from the master project can be
modified in the target project. The content editors in the target project can add additional objects
to imported package contents (such as a new section for an imported page) and modify the order
of objects in the target project as well. These changes are not normally lost when updating a
subscription again. Therefore, after initially importing package contents, the following applies:

= New objects added to already imported package contents in a target project (such as
a new section to an imported page) remain intact when updating package contents in
the target project.

= New objects added to existing package content in a master project (such as a new
section added to a page that is already part of a package) are applied to the target
project. Sorting into existing package contents occurs following specific rules in the
process:

The link to the previous object ("predecessor") has priority when sorting objects from
the master project in the target project. This means that:

o |If a predecessor and a successor exist, then the new object is inserted
after the predecessor.
If only a predecessor exists, it is inserted after the predecessor.
If only a successor exists, it is inserted before the successor.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

101

™

FirstSpirit™ CorporateContent Fi]_‘St Spirit

Previously, objects were more closely linked with the subsequent object ("successor") if a
successor was available.

The order defined for package contents in the target project (such as by the initial roll-out
or resorting package contents in the target project) remains intact even if the package
contents are resorted in the master project and are rolled out again.

Example 1 — Initial import of package contents into target projects:

A page with 3 sections (1, 2, 3) in the following order is contained in the master project:

Masterprojekt Zielprojekt 1 Zielprojekt 2
(Abonnement ‘nicht verdnderbar”) (Abonnement "veranderbar”)
= E] Seite_A = = E] seite_A = 5 B seite_A =
2 [lett 3 [left = [et
& Absatz 1 = & Absatz_1 = & Absatz 1 =
& Absatz 2 = & Absatz_2 = & Absatz 2 =
& Absatz 3 = & Absatz 3 = & Absatz 3 =

Figure 5-38: Example 1 - Page with three sections

If a package with these objects is rolled out to the target project, then the order of the sections is
retained. This applies to the initial import into the target projects (regardless of whether the
subscription is modifiable or not).

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04 102

FirstSpirit™ CorporateContent

. * _*_TM
FirstSpirit
Example 2 — Updating package contents (without modification in the target project):

Now additional sections (a, b, ¢, d) are added to the page.

Masterprojekt Zielprojekt 1 Zielprojekt 2
(Abonnement ‘nicht verdnderbar’) (Abonnement "veranderbar”)
= E] seite_A &= = E] seite_A = 5 E] Seite_A 5=
3 [left 2[R 1eft 3 [left

& Absaz_a = & Absar_a = & Absaz a =
& Absaz 1 = & Absaz 1 = & Absatz 1 =
& Absatz_b & Absatz_b & Absatz b
& Absatz_2 & Absatz_2 & Absatz 2
& Absatz_c & Absat_c & Absatz c
& Absaz 3 = & Absatz 3 = & Absatz 3 =
& Absatz_d = & Absaz_d = & Absatz d =

Figure 5-39: Example 2 - Inserting new sections

The order from the master project (a, 1, b, 2, ¢, 3, d) is applied to both target projects when
updating. For target project 1, this is the standard behavior since the master project's order is
retained. For target project 2, the behavior only takes effect because no changes to the package
contents have taken place.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04 103

FirstSpirit™ CorporateContent Fi]_‘St SpiritTM

Example 3 — Updating package contents (in the event of a change in the target project):

Masterprojekt Zielprojekt 2 Zielprojekt 2
VOR. der Aktualisierung NACH der Aktualisierung
- B seite_a = - B seite s = - [E) Seite A =
- G left = [left = IR left
& Absatz_Master_x & & Absatz_Ziel_x & absatz_Ziel_x
&) Absatz a & & Absatz 1 &= & Absaz 1 =
&l Absatz 1 &2 & Absatz 2 = & Absar 2 =
&l Absalz b i & Absatz 3 == & Absar 3 =
= Absalz 2 & Absatz_a =2 &l Absatz_Master_x =2
& Absaz c & & Absaz b = & sbsatz a &
& Absatz_Master_z & & Absaz_c &= & absatz b &
&l Absatz 3 i & Absatz d == & Absaz c =
= Absatz d = £ Absatz_Ziel_y B8 Absatz_Master_z &=

=4 Absatz_Master_y

B8 Absatz d
B4 Absatz_Master_y &
B Absatz_Ziel_y

Figure 5-40: Example 3 - Combined sections in the target project

Three sections are added to the page in the master project (Absatz_Master x through
Absatz_Master_2z). In contrast to the second example, this time changes are made to the page
before the updated package is rolled out in the target project. These changes originate from the
master project (only possible if the package contents in the subscription are marked as
"Modifiable™).

= The order of imported sections in the target project is changed by hand (1, 2, 3, a, b,
c, d).
= Two new sections are inserted at the first and last positions (Ziel_x, Ziel_y)

After the renewed update of the package contents, the differences with example 2 are easy to
see:

= The modified order of the sections (1, 2, 3, a, b, ¢, d) defined in the target project for
the package contents remains intact even if the sections are arranged differently in
the master project (a, 1, b, 2, ¢, 3, d)
= The new sections from the master project are inserted into the target project's existing
contents based on the following rules:
o Absatz_Master_x only has a successor (Absatz_a) and thus is inserted in
the target project before the successor
o Absatz_Master_y only has a predecessor (Absatz_d) and thus is inserted
into the target project after the predecessor

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04 104

FirstSpirit™ CorporateContent Fi]_‘St Spirit

o Absatz Master z has a predecessor (Absatz_c) and a successor
(Absatz_3) and is inserted in the target project after the predecessor since
the predecessor is given priority.

= The new sections from the target project remain intact.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04 105

FirstSpirit™ CorporateContent Fi]_‘St Spirit

5.7 CorporateContent content menu in the stores

The "CorporateContent" context menu provides some functions for editing packages directly at
objects in the project tree. It is called up by right-clicking directly on an object or a node from the
project tree. The "CorporateContent" functionality is located under the corresponding menu entry
in the context menu. The "CorporateContent" context menu is divided into five submenu items
described in the following sections.

= Starting adding to a package (section 5.7.1, page 106)
= Removing from a package (section 5.7.2, page 107)
= Removing a package relationship (section 5.7.3, page 108)
= Change status (unmodified/modified/locked) (section 5.7.4, page 109)
= Newly integrating an original (section 5.7.5, page 111)

If the submenu items are shown in a gray font instead of black then the specific function is not
available on the highlighted object, such as on the store's roots.

5.7.1 Starting adding to a package (master project)

A node or object can be added directly to an existing package using the menu entry "Start adding
to package". This function is only available in master projects if the selected object is not already
part of another package.

If no package is open when the menu entry is called up, then a package selection dialog for
opening a specific package appears first. Only packages with the suitable package type are
listed in this selection dialog. Then the selected object is displayed in the SiteArchitect
AppCenter area as a dependency chart.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

106

FirstSpirit™ CorporateContent Fi]_‘St Spirit

Wl marketing
Grouping size: 10
marketing_1
"B marketing
marketing E almutps_'l
- "= marketing
pressreleases
"B marketing

Figure 5-41: Adding an object - Dependency chart

Right-clicking the object in the dependency chart causes another context menu to appear. The
selected object is added to the package using the entry "Add to package 'xyz".

n Adding to a package is only possible if a package of suitable type is loaded.
(Content package «~template package)

n If the context menu is called up at a folder, then all of the lower level objects are
added to the package. If the folder contains objects already integrated into another
package then those objects are not added to the new package.

5.7.2 Removing from a package (master project)

A node or object can be removed directly from a package using the "Remove from package"
menu item. The "Remove from package"” function is, of course, only available to objects that are
already part of a package. Clicking the menu item opens a confirmation prompt.

Affirming the confirmation prompt with Yes removes the highlighted element from the package
and closes the window. A package symbol is no longer displayed after the object hame in the
tree view and the highlighted object is no longer part of the package.

Clicking the No button cancels the process. The object is not removed from the project and the
window is closed.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04 107

FirstSpirit™ CorporateContent Fi]_‘St Spirit

n If an object is removed from a package, then the namespace extension remains, but
the package symbol after the name indicating assignment to a package disappears. The
object can now be added to a new package. In this case, the namespace extension also
changes (a @ with the name of the new package is appended) and a symbol once again
appears after the name in the project tree.

It is certainly possible to disable namespace extension (see section 5.1.1.3.1, page 58). In
this case, the reference name remains unchanged when removing the object.

5.7.3 Removing a package relationship (target project)

While the first two context menu items are only relevant for source projects, i.e. for projects
where packages are created, the third "Remove package relationship” menu item is used in
target projects. The menu item can be carried out on all subscribed objects that have been
imported into a target project from a package. These objects are shown in the target project with
a blue dot and a package symbol after the name in the project tree.

Clicking the menu item removes the package relationship for an imported object. This means an
object's relationship to a package is removed. This makes it possible to import objects from one
package and to modify them in a target project even though write protection has been defined for
the subscription.

If the Overwrite identically named objects when importing in a target project package property is
enabled, then changes made are overwritten during the next update. If this option is disabled,
then the object is created again in the target project as a copy during the next update. The
modified object continues to remain intact.

“ Permission to remove a package relationship is only available to project
administrators.

n If a subscribed object's package relationship is removed, the package symbol after
the object name in the project tree disappears. However, the namespace extension
remains intact. As a result, no modifications have to be made in the referenced node. If
namespace extension is disabled, then the reference name remains unchanged.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

108

FirstSpirit™ CorporateContent Fi]_‘St Spirit

n The "Remove package relationship” context menu function only removes the
currently highlighted object — not any subordinate objects.

5.7.4 Change status (target project)

The change status for a node or object can be set in this area. This option is only available in
target projects and only for objects that are already part of a package. The options for the change
status are only active if a package is marked as "Modifiable"; otherwise the corresponding
options are grayed out.

The status values set in the target project are required for conflict handling when importing the
package (see section 5.6.4.2, page 87, "Conflict handling" option). If, for example, changes are
made to an imported page, a conflict can be triggered during the next subscription update by
setting the "Modified" changes status. Conflict handling always depends on the status value set
here:

e Unmodified: This status is set as the default for each object that is content for a
package. The object is overwritten with the contents from the package the next time the
package is updated. A conflict cannot occur with this setting.

o Modified: Setting this value triggers a conflict when the package is updated regardless of
whether or not the package version has changed. Subsequent actions during conflict
handling depend on the subscription's conflict settings (see section 5.6.4.2, page 87).

o Overwrite conflict handling: The conflict is resolved by overwriting the object
modified in the target project with the object from the package version imported
during the update (this can be a new version with contents that have been
modified in the master project or the same version that has already been
imported). Changes made to the object in the target project are lost. After
overwriting, the object in the target project matches the object from the master
project.

o Cancel conflict handling: The conflict is resolved by canceling the update to the
subscription with an error message. No objects are updated.

o Copy conflict handling: The conflict is resolved by creating a copy for the object
being modified in the target project before the object is imported from the package
version during updating. Numbering is appended to the object's reference name.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

109

FirstSpirit™ CorporateContent

e Locked: The object is locked for updating with this setting; this means it is explicitly
excluded from the subscription update. A copy of the object is created if a new package
version is imported into the target project. The modified object remains intact in the target
project, but it is removed from the package link automatically (also refer to 5.7.3, page

The original object from the target project remains intact; however, it is removed

from the package link automatically (also refer to 5.7.3, page 108).

108). The new object is imported into the target project as a copy.

n A change status can be set only if the package is marked as "Modifiable", otherwise

the corresponding options are grayed out.

The results of conflict handling and the change status in brief:

Change Conflict Result

status handling

Unmodified |All Only when modifying the package version:

The object is updated; changes are lost.

Modified Overwrite When updating with a package version that is new or
has been imported already:

The object in the target project is updated with the
contents from the master project; changes made to
the object in the target project are lost.

Modified Cancel When updating using a package version that is new
or has been imported already: The import is
canceled; the object is not updated; changes from
the target project remain intact.

Modified Copy When updating with a package version that is new or

has been imported already: The object in the target
project is removed from the package relationship and
changes remain intact; a new object is created as a
copy from the master project.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

FirstSpirit

110

FirstSpirit™ CorporateContent Fi]_‘St Spirit

Locked All Only when changing the package version:

The object in the target project is removed from the
package relationship and changes remain intact; the
new object is created as a copy from the master
project.

The change status is required for such tasks as conflict handling when importing contents into
different project languages (see section 5.9.2.1.2, page 126). If, for instance, a master project
contains the project language English but the target project has the languages German and
English, then the English contents are imported into the target project language only. The English
contents then have to be translated into the German target project language. In this case, the
change status for the translated pages should be set to "Modified" or "Locked". Otherwise the
contents that have already been translated are overwritten again during the next subscription
update.

n If no change status is set for the object, then the changes are overwritten in the
event of a subscription update.

5.7.5 Reintegrating an original (target project)

In contrast to the "Start adding to package" (see section 5.7.1, page 106) and "Remove from
package" (see section 5.7.2, page 107) context menu items, this function is available only in
target projects that have subscriptions and only for objects that have a package link. The
"Reintegrate original" function removes the object node where it was called from the package link
and integrates a new object node into the package in its place. When doing so, the object should
be an object that was part of this package previously but that does not currently have a package
link.

The object node newly integrated into the package is selected from a list of all of the target
project's objects. The combo box is limited by only displaying the store where the context menu
was called (see Figure 5-42).

The "original" has to be compatible with the object node that is removed from the package link.
This means, it has to be the same type of object node, such as a page from the page store
based on identical templates.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

111

FirstSpirit™ CorporateContent Fi]_‘St Spirit

n The object node selection is not reviewed automatically, but rather is the
responsibility of the editor. Removing or adding a package link is a sensitive action. If the
wrong object is "reintegrated”, like an object that was never a part of the respective
package, this can lead to errors in the target project since the page and section templates
do not fit the new object.

x

Choose original

w %) [SHA] Zielprojekt
w =] Page content (root)
p BB folder@me_content
BB marketing
b B produktmanagement

b B sonstigeseiten

» B [mithras_home |

Recently used objects

Ok Cancel

Figure 5-42: Selecting the original node to be reintegrated

A potential application area is integrating objects again, such as pages, after translation into a
language not contained in the package. In order to protect this page from being overwritten again
during translation, the change status for the section in the target project is set to "Modified" or
"Locked" (see section 5.7.4, page 109). Then the configured "Copy" conflict handling in the
subscription takes effect during a subscription update and creates a copy of the newly imported
page. The changes in the translated page remain intact this way while the "old" page is removed
from the package link. The page should be put back under package control after translation. The
"Reintegrate object" function is required for this. The function is called on the currently imported
page, i.e. the copy. The translated original page is then selected in the "Select original" list. The
page is put back under package control after confirming the selection. The imported copy of the
page loses the package link and can, if desired, be deleted from the target project (for
translations, see section 5.9.2, page 124).

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

™

112

FirstSpirit™ CorporateContent Fi]_‘St Spirit

5.8 Transferring existing projects into package master projects

Generating a separate master project where package contents are managed exclusively is
necessary in order to utilize the functionality of the package store. Each existing FirstSpirit
project can take on the role of a master project and prepare package contents for import into
other projects. Thus, a company subsidiary could take over maintaining the company display for
its own web presence, thus becoming the master project for the corresponding package. Other
subsidiaries would then subscribe to the company display package from this project. Afterwards,
the master project continues to exist as a hormal project.

Transferring an existing project to a package master project has to be planned carefully since
temporary inconsistent intermittent states can occur due to the restructuring. It is also possible
that references in the form and output tabs of templates and the like may have to be changed
manually so that the master and target project work without error. This is because reference
names can change due to package functionality. The process explained below (from section
5.8.1.1 through to and including section 5.8.1.9) should be followed precisely to avoid problems
as part of the conversion.

5.8.1.1 Using the reference graph

As already explained in section 2.2.2, page 9, packages can only be imported successfully and
used in a target project if they contain all required objects. In addition to the objects that the
package developer explicitly adds to a package, there can also be dependent objects that are
necessary for successfully working with the package in the target project. Content dependencies
are automatically resolved in the so-called reference graph. This means that if objects from the
page and site store are added to a package ("content package"), all dependent objects from the
site store, page store and media store are taken over in the package ("implicit").

In contrast, dependencies to objects from the template store and the content store for this
content package are not resolved automatically. Dependent objects from the template and
content store, for example, a section template which is required for maintaining a section from
the content package, have to be packed into their own package. The dependency between the
content package and the template package is then defined in the content package. In order to be
able to identify all dependences between contents package and template package, the reference
graphs can also be used.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

113

™

FirstSpirit™ CorporateContent Fi]_‘St Spirit

Reference graphs can be requested via the context menu Tools / Show dependences. The
reference graphs for individual data records of the content store are queried via the context menu
of the respective data record.

n This function is only available to project administrators.

The tab in which open windows are located shows the dependencies of the object in the form of
incoming and outgoing edges, for the current state (tab current state) and for the last state
released (release state), as long as the project uses the release option:

= Dependencies of 'Standard’ ==

Current status | Release status

HIERARCHICAL = Grouping size: (10

4

|E Cccupational classification (55)|

Standard (78)

Display the nex elements (13 total)

|E Product {overview) (3 8)|

=) Ahoutus £1200)

E Picture galleny (52

) & Related products (40}

Y il

o . :
7 w\ress releases (42)

=) Gallery (1542 |E Fress releases (overview) (43)|

=l Company {11513

=

|3 Downioad center (1533)

|l_| Global teasers (1832)| Dizplay the next elements {47 total)

=) Imprint (1132)

—

=l Jobs (1166

Figure 5-43: Display of dependencies via the reference graph

Each object for which a dependency exists is shown with ID and the object icon that belongs to it.
By double-clicking on "Show the next element", additional dependent elements can be shown. By
double-clicking on an element, the references to this object are also shown.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04 114

FirstSpirit™ CorporateContent Fi]_‘St Spirit

Additional information on reference graphs is in the FirstSpirit Manual for Editors.

5.8.1.2 Structuring the package contents

In order to simplify creation of a package, all content that is to later be integrated into one
package is to be moved to a separate folder in the master project. This is not possible for all
objects from the page, media, and template stores (not for objects from the Site Store). The
folders later serve to aid in structuring the content in the target project. With the aid of the folders,
it is more quickly visible what content was imported from a master project, and the content
bundled in the folder is more clearly differentiated from the original content of the target project.
All objects that are not bundled into packages in folders are added to the highest level in the
respective store in the target project, and with that, the structure is lost. Likewise, structuring with
folders is also beneficial for the clarity and transparency of the master project.

Alongside the explicitly added objects, there can also be objects implicitly added to the package
if there are dependencies between objects (see section 2.2.2, page 9 and section 5.8.1.1, page
113). These implicitly added objects must be checked by the package creator and likewise stored
in separate folders.

First, all templates needed must be stored in their own folders in the template store; this also
applies to every subnode ("Pages", "Section templates”, "Format templates”, etc.). Media from
the media store can be referenced within templates. These media objects which belong to a
template, so-called technical media, can be integrated into a template package and contain, for
example, JavaScript files (*.js), cascading style sheets (*.css) or graphic layout files (see section
2.2.1, page 9). In addition, in the media store, all technical media belonging to a template are
collected in a folder. Non-technical media are integrated in content packages, and should, for
example, also be stored in separate folders for this purpose.

n Every object can only be contained in a maximum of one package.

If, for example, technical media is needed in more than one package, then a second folder has to
be created for this package, which contains a copy of this object, in the media store.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

115

FirstSpirit™ CorporateContent Fi]_‘St Spirit

n A requirement for a successful package creation is therefore always comprehensive
project knowledge.

5.8.1.3 Limitation of image selection in templates

Due to the automatic display of dependencies within content packages, media files, for example,
media data integrated via the input component DOM-Editor in a section, are implicitly added to
the package as soon as the page is integrated with the corresponding section in the package.
Under such circumstances, in this way, a very large number of implicitly referenced media is
integrated into a package, which is available in the master project in different locations (for
example, in different (sub) folders in the media store). This is both non-transparent and can lead
to conflicts when importing the packages. A solution is offered by the limitation of the image
selection option for the input component "DOM Editor" and "FS_Reference".

For the "FS_Reference" input component, <FOLDER> or <SOURCES> tags are used in the
section or page template to set the limitation. Using the <SOURCES> tag makes it possible to limit
the selection or display to defined folders (including subfolders). This involves a positive list; in
other words, only the indicated folders are permitted. In order to allow a folder, a FOLDER tag is
to be specified with the parameter name and a valid folder name.

If, alongside the image selection, the option to upload media is to be limited to a certain folder,
then the uploadfolder attribute is also needed:

<FS REFERENCE ...upload="yes" uselLanguages="yes">
<PROJECTS>
<LOCAL name="." uploadFolder="test">
<SOURCES>

<FOLDER name="test" store="mediastore"/>
<FOLDER name="test2" store="mediastore"/>
</SOURCES>
</LOCAL>
</PROJECTS>
</FS_REFERENCE>

For the "DOM Editor" input component, the limitation is done via the link templates for internal
links.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

116

FirstSpirit™ CorporateContent Fi]_‘St Spirit

The image selection can in this way be limited to the folders which are also available in the
package and were structured for a package (see section 5.8.1.2, page 115).

n With this limitation, it should be noted that the folder names can be changed
through the namespace extension, and in this way would have to be manually adapted
later.

5.8.1.4 Limitation of template selection

Dependencies on templates are not resolved automatically. If input components which reference
templates are used in a package, these dependencies have to be resolved manually.

The input component "FS_LIST" serves to integrate section templates within the Content Store
or the Page Store. If this input component is to be used within the package store, the creator of
the package has to take care to ensure that all referenced templates are integrated in the
package and to create a dependent template package with the referenced section templates.
Here as well, the selection of templates should be limited in order to increase transparency and
to prevent user error.

For the "FS_LIST" input component, <TEMPLATE> or <TEMPLATES> tags are used in the section
or page template to limit the template selection. The <TEMPLATES> tag makes it possible to limit
the selection or the display to defined elements. This involves a positive list, in other words, only
the indicated elements are permitted. In order to allow a template, a TEMPLATE tag is to be
specified with the parameter name and a valid template reference name. In the package store
context, the limitation has to be done via the reference names. In doing so, the unique name
must be given for every section template in a separate TEMPLATE tag.

<FS LIST name="st downloadareas" ...>
<DATASOURCE type="inline" maxEntries="6" uselLanguages="no">

<TEMPLATES source="sectiontemplates">

<TEMPLATE uid="downloadcenterarea"/>

<TEMPLATE uid="teaserlistelement"/>
</TEMPLATES>
</DATASOURCE>

</FS_LIST>

As is made clear in the example, in this case also, the namespace extension, which is created by
integration in a package, must be taken into account. These changes have to be carried out

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04 117

FirstSpirit™ CorporateContent Fi]_‘St Spirit

manually. With changes made frequently, a script can be created which automates this process.

5.8.1.5 Preventing language-dependent structures in templates

In general, multilingualism of templates is not supported by the package store. As long as the
packages contain unified languages from the master project and the target projects subscribed
to, such language-dependent structures present no problems. Multilingualism in templates
always leads to problems if a language used in the target project does not appear in the master
project, and thus was also not implemented in the templates. If in such a project environment
templates have to be exchanged via the package store, then it must absolutely be ensured that
no multilingualism is implemented in the templates. An exact explanation is given in section
5.9.2.3, page 128.

5.8.1.6 Automatic conversion in the Page Store

With the transfer of an existing project into a package master project, the reference names
change through the namespace extension (as long as the namespace extension is not
deactivated, see section 5.1.1.3.1, page 58). Reference names with namespace extension
likewise have to be modified at all locations at which they are referenced in the project. In the
Page Store, these references are automatically adapted to the package contents.

If, for example, a link to an object from the Site Store is stored within a page, then this reference:

<CMS_LINK language="DE" linktemplate="Interner Link.standard"
sitestoreref="pageref:thisPage" text="Dieser Verweis" type="Interner Link"/>

is automatically adapted to the namespace extension when adding the page "this page' to a
content package:

<CMS_LINK language="DE" linktemplate="Interner Link.standard"
sitestoreref="pageref:thisPage@package" text="Dieser Verweis" type="Interner
Link"/>

5.8.1.7 Manual conversion of templates

The behavior of the automatic conversion of references described in section 5.8.1.6 is not
available in the template store. These must be adapted manually to the new package
namespace extension.

If, for example, a page template (here: "onlycontent") is transferred into a package which
references a link template (here: "WEBeditincludeJS"), then the references within the template

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

118

FirstSpirit™ CorporateContent

are automatically added to the template package:

& Edit package ‘Package’
Yersions | Content

Package : 'Package’ - Edit content

Mame 1D Fath
Webeditincludejs@Package 2636 Templates / Format templates
D onlycontent@Package 2635 Templates 7 Page templates £ 1
4 [

Add

Figure 5-44: Package content when adding a page template with references

The references within the template are not adapted automatically. The page template

"onlycontent" furthermore references:

| $CMS_RENDER (template: "WEBeditIncludeJs") $

The references within templates have to therefore be adapted manually from the package

developer:

‘$CMS_RENDER(template:"WEBeditIncludeJS@package")$

The adaptation has to be run for all applications of the link template in the master project. The
applications in the project can best be determined via the reference graphs (see section 5.8.1.1,
page 113). For the example mentioned, three references have to be manually edited later in

three different page templates in the master project:

I8 oniycontent (51299

8 standard_two (51315)

Figure 5-45: Dependencies of a format template

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

FirstSpirit

119

FirstSpirit™ CorporateContent Fi]_‘St Spirit

References in presentation channels: In templates, all references within the presentation
channels that are indicated via the instruction $CMS_REF(...)$ or $CMS_RENDER(...)$ have to
be edited manually. This affects the following object types:

¢ Media (media:...)

o Page references (pageref:...)
e Scripts (script:...)

e Templates (template:...)

Example:

‘src="$CMS_REF(media:"logo",abs:3)$"

has to be manually adapted after adding the medium "logo" to package "package".

‘src="$CMS_REF(media:"logo@package",abs:3)$"

References in the form area: Within the form area, references likewise have to be edited later.
If, for example, a format template that is referenced within a DOM input component is added to a
package, then the reference in the form area is manually adapted to the new reference name:

<CMS_INPUT DOM name="st text" rows="8">
<FORMATS>
<TEMPLATE name="format@package"/>
</FORMATS>

With standard format templates, the namespace extension has to be viewed critically. If
references to standard format templates are changed, for example, ,b@package®, these are also
no longer recognized during an adaptation of the template <TEMPLATE name="b@package"/>
within the input component. With that, for example, the assignment to the corresponding buttons
in the DOM Editor (here: "Bold") is lost. There can be errors in the master and in the target
project.

5.8.1.8 Manual conversion in the content store

As in the template store, references are not automatically converted in the content store. That
means that, within the content store, all references to package contents have to be adapted
manually.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

120

FirstSpirit™ CorporateContent Fi]_‘St Spirit

If, for example, in an input component in the content store a link to an object from the site store is
stored, then this reference:

<CMS_LINK language="DE" linktemplate="Interner Link.standard"
sitestoreref="pageref:thisPage" text="Dieser Verweis" type="Interner Link"/>

is not automatically adapted to the namespace extension when adding the page "thisPage" to a
content package. The namespace extensions have to be adapted manually by the template
developer (compare to the example in section 5.8.1.6).

If the previous steps were carried out successfully, all requirements are fulfilled to transfer the
existing project to a package master project. In the next step, the first package can be created in
the new master project (section 5.1.1.1, page 49).

5.8.1.9 Checking the function in a test project

Creating and importing packages is a complex task. Before importing packages to a productive
environment is used, the function is therefore to first be tested in a test project.

After the first package is created in the master project (section 5.1.1.1, page 49), the package
properties were configured and the package content was added, and finally, a first package
version was generated (section 5.1.2, page 60); then it must first be checked in the master
project that the project still works correctly.

If implicit or explicit objects are added to a package, there is always extensive restructuring, for
example through the name extension (section 5.1.1.3.1, page 58). If the name of a media object
changes, the reference to the media file is also adapted in all pages, sections, templates, etc. For
content packages, this restructuring is automatically adapted in the project via the reference
graph (section 5.8.1.1, page 113). However, in individual cases, it can happen that references
cannot automatically be resolved by the system or that the manual adaptation of the templates is
faulty (see section 5.8.1.7, page 118). In this case, the master project no longer works as
intended. If a media file is no longer referenced according to the namespace extension, then
there will be errors when displaying the page.

If, after package creation, errors arise during generation in the master project, then the master
project must first be repaired, for example, by changing the reference name. If the master project
is functioning flawlessly, the package can first be imported into an "empty" target project. In the
target project, as well, it is then checked whether the import was carried out properly and
completely or whether possible required templates or referenced objects are missing in the
package. If that is the case, these objects have to be added to the package and a new package
version created and imported.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

121

FirstSpirit™ CorporateContent Fi]_‘St Spirit

Only after this initial test is the master project to provide packages for the actual target project.
Afterward, as well, there are to be comprehensive tests on every package version. These are not
to be omitted (publication groups: section 2.2.4, page 13).

5.8.2 For similar projects

If multiple projects share the same content, the structure of a preconfigured project for the roll-out
makes sense (here: division across multiple, similar target projects). In this roll-out project, a
standard project structure and all required subscriptions can be centrally configured once. In
connection with this, the project can be exported and is available as the base project for all target
projects (for example, subsidiaries of a company). When importing the project, all required
subscriptions in the project are created directly with it. In the case that all company subsidiaries
would like to maintain their own website, but want to use the templates to create the pages and
the entire, company-wide, unified company profile via a centrally administered package content,
the use of a roll-out project makes sense.

5.8.3 Import / export

Exporting and importing via the ServerManager is also possible for package master projects and
subscribed projects. These functions however have effects on the existing package and
subscription structure.

5.8.3.1 Package master projects

n If a package master project is exported and then re-imported, all previous package
information gets lost. After importing the project, the symbols behind the object names in
the project tree continue to be displayed and the namespace extensions are preserved
(as long as these were not deactivated). However, the package information (as shown in
Figure 5-26: Edit package — Package list) is no longer present. No more packages are
displayed in the package overview. Thus the project is no longer a master project.

Therefore, the existing, original master project should by no means be deleted. If it is, both the
package information and the subscriptions in the target projects will be lost.

The only option for recovering the package information and thus the master project is a file
system backup .

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04 122

FirstSpirit™ CorporateContent Fi]_‘St Spirit

If subscriptions to contents of other projects in the package master project exist, these remain
even after the import, but have to be manually updated (see the following section 5.8.3.2).

5.8.3.2 Subscribing projects

If a subscribing project is exported and then re-imported, the contents subscribed to from other
projects are retained and continue to be displayed with a blue color coding behind the object
name in the project tree. The subscriptions existing before the import are all set to the status "not
up-to-date" and provided with an orange color coding, even if no version maodification occurred in
the master project before (see Figure 5-33: Edit subscriptions).

n The subscriptions have to be updated manually after importing the target project.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04 123

FirstSpirit™ CorporateContent Fi]_‘St Spirit

5.9 Corporate Content for developers

5.9.1 Individualization of the package contents in the target projects

Corporate Content can be used to import contents of a master project into different projects. In
many cases, however, these contents are supposed to be displayed differently in the individual
target projects. It is possible to make a direct intervention using the templates.

The layout in the target projects can be changed afterwards by directly modifying the templates.
Here, the package contents must not be write-protected; that is, they are set as "modifiable "in
the package version and in the subscription.

If templates from a template package in the target projects are modified, that can lead to
problems. On the one hand, the project-specific modifications have to be redone after every
update of the subscription; on the other hand, conflicts can arise when updating with a new
package version, because innovations in the master project cannot be linked by force also with
the modified states in the target project. One solution for these problems is an appropriate
conflict resolution, which can be configured in the subscription (see section 5.6.4.2, page 87).
Here, the "Copy" option has to be selected under "Conflict resolution”; this is used to create a
copy of the modified template in the target project. This copy now has to be manually revised by
the developer in the target project. Thus the maodifications in the layout have to be done manually
in the new template. If the old template is retained here, it can cause the project to stop
functioning correctly.

n Modifications to templates in the target projects should be carried out only in
exceptional cases! The safe way to individualize contents in the target projects is to adapt
them using structure variables.

5.9.2 Support for multiple languages

Since the implementation of FirstSpirit was designed very consistently for multilingual projects,
these are also supported in the package store. However, the different languages do not have to
be maintained in the master project; translations can also be made in the individual subsidiaries
in the respective local language. In doing so, projects with a homogeneous language structure
and projects with a heterogeneous language structure are differentiated.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04 124

FirstSpirit™ CorporateContent F 1 st Spi ri tTM

5.9.2.1 Page contents

5.9.2.1.1 For projects with a homogeneous language structure

With a homogeneous language structure, the package supports the unifying quantities of all
languages used in the projects subscribed to.

Figure 5-46: Packages with a homogeneous language structure

For example:

e German subsidiary: DE, EN
e French subsidiary: FR, EN
e Swiss subsidiary: DE, EN, FR

The package with a homogeneous language structure contains all three languages. Import
into the target projects is thus uncomplicated, because each of the languages needed in the
project is also contained in the package. If there are more languages in one package than are
used in a target project, the extra languages are simply ignored in the target project. In the
example above, the project of the Swiss subsidiary is the ideal candidate for the role of the
master project.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04 125

™

FirstSpirit™ CorporateContent Fi]_‘St Spirit

5.9.2.1.2 For projects with a heterogeneous language structure

With a heterogeneous language structure, not all of the languages used in the projects
subscribed to are also contained in the package.

Office Office
Germany Spain
Package
DE ES EN

Figure 5-47: Packages with a heterogeneous language structure

For example:

e German subsidiary: DE, EN
e Spanish subsidiary: ES, EN

Only the languages German (DE) and English (EN) are contained in the package. This means
that when importing a package into the Spanish target project (ES), the Spanish-language
content has to be specially translated. If this content is to be translated for the target project, that
can be realized via a workflow which is started directly upon package import.

In addition, the following settings have to be configured:

1) First, the project settings in the target project with the untranslated language have to be
configured. In The ServerManager, select the "Use master language" option for
"Language substitute" in the project properties under the "Substitutions" item. The
master language has to be a language contained in the package, such as English. If
objects not existing in the proper language are imported into the project now, only the
English language objects that will still have to be translated are imported.

2) The actual translation can be started after the initial import via a workflow. Using a
"Translate new page" workflow, for example, the newly imported page can be sent to a
translation office via XML export and then the translated result can be re-imported into the
project. In this case, it is important whether or not the check marks on the language tabs
(for the setting "Page for this language completely translated") are activated on pages of
the Page Store.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04 126

FirstSpirit™ CorporateContent Fi]_‘St Spirit

DE EM

Inhalte {root) mithras._home

o For all new pages that are initially imported into the project, the language option
must be deactivated! The workflow should configure this setting for all new pages
before the import. If the translation has been done, then the language option is
reactivated for all new pages.

o For untranslated changes to a page already in the target project, the language
option has to be activated. If the language option is deactivated, the contents are
overwritten again in the next import.

5.9.2.2 Menu structures

All menu structures in a package, thus menu levels and page references, are taken over into the
target projects from a package. There is a critical difference here between projects with a
homogeneous language structure and projects with a heterogeneous language structure.

5.9.2.2.1 For projects with a homogeneous language structure

For projects with a homogeneous language structure, all menu structures contained in the
package, including the language-dependent labels, are taken over for each language. If a menu
level from the Site Store is integrated into a content package, the page references below the
package and the accompanying pages from the Page Store are also added to the package. If the
accompanying pages are moved from the Page Store into folders, only the referenced pages are
taken over into the package with them, not the higher-level folders.

If there are more languages in one package than are used in a target project, the extra
languages are simply ignored in the target project.

5.9.2.2.2 For projects with a heterogeneous language structure

For projects with a heterogeneous language structure, the same problems arise for menu
structures as for page contents (see section 5.9.2.1.2, page 126). The target project supports
languages for which there are menu structures in the package, but the respective menu labels
are not translated.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

127

FirstSpirit™ CorporateContent Fi]_‘St Spirit

In this case, a language substitution setting does not affect the master language available in the
package. When importing menu structures of a package (only EN) into a target project (EN and
DE), no substitution of the German menu names takes place. For the languages not included in
the package (here, DE), the menu names are preassigned by the display hame from the master
language of the target project (here, EN). For projects with a heterogeneous language structure,
the menu structures are not permitted to be displayed in either the navigation menu or the
navigation overview for all languages that are in the target project, but not incorporated in the
package. In the Site Store, therefore, the "Displays" setting at the folder level must be
deactivated. This setting is automatically configured when importing the menu structures into a
target project for every structure folder contained in the package for the unsupported language.

DE EM
Menu name: FirstSpirit

Keywords:

Comment:
Display in navigation menu?

Display navigation menu in sitemap?

Figure 5-48: Display options at the folder level of the Site Store

After translating the labels, the boxes have to be manually checked again in order to make the
navigations visible.

59.23 Templates

In general, Corporate Content does not cover multiple languages for templates. If templates are
supposed to be exchanged via Corporate Content, it is imperative to ensure that the templates
are not multilingual. Multiple languages always lead to problems if a language used in the project
was not implemented in the templates, thus in target projects without a heterogeneous language
structure.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

128

FirstSpirit™ CorporateContent Fi]_‘St Spirit

5.9.2.3.1 Via common database access

One option for centrally maintaining language-dependent return values is to use a translation
table in the Content Store.

Unlike the usual procedure for maintaining multilingual contents in the Content Store, here all
languages are maintained via their own input fields. To do so, a column must be created for each
individual target project language in the content source schema of the master project, and an
input component has to be assigned to this column. The label of the individual input components
is provided for only in the master language, in most cases "English". Now the language-
dependent return values can be maintained centrally in the master project. Via a common
database access, all target projects can gain (read) access to these language-dependent
contents (see section 5.10, page 135).

If we proceed from the previous example of the combo box, the master project initially has two
input components of the "text" type for the languages DE and EN. In the table, for each language
included in the target projects, the language-dependent display value, such as "red", is assigned
to a language-independent return value, such as "1". Now the language-independent return
value "1" is all that is stored in the template. Then the language-dependent assignment is made
for each language based on the translation table in the Content Store:

Example: Return value in the template "1" and key "DE" = Return value "red"

DE EN
1 Rot Red
2 Blau Blue

If a new language is added, for example, by a new Spanish subsidiary, the table schema in the
master project has to be expanded by one column for ES and another input component of the
"text" type has to be added. Then the table looks like this:

DE EN ES
1 Rot Red ZERO
2 Blau Blue ZERO

Now the language-dependent return values for ES can be added in the master project. No more
changes have to be carried out in the templates.

DE EN ES
1 Rot Red Rojo
2 Blau Blue Azure

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

129

FirstSpirit™ CorporateContent Fi]_‘St Spirit

n The master language of the target project must be in the package.

n For all target projects, a common database layer has to be specified in the project
settings in the ServerManager. For the database layer, the boxes for "No schema sync"
and "Write-protected" must also be checked (cf. section 5.10.1).

Again, substitution of the label is possible only via a template change.

5.9.2.3.2 Local differences in the same language

In principle, it can also happen that conflicts arise when importing templates if the same
language is used in both the package and the target project. While different countries can use a
common language, for example English, there is nevertheless a number of aspects that can
differ in the countries. A prominent example is local formatting differences, such as different date
or currency formats in countries that otherwise have the same language.

Example:
e Date Germany: Tuesday 14.08.2001 16:47:48
o Date Switzerland: Tuesday 2001-08-14 16:47:58

When importing a package from a German master project into a "Swiss" target project, only the
same language "DE" is recognized. Country-specific formats, however, are not taken into
account here.

These problems can be circumvented by introducing a "new" language that takes such local
differences into account; in the example, the new language "CH" would be introduced in the
target project.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

130

FirstSpirit™ CorporateContent Fi]_‘St Spirit

5.9.3 Using workflows and events

Within Corporate Content, "standard events" can be assigned to workflows. The assigned
workflows are then carried out when the event occurs during or after the updating of a
subscription in the target project (see section 5.6.4.4, page 90).

One way to apply this is to use a workflow to release all objects imported via a subscription.
Since a workflow can always be started for one object only instead of for several objects
simultaneously, a script is required to determine all nodes affected (see section 5.9.3.1, page
131).

n So that both the workflow and the script can be carried out in the target project, both
the workflow and the script also have to be in the target project.

5.9.3.1 Determining the nodes affected
Within a script in a workflow, one is in the WorkflowScriptContext.

First, the current session is required. This is obtained with

‘m_session = context.getSession(); |

Then get the Importinfo object from the session:

|m_importInfo = m session.get ("importInfo"); |

Finally, the UserService is required and the Importinfo object is initialized:

m userService = context.getUserService();
m_importInfo.setUserService (m _userService);

With the initialized Importinfo object, now it is possible to determine the number of

= new nodes (getNewNodeCount ()),

= modified nodes (getUpdatedNodeCount ()),

= deleted nodes (getRemovedNodeCount ()), and

= the nodes, at which a conflict arose (getConflictNodeCount ())

The number determined is required in order to iterate across all nodes using a loop and to return
nodes in index-related form.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04 131

FirstSpirit™ CorporateContent Fi]_‘St Spirit

‘NewNode = m_importInfo.getNewNode (index) ; |

If, for example, the script is supposed to return the first new node, the call looks like this:

IfirstNewNode = m_importInfo.getNewNode (0) ; |

Other operations can be carried out at the nodes determined using Access API.
Please refer to the APl documentation for the complete syntax of Importinfo.

After all operations have been carried out, the workflow has to be advanced by the script. To do
S0, use the method doTransition:

‘context.doTransition(NAME OF THE TRANSITION) ; |

5.9.3.2 Exemplary workflow for the release

An exemplary workflow for the release of imported objects can be seen in the release workflow.

B m

o}
packagepud_release‘ . ’/m
. 4 checkagain =
L/ Mo release Ohject not released
|

check y] r?l:::e

= Approve =
Start

Chject released

Figure 5-49: Release workflow

In order to use the release via a workflow in the release target project, the release has to be set
in the subscription via a workflow (see also section 5.6.4.2, page 87):

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04 132

FirstSpirit™ CorporateContent Fi]_‘St SpiritTM

x
Subscription activated: [
Publication group: Production -
Ipdate: Automatic -
Release: Workflow -
Caonflict handling: Chwerwrite -
Changeable: [
Package content: Delimitate
Events: Caonfigure

OK Cancel

Figure 5-50: Setting the release in the subscription

In addition, under events, you have to use the Configure button to specify the "Release" event of
the workflow specified under Figure 5-49 (see section 5.6.4.4, page 90):

x

Configure events

Event Workflow
OK

Error

Conflict
IReIease Freigabe Anfordern
Update

E{E{EEs

0K Cancel

Figure 5-51: Configuring events

If, in the release target project, the release is configured via a workflow, this is started as a
context-free workflow as soon as there are new or updated nodes in the project. This means that
the release does not take place in context-related form on an object in the project tree, but in
context-free form via the task list.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04 133

FirstSpirit™ CorporateContent Fi]_‘St Spirit

If the editor advances the workflow with "reviewing", the script "packagePoolRelease" determines
the number of the new or modified nodes in the target project. If there is at least one new or
modified node, a list dialog opens in which the modified nodes are shown.

If the release is granted by confirming this dialog, all listed objects are released at once. (By
double-clicking a node, the associated object can be displayed beforehand.)

If the release is not granted in this dialog, the listed objects are not released. However, they can
be reviewed "again" in the task list (see Figure 5-49: Release workflow).

n If the newly imported nodes have been released, an update of the stores should be
carried out, after which the new or modified nodes are then shown as "released” (black
font).

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04 134

FirstSpirit™ CorporateContent Fi]_‘St Spirit

5.10 Shared database access

FirstSpirit has powerful mechanisms for connecting databases (see FirstSpirit Manual for
Administrators). Within the editing environment, the connected databases are identified as
content sources. The data records stored in the content sources can be integrated seamlessly
into the web pages and (via the Page and Site Store) edited seamlessly in FirstSpirit without
leaving the editing environment.

The tables that are displayed within the Content Store are only views of the database. To do so,
it is first necessary to create a database schema in the FirstSpirit template store (new or
generated from an existing database). Using a graphic editor, the project administrator can
create the required tables in FirstSpirit SiteArchitect and place them in relationship to each other
(or take them over from a connected database). For each table modeled within the schema, a
table template can be generated (below the schema node). These table templates contain
definitions of which input elements the editor can use later to enter the data into the
corresponding tables or which input elements the editor can use to take over data of a reference
table. In addition, the assignment of contents maintained via an input component to a database
table in the physical database can be established using the "Mapping" tab.

Depending on the project administrator's settings for the configured database, the changes to a
schema in SiteArchitect, such as adding a table to the physical database, can be applied
("Sync") or prevented ("No sync"). The contents maintained by the editors within the Content
Store can also be written back to the database; alternatively, they can also not be written (write-
protected). This is likewise dependent on the configuration.

For more information, see FirstSpirit Manual for Developers (Basics).

The following contents can be integrated into a Template package and distributed to other
FirstSpirit projects via the package store:

= FirstSpirit database schemata
= FirstSpirit table templates
= FirstSpirit database queries

The following content can be integrated into a Content package and distributed to other
FirstSpirit projects via the package store:

= Views of the database (nodes of the Content Store)
= Pages or page references that have a reference to a content source of the Content
Store

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

135

FirstSpirit™ CorporateContent

The following applies here:

Shared access to the database (read-only): To exchange content via the package
store, shared access must be configured in the project settings (ServerManager) of all
participating projects (master project and target projects).

The package store supports distribution of database views (nodes of the Content Store)
into multiple target projects for shared, read-only access to the corresponding database
content. This means that during configuration of the corresponding database layer, the
"Write-protected” and "No schema sync" boxes must be checked for the target projects.
The configuration for joint use is described in the following sections (see section 5.10.1
starting on page 137 ff.).

Consider dependencies: If database views (nodes of the Content Store) are to be
distributed via the package store to multiple target projects, it is first necessary to ensure
that dependent objects, such as the corresponding database schemata, table templates
and queries from the master project, are also part of the package (or a dependent
package). Here, the sequence of adding can also be critical. If these dependencies are
not considered, mistakes can appear when packing or importing a package. Example:
A section template that contains a content list (FirstSpirit input component for selection
and output of data records) is added to a template package. If the corresponding
database schema was not added to the package earlier, an error occurs.

These dependencies cannot be removed automatically, as they can be for the content
packages (see section 2.2.2), as this would have very far-reaching effects. Continuing
with the example above, when adding the section template, for example, the schema and
all table templates and table queries below it would become part of the package.
However, this behavior is usually not desirable. Therefore, the package developer should
give some thought in advance to making the package structure as effective as possible.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

FirstSpirit

136

FirstSpirit™ CorporateContent Fi]_‘St SpiritTM

5.10.1 Configuring the target projects (read-only DB access)

.- Edit Project, [SH&] Mithras Energy (2) (id=390372) x|
Schedule averview a|-Databases

Schedule management MName Selected Read-only Mo schema sync
Action templates derby_project328.. T T T a
Databases derby project3as.. [[[

Templa.te SEFS Iderby_pmjectS-iD... v % v

WebEdit settings - | [derby_project340...

Q“m? _ “| |derby_project347...

Permlssmﬂﬁ derby_project3s..

Project components derby_projectdsi_

Web components + || [Aarby neainctzE4 [[[~

OK Cancel ?

Figure 5-52: Configuring a database layer in the target projects

First, the database layer of the master project (indicated by the red frame in the illustration) must
be enabled under the "Databases" item. To do so, check the corresponding box in the "Selected"
column.

n For this database layer, the boxes for "No schema sync" and "Write-protected” must
also be checked.

"No schema sync" defines that when importing a template package, the database tables
are not recreated in the database.

Checking the box for "Write-protected" prevents shared write access from the target
projects to the database. Read-only access to the database contents is then possible in
all target projects (views of the database); however, changes to the database contents
cannot be initiated from target projects.

For more detailed information about the "Multilingualism" use case with regard to shared
database access via the package store, refer to section 5.9.2.3.1, page 129.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04 137

FirstSpirit™ CorporateContent Fi]_‘St Spirit

n Changes to the database schema always have to be made in the master project, as
the option "No schema sync" is not enabled here, and the changes have to be distributed
to the target projects from there.

n Incompatible schema changes in the master project lead to problems in target
projects, even if no subscription update has yet taken place!

n The master and target project should always use the same database schema.

n The following applies for multilingual projects: When transferring a schema to a
package, the language structures of both the master project and the target project must
be taken into account in the master project (see section 5.10.5.1, page 140 and section
5.10.5.2, page 141).

5.10.2 For existing databases

If shared database access is to be implemented for projects with an already existing database
and/or existing data records, some adjustments are necessary.

Assume for instance that a data record that references an object from the media store by name
exists in the database. When importing a data record, the "test" media file, which is not yet part
of a package, would be selected and referenced by "media:test" in the data record. If shared
database access for multiple projects is to be implemented at this point, all of the referenced
objects have to be available in one package as well. As soon as the "test" media file is added to
a package, the name changes to "test@PackageName" (if namespace extension has not been
disabled, see section 5.1.1.3.1, page 58). However, the existing reference in the data record
continues to reference "media:test” with the result that the media file for this data record can no
longer be found. In order for the media file to be displayed again when displaying the data
record, the reference has to be configured to the new name ("media:test@PackageName")
manually or automatically using a script.

All objects referenced in an existing database have to be available in the target projects.
Therefore, it is recommended that all objects be made available to target projects using a
package when sharing a database. Then the references are subsequently adjusted in the
database. In this case, the media selection limitation explained previously in section 5.8.1.3,
page 116 should be implemented for all of the templates used in the Content Store. These media

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

138

FirstSpirit™ CorporateContent Fi]_‘St Spirit

may only be selected from defined package directories (see 5.8.1.1, page 113) since this is the
only way to ensure that the required media are available in all projects.

If new objects, such as media, are to be inserted, then these are to be imported in the master
project and made available to the target projects by creating a new package version. This can be
achieved using automatic updating via publishing (section 5.1.2, page 60 and section 5.6.3, page
85) or by updating in the target project manually (section 5.6.6, page 93).

In addition, the mapping of languages for the master project and target projects should be taken
into account when transferring a schema for a multilingual project into a package in the master
project (see 5.10.5, page 140).

5.10.3 New databases

In contrast to using an existing database, referential integrity does not come into play for a new
database since the database does not yet contain any data.

The mapping of the master project's languages has to be taken into account when transferring a
multilingual project's schema to a package (see 5.10.5, page 140). Even for new databases, the
media selection limitation explained previously in section 5.8.1.3, page 116 is recommended
for all of the templates used in the Content Store. These media may only be selected from
defined package directories (see 5.8.1.1, page 113) since this is the only way to ensure that the
required media are available in all projects.

5.10.4 "contentSelect" function

The "contentSelect” function requires special attention for projects with shared database access.
Adjustments in the <CMS_PARAM> tags within a function have to be made manually. This
applies to all of the master project's templates, i.e. including templates that are not integrated into
a package. The reason for this is the namespace extension for the jointly used database
schema. If namespace extension has not been disabled, then the schema name changes if the
schema is distributed to target projects using the package store.

’<CMS_PARAM name="schema" value="News"/>

becomes:

‘<CMSiPARAM name="schema" value="News@MyPaket"/>

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

139

FirstSpirit™ CorporateContent Fi]_‘St Spirit

All of the master project's templates that use the "contentSelect" function have to be adapted
manually in this case. Even templates that are not used in a package have to access the
News@MyPackage schema immediately.

Advantage: If the templates have been adjusted in the master project once, then the target
projects do not need any further changes. They take on the already updated templates via the
package store.

<CMS_ FUNCTION name="contentSelect" resultname="fr sc news">
<CMS PARAM name="schema" value="News"/>
<QUERY entityType="News">
<ORDER>
<ORDERCRITERIA attribute="Datum" descending="1"/>
</ORDER>
</QUERY>
</CMS_FUNCTION>

becomes:

<CMS_ FUNCTION name="contentSelect" resultname="fr sc news">
<CMS PARAM name="schema" value="News@MyPackage"/>
<QUERY entityType="News.Overview@MyPackage">
<ORDER>

<ORDERCRITERIA attribute="Datum" descending="1"/>

</ORDER>
</QUERY>

</CMS_FUNCTION>

5.10.5 Language-dependent content

The data from individual input components visible in the Content Store is stored in a database
table when using shared database access. Since the schema should not be modified in the
target project, the languages for an input component have to be defined in the master project.

You can choose between two different processes for mapping languages:
1. Implicit modeling of language-dependency
2. Explicit modeling of language-dependency

5.10.5.1 Implicit modeling of language-dependency

For implicit modeling of language-dependency, all of the languages for the target projects have to
be added to the master project languages. This set union of all project languages is then taken
into account when creating a database schema.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

140

FirstSpirit™ CorporateContent Fi]_‘St Spirit

The languages are added to the "Project properties" under the "Languages" item in the
ServerManager. The "Generate language" option should be disabled to prevent languages
added via target projects from also being used when generating the master project.

Then a column for each language has to be created in the database schema and the columns
are referenced in the mappings for the table template.

.- Edit Project, [SHo] Mithras Energy 5.0 (10) (id—434285) |
Project a | ~Languages
Options MName Abbreviation Generate language Master language |HTML encoding
Substitutions Deutsch DE v »; UTF-8
Fonts English EMN ¥ UTF-8
Franais FR O 1S0-8859-1
Resolutions Espafiol ES | IS0-8859-1
Users
Groups -

0K Cancel ?

Figure 5-53: Implicit modeling of language dependency

Example;
If a master project has German and English, the first target project has Spanish and English and
the second target project has French and English, then:

1. The languages Spanish and French have to be added to the master project's properties,

2. Columns for German, English, French and Spanish have to be created in the database
schema for the input component and they have to be referenced in the mappings for the
input component.

5.10.5.2 Explicit modeling of language dependency

In contrast to implicit modeling, languages are not mapped using a project property for explicit
modeling; this is done using a database schema instead. This means, a column is created in the
database schema for each language's input component. Then an input component has to be
defined on the table template's form tab for each column and referenced in the mappings.

5.10.6 Different database layers in the master and target project

Direct access to a database via target project is rarely desired in a production environment. If the
target projects are not intended to access a database directly but to access a copy of that
database instead, then the master project's database layer is managed by FirstSpirit in most
cases and the copy for the target projects is managed by a database administrator via an export.
In this case, the master project works on a database layer managed by FirstSpirit and the target

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

141

FirstSpirit™ CorporateContent Fi]_‘St Spirit

projects are managed on a layer that has to be updated manually by the database administrator.
This results in the states between the master and target project often being asynchronous and
results in errors in target projects.

n During an initial import, the option "No schema sync" under the "Databases" item
has to be disabled in the project settings (ServerManager). This option must then be re-
enabled after the initial import (see section 5.10, page 135).

If the target projects are to work off of a copy of the original database, the database schema
should be duplicated in the master project. A separate database layer is assigned for target
projects for this database schema. If just the duplicated database schema is deployed now, then
master and target projects always work on one state.

In order to circumvent this problem, the original database schema should be duplicated in the
master project and another layer should be assigned to the duplicate. Only the duplicate schema
is then made available to the target projects during deployment.

Advantage: The database is managed using FirstSpirit.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04

142

FirstSpirit™ CorporateContent Fi]_‘St Spirit

6 Legal notices

The "CorporateContent" and "ContentTransport" functions are products of e-Spirit AG,
Dortmund, Germany.

Only the license agreed upon with e-Spirit AG is valid with respect to the user for using the
functions.

Details regarding potential third-party software products in use not created by e-Spirit AG, their
separate licenses and, if applicable, their update information can be found on the start page of
every FirstSpirit server in the "Legal notices" area.

FirstSpirit™ V 5.1 = CONT51EN_FirstSpirit_CorporateContent = 1.13 = RELEASED = 2015-02-04 143

	1 Introduction
	1.1 Topic of this documentation

	2 Terms and concepts
	2.1 ContentTransport functionality
	2.1.1 Feature combining in ContentTransport
	2.1.2 Cross-server transport of features

	2.2 CorporateContent functionality
	2.2.1 Package types in CorporateContent
	2.2.2 Package dependencies in CorporateContent
	2.2.3 Package definition and package version
	2.2.4 Publication groups
	2.2.5 Subscription
	2.2.5.1 Updating packages in the subscription
	2.2.5.2 Subscribing to metadata and project settings templates
	2.2.5.3 Release

	2.2.6 Integrating workflows and scripts

	3 Configuration
	3.1 Checking the license file
	3.2 Starting the "PackageManager" service

	4 ContentTransport
	4.1 Creating or loading a feature
	4.2 Adding objects to a feature
	4.2.1 Using the tree structure of stores
	4.2.2 In the feature combination

	4.3 Feature combination
	4.3.1 Overview
	4.3.2 "Included objects" area
	4.3.3 "Required missing references" area
	4.3.4 "Optional missing references" area

	4.4 Flyout menu
	4.5 Graphical representation of dependencies (references)
	4.5.1 Icon bar
	4.5.2 Display of relation graph
	4.5.3 Context menu on objects

	4.6 Updating a feature in a target project
	4.7 Limitations and Notes
	4.8 Configuring storage locations
	4.9 Automatic creation, updating and installation of features
	4.9.1 Exporting existing feature bundles by schedule ("Create new feature bundle")
	4.9.2 Importing feature bundles by schedule ("Install/Update feature bundle")

	5 CorporateContent (package store)
	5.1 Creating or loading a package
	5.1.1 Creating a new package
	5.1.1.1 Selecting a package type
	5.1.1.2 Creating a package – Settings tab
	5.1.1.2.1 Configuring events for a package

	5.1.1.3 Creating a package - Advanced tab
	5.1.1.3.1 Namespace extension
	5.1.1.3.2 Adding new element types

	5.1.2 Creating a package version
	5.1.2.1 Editing package availability
	5.1.2.2 Create a version

	5.1.3 Publishing a package

	5.2 Adding objects to a package
	5.2.1 Using the tree structure of the stores
	5.2.2 In the package combination

	5.3 Package combination
	5.3.1 Overview
	5.3.2 "Integrated objects" area
	5.3.3 "Unfulfilled dependencies (own package)" area
	5.3.4 "Unfulfilled dependencies (foreign packages)" area

	5.4 Flyout menu
	5.5 Graphical representation of dependencies
	5.5.1 Icon bar
	5.5.2 Display for dependency charts
	5.5.3 Context menu on objects

	5.6 Functions via the "CorporateContent" menu item
	5.6.1 Overview menu item
	5.6.1.1 Detailed information on subscriptions
	5.6.1.2 Detailed information on packages
	5.6.1.3 Showing a log

	5.6.2 Package menu item - Edit packages
	5.6.3 Package menu item - Publish packages
	5.6.4 Subscription menu item - Create subscription
	5.6.4.1 Selecting a package
	5.6.4.2 Creating a subscription for a package
	5.6.4.3 Limiting package content in a subscription
	5.6.4.4 Configuring events for a subscription
	5.6.4.5 Subscription is created

	5.6.5 Subscription menu item - Edit subscription
	5.6.6 Subscription menu item - Update subscription
	5.6.7 Publication groups menu item
	5.6.7.1 Editing a publication group
	5.6.7.2 Adding a publication group
	5.6.7.3 Deleting a publication group

	5.6.8 Combining package and target project contents
	5.6.8.1 General
	5.6.8.2 Combining sections
	5.6.8.3 Order when importing objects into target projects

	5.7 CorporateContent content menu in the stores
	5.7.1 Starting adding to a package (master project)
	5.7.2 Removing from a package (master project)
	5.7.3 Removing a package relationship (target project)
	5.7.4 Change status (target project)
	5.7.5 Reintegrating an original (target project)

	5.8 Transferring existing projects into package master projects
	5.8.1.1 Using the reference graph
	5.8.1.2 Structuring the package contents
	5.8.1.3 Limitation of image selection in templates
	5.8.1.4 Limitation of template selection
	5.8.1.5 Preventing language-dependent structures in templates
	5.8.1.6 Automatic conversion in the Page Store
	5.8.1.7 Manual conversion of templates
	5.8.1.8 Manual conversion in the content store
	5.8.1.9 Checking the function in a test project
	5.8.2 For similar projects
	5.8.3 Import / export
	5.8.3.1 Package master projects
	5.8.3.2 Subscribing projects

	5.9 Corporate Content for developers
	5.9.1 Individualization of the package contents in the target projects
	5.9.2 Support for multiple languages
	5.9.2.1 Page contents
	5.9.2.1.1 For projects with a homogeneous language structure
	5.9.2.1.2 For projects with a heterogeneous language structure

	5.9.2.2 Menu structures
	5.9.2.2.1 For projects with a homogeneous language structure
	5.9.2.2.2 For projects with a heterogeneous language structure

	5.9.2.3 Templates
	5.9.2.3.1 Via common database access
	5.9.2.3.2 Local differences in the same language

	5.9.3 Using workflows and events
	5.9.3.1 Determining the nodes affected
	5.9.3.2 Exemplary workflow for the release

	5.10 Shared database access
	5.10.1 Configuring the target projects (read-only DB access)
	5.10.2 For existing databases
	5.10.3 New databases
	5.10.4 "contentSelect" function
	5.10.5 Language-dependent content
	5.10.5.1 Implicit modeling of language-dependency
	5.10.5.2 Explicit modeling of language dependency

	5.10.6 Different database layers in the master and target project

	6 Legal notices

