

UX-Bridge Installation

Version 1.0

State RELEASED

Date 2013-02-19

Department Product Management

Author/ Authors C. Feddersen

Copyright 2012 e-Spirit AG

File name UX-Bridge Installation_DE

Versionshistorie

e-Spirit AG

Barcelonaweg 14
44269 Dortmund | Germany

T +49 231 . 477 77-0
F +49 231 . 477 77-499

 info@e-Spirit.com
 www.e-Spirit.com

http://www.e-spirit.com/
mailto:info@e-spirit.com
http://www.e-spirit.com/en

UX-Bridge Installation

UX-Bridge Installation 1.0 RELEASED 2013-02-19 3

Table of contents

1 Introduction ... 6

1.1 Components .. 6

1.1.1 UX-Bus .. 9

1.1.2 FirstSpirit module ... 9

1.1.3 UX-Bridge API .. 9

1.1.4 Adapters ... 9

1.1.5 Content repository ... 10

2 Installation ... 10

2.1 Installation of the UX-Bus ... 11

2.1.1 Stand-alone operation .. 11

2.1.2 Installing the UX-Bus on the FirstSpirit server 12

2.2 Installing the FirstSpirit module ... 16

2.2.1 FirstSpirit 4.2R4 ... 16

2.2.2 Configuring the UX-Bridge Service .. 17

2.3 Installing adapters ... 20

3 Configuration .. 20

3.1 Routing ... 20

3.1.1 Stand-alone UX-Bus ... 21

3.1.2 FirstSpirit Server .. 21

3.2 Logging ... 22

3.2.1 Logging in the UX-Bus ... 22

3.2.2 LoggingBrokerPlugin .. 23

3.2.3 Logging in clients ... 23

UX-Bridge Installation

UX-Bridge Installation 1.0 RELEASED 2013-02-19 4

3.3 High availability .. 24

3.3.1 Message storage ... 25

3.3.2 Failover ... 25

3.3.3 Master/slave operation ... 27

3.3.4 Network of brokers .. 28

3.3.5 Use with FirstSpirit GenerationServer ... 29

3.3.6 High availability of the content repositories ... 33

3.3.7 High availability of the adapters .. 33

3.4 Security ... 33

3.5 Monitoring .. 34

3.5.1 Apache ActiveMQ Webconsole ... 35

3.5.2 Apache ActiveMQ command line tools ... 35

3.5.3 Monitoring using JMX ... 36

3.5.4 Monitoring using advisory messages .. 36

3.5.5 Monitoring in the schedule .. 37

4 Operation .. 38

4.1 Changing the routing .. 38

4.2 Backup .. 39

4.2.1 Backing up the FirstSpirit project .. 39

4.2.2 Backing up the message broker ... 39

4.2.3 Backing up content repositories .. 39

4.3 Disaster recovery ... 39

4.3.1 Errors in FirstSpirit ... 40

4.3.2 Errors in the UX-Bus ... 40

4.3.3 Errors in the adapter ... 40

4.3.4 Errors in the external content repository .. 41

4.4 Error analysis .. 41

UX-Bridge Installation

UX-Bridge Installation 1.0 RELEASED 2013-02-19 5

4.4.1 Check the FirstSpirit schedule ... 41

4.4.2 Check whether the messages are being routed properly 44

4.4.3 Check whether the adapter is functioning correctly 44

4.4.4 Check the content repository ... 44

4.4.5 Other errors ... 45

4.4.6 Configuring the UXBService results in an exception 47

5 Glossary ... 48

6 Legal notices .. 48

UX-Bridge Installation

UX-Bridge Installation 1.0 RELEASED 2013-02-19 6

1 Introduction

The "UX-Bridge" module is a response to the trend of dynamic websites. Whenever

content cannot be pre-generated, the CMS content has to be accessed dynamically.

In this case, "dynamically" means that the content can change for every website user

and at any point in time. UX-Bridge provides an infrastructure for the requirement for

a dynamic content delivery platform. Thus the module expands the hybrid

architecture approach by adding a standard component for dynamic content delivery.

Additional information can be found in the white paper, Chapter 1.3.

1.1 Components

The UX-Bridge consists of a series of components that supply an infrastructure for

creating web applications.

 UX-Bus

 FirstSpirit module

 UX-Bridge API

 Adapters

 Content repository

The infrastructure can be set up in a wide variety of ways. The UX-Bus can be

installed on the FirstSpirit Server, a stand-alone server, or the same server as the

web application.

Two common architecture variants are described in the following.

UX-Bridge Installation

UX-Bridge Installation 1.0 RELEASED 2013-02-19 7

Figure 1: Architecture variant 1

In the first variant, the UX-Bus and the UX-Bridge adapters are on the same machine

as the web container in which the web application is operated. The UX-Bus is

operated as a stand-alone application. The UX-Bridge adapters jointly use the web

container for the web application. The content repository is on a separate machine.

The FirstSpirit server is also on its own machine, and therefore is decoupled from the

live systems.

UX-Bridge Installation

UX-Bridge Installation 1.0 RELEASED 2013-02-19 8

Figure 2: Architecture variant 2

In the second variant, the UX-Bus and any UX-Bridge adapters, along with the

FirstSpirit server, are on one machine. Here, the UX-Bridge adapters are deployed

as a web application in an Apache Tomcat, which is also used for the FirstSpirit

preview.

Other variants are possible; the optimum solution always depends on the

requirements in the project. Deciding factors, for example, are:

 What requirements apply concerning the availability of the individual

components?

 What security guidelines have to be taken into account? Does the UX-Bus

have to be accessible from third-party applications also?

 What technologies are used for the UX-Bridge adapters, web applications,

and content repository?

UX-Bridge Installation

UX-Bridge Installation 1.0 RELEASED 2013-02-19 9

 What does the network connection of the components look like?

For additional information about the aspects of security and high availability, refer to

the corresponding chapters in this documentation.

1.1.1 UX-Bus

The UX-Bus is a message-oriented middleware (MOM) for exchanging messages

among the participating components. Apache ActiveMQ is used as the message

broker. The routing is configured using the integrated Apache Camel framework.

The UX-Bus forwards the sent messages to the configured end points. Thus the

messages generated by FirstSpirit are directed to the corresponding adapter. After

saving the data, this adapter generates a response, which is sent from the UX-Bus to

a component in FirstSpirit Server.

For information about installing the UX-Bus, refer to Chapter 2.1 Installation of the

UX-Bus, page 11.

1.1.2 FirstSpirit module

These components have to be installed on the FirstSpirit server. The main

component is a service that generates messages, sends them to the UX-Bus, and

receives responses from the bus. Chapter 2.2 Installing the FirstSpirit module

describes how to install and configure the module.

1.1.3 UX-Bridge API

With the UX-Bridge API it is possible to use the UXBService in own modules.

Therefor it is necessary that the uxbridge-module-api-<version>,jar and JDOM in

version 1.0 are in the classpath. The service can be used like this:

UxbService uxbService =

context.getConnection().getService(UxbService.class);

1.1.4 Adapters

Adapters form the interface to the various content repositories and ensure that the

data is written into a repository. Since adapters depend on the repository used as

well as on the data model, they are project-specific components.

UX-Bridge Installation

UX-Bridge Installation 1.0 RELEASED 2013-02-19 10

1.1.5 Content repository

The content repository or live repository is a data storage component, which is filled

by FirstSpirit and read out by web applications.

Here, an important paradigm of the UX-Bridge architecture is: "The type and number

of repositories is not specified," since, depending on the kind of task, different

repositories may be more or less suitable (see the White paper, Chapter 2.1.3.2).

Thus the suitable content repository is to be selected and installed depending on the

requirement of the project.

2 Installation

The components required for operation can be installed in different ways, depending

on the requirement. The following chapters will now discuss the individual

components.

The following files are part of the delivery:

 ux-bus.zip

 ux-bus.tar.gz

 uxbridge-module-api-<version>.jar

 uxbridge-camel-component-<version>.jar

 uxbridge-module-<version>.fsm

 uxbridge-fs5cluster-<version>.fsm

 uxbridge-bus-module-<version>.fsm

 uxbridge_tutorial_newsWidget.tar.gz

 uxbridge_tutorial_newsDrilldown.tar.gz

 UX-Bridge_Installation_*.pdf

 UX-Bridge_DeveloperDocumentation _*.pdf

UX-Bridge Installation

UX-Bridge Installation 1.0 RELEASED 2013-02-19 11

 UX-Bridge_Technical_Datasheet_*.pdf

 third-party-dependencies.txt

2.1 Installation of the UX-Bus

2.1.1 Stand-alone operation

Stand-alone operation is the recommended operating mode for the UX-Bus. In this

scenario, all essential components are decoupled from one another. Additionally, it is

best suited for configuring high-availability scenarios.

2.1.1.1 Installation

The UX-Bus requires having at least Java6 installed. For the exact system

requirements, please refer to the provided technical data sheet.

Make sure that the environment variable is set to JAVA_HOME. Also,

JAVA_HOME/bin should be added to the path variables.

The UX-Bus is installed simply by unzipping the distribution (UX-Bus_<VERSION

NUMBER>.zip) delivered in conjunction with the module into an appropriate folder of

your choice. This distribution is already configured to achieve good results in

conjunction with the UX-Bridge. It is a pre-configured Apache ActiveMQ with

integrated Apache Camel, in which the routes for the UX-Bus and the adapters were

already configured.

The start scripts are in the "bin" folder. The "activemq" script can be used to start the

bus.

Proceeding from the program folder, in which ActiveMQ is:

OS X/Linux:

./bin/activemq console

Windows:

bin/activemq

The default configuration is used here for a start. The configuration is in the "conf"

folder and, of course, later has to be adjusted to your own requirements.

UX-Bridge Installation

UX-Bridge Installation 1.0 RELEASED 2013-02-19 12

2.1.1.2 Testing the installation

As soon as the ActiveMQ bus has been started, a message to this effect should be

logged on the console:

INFO ActiveMQ JMS Message Broker (ID:apple-s-Computer.local-

51222-1140729837569-0:0) has started

Using the netstat tool, you can now check whether the bus can in fact be accessed

and whether the port was configured correctly.

In the default configuration, the port is 61616; it should be adjusted in accordance

with your own configuration.

For testing, simply execute the following line in the console:

Under Windows:

netstat –an|find “61616”

Under Linux:

netstat –an|grep 61616

2.1.1.3 Installation as service

Configurations as Windows Service or Unix Service are recommended for productive

implementation. This ensures that, after restarting the operating system, the

standalone server is also started automatically.

For information about installing as a Service, visit http://activemq.apache.org/run-

broker.html

When installing under Windows Server 2008 64-bit, however,

observe the instructions at the following site:

http://blog.bigrocksoftware.com/2010/10/07/commons-daemon-

procrun-as-a-java-service-wrapper-for-activemq/

2.1.2 Installing the UX-Bus on the FirstSpirit server

http://activemq.apache.org/run-broker.html
http://activemq.apache.org/run-broker.html
http://blog.bigrocksoftware.com/2010/10/07/commons-daemon-procrun-as-a-java-service-wrapper-for-activemq/
http://blog.bigrocksoftware.com/2010/10/07/commons-daemon-procrun-as-a-java-service-wrapper-for-activemq/

UX-Bridge Installation

UX-Bridge Installation 1.0 RELEASED 2013-02-19 13

Operation of the UX-Bus as a module in a FirstSpirit server is recommended only if

operational reasons make it impossible to install the UX-Bus as a stand-alone

component, but you have access and administration rights for the FirstSpirit server.

In this operating mode, warnings usually appear in the FirstSpirit server log, which

are a result of the UXB service being started before the UX-Bus. For more

information about these warnings, refer to the end of this subchapter.

However, if points such as Back channel (WebApp -> FirstSpirit), Clustering, and

Failover are to play a role, the UX-Bus should be operated as a stand-alone server.

Under FirstSpirit 4.2R4, note that the UX-Bus is not able to run on

the InternalJetty, and therefore should be installed on either an

external server or an internal server other than the InternalJetty (for

example, Tomcat).

If you would like to operate the UX-Bus in this mode, please proceed as follows:

1. Install the "UX-Bridge bus" module; to do so, the provided uxbridge-bus-

module-<version>.fsm has to be installed in the server properties.

To ensure that all modules are functional, restart the FirstSpirit server after

installing/updating a module.

2. A global web application has to be created under Web Applications

UX-Bridge Installation

UX-Bridge Installation 1.0 RELEASED 2013-02-19 14

The values shown here are only an example and can be chosen at will.

3. The UX-Bus is installed on the web application by clicking Add. You can

specify the routes and configure the settings for the broker by clicking the

Configuration button.

UX-Bridge Installation

UX-Bridge Installation 1.0 RELEASED 2013-02-19 15

4. Subsequently, "InternalJetty" should be selected and installed as the web

server. After completing the installation, click the "Activate" button to start the

web server.

Then the UX-Bus is ready for use.

For more information on the topic of web applications, refer to the handbook for

administrators in Chapter 7.3.16 Web applications.

In this operating mode, the UXB service is started before the UX-Bus. Since the UXB

service tries to connect to the UX-Bus directly after starting, the following error

messages are issued repeatedly in the FirstSpirit server log. After all components

are started, this message should no longer appear. If the message continues to

UX-Bridge Installation

UX-Bridge Installation 1.0 RELEASED 2013-02-19 16

appear, refer to the instructions in Chapter 4.4 Error analysis.

WARN 20.07.2012 14:00:03.919

(org.apache.camel.component.jms.DefaultJmsMessageListenerContainer

): Could not refresh JMS Connection for destination 'FS_OUT' -

retrying in 5000 ms. Cause: Connection refused: connect

2.2 Installing the FirstSpirit module

The UX-Bridge module has to be installed on the FirstSpirit server first, and then

added in the project configuration. Select the "Modules" area in the server properties

and click the "Install" button. Now select the file uxbridge-module-<version>.fsm to

be installed. After the installation, the new folder "UX-Bridge" should have been

added. Select the entry, click "Configure", check "All rights", and confirm your

changes.

Now close the server properties by clicking "OK".

To ensure that all modules are functional, restart the FirstSpirit server after

installing/updating a module.

For more information about installing modules, refer to Chapter 7.3.14, Modules, in

the documentation for administrators.

2.2.1 FirstSpirit 4.2R4

If UX-Bridge is used in a FirstSpirit version lower than 5, current versions (1.6.4) of

UX-Bridge Installation

UX-Bridge Installation 1.0 RELEASED 2013-02-19 17

the two jar files, slf4j-api.jar and slf4j-simple.jar, have to be copied into the

<fs>/shared/lib/ folder. Current versions of these files can be downloaded at

http://www.slf4j.org/.

This has to be done before installing the uxbridge-module-<version>.fsm. Also, the

FirstSpirit server has to be restarted before the module can be installed.

2.2.2 Configuring the UX-Bridge Service

The UX-Bridge Service is the interface from FirstSpirit to the UX-Bus; the messages

are sent via it.

It is very easy to configure the service:

1. Open Server Properties -> Modules

2. Click UX-Bridge and select UXB service

3. Click Configure

2.2.2.1 XML tab

The configuration is carried out via a Spring XML DSL. For more information about

syntax, visit http://camel.apache.org/spring.html.

The configuration of the sample application looks like this, for example:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:jms="http://www.springframework.org/schema/jms"

xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans-

3.0.xsd

 http://camel.apache.org/schema/spring

 http://camel.apache.org/schema/spring/camel-spring-

2.10.0.xsd http://www.springframework.org/schema/jms

http://www.springframework.org/schema/jms/spring-jms-3.0.xsd">

 <bean id="jms"

class="org.apache.camel.component.jms.JmsComponent">

 <property name="connectionFactory">

http://www.slf4j.org/

UX-Bridge Installation

UX-Bridge Installation 1.0 RELEASED 2013-02-19 18

 <bean

class="org.apache.activemq.ActiveMQConnectionFactory">

 <property name="brokerURL"

value="failover:(tcp://localhost:61616)?maxReconnectAttempts=2&

;startupMaxReconnectAttempts=10"/>

 </bean>

 </property>

 </bean>

 <camelContext xmlns="http://camel.apache.org/schema/spring"

id="camelContext" trace="false">

 <package>com.espirit.moddev.uxbridge.service</package>

 <template id="producerTemplate"/>

 <endpoint id="FS-Out" uri="jms:topic:FS_OUT"></endpoint>

 <route id="Adapter-Statistics-Response-Route">

 <from uri="jms:topic:FS_IN"/>

 <convertBodyTo

type="com.espirit.moddev.uxbridge.service.api.v1.UXBEntity"/>

 <bean ref="UxbServiceStatisticsResponseHandler"

method="print"/>

 </route>

 </camelContext>

 <bean id="UxbServiceStatisticsResponseHandler"

class="com.espirit.moddev.uxbridge.service.UxbServiceStatisticsRes

ponseHandler">

 <constructor-arg ref="camelContext"/>

 </bean>

</beans>

 Jms:

The Apache ActiveMQ link is configured in this Bean. With the brokerURL

property you can configure not only the link, but also the Failover behavior,

among other things.

Information about all configuration parameters can be found at the following

links:

UX-Bridge Installation

UX-Bridge Installation 1.0 RELEASED 2013-02-19 19

Transport: http://activemq.apache.org/configuring-version-5-transports.html

Connection: http://activemq.apache.org/connection-configuration-uri.html

Failover: http://activemq.apache.org/failover-transport-reference.html

TCP: http://activemq.apache.org/tcp-transport-reference.html

 CamelContext:

Two routes are configured here:

FS_OUT = The route by which FirstSpirit sends the data

FS_IN = The route in which FirstSpirit waits for new messages

 UxbServiceStatisticsResponseHandler:

This Bean is the handler of the messages that the adapters send back.

2.2.2.2 Options tab

In the second tab of the UXB service, you can define whether the messages are to

be sent asynchronously or synchronously. If checked, the messages are sent

asynchronously. A higher performance can be achieved by doing so, since, unlike

with synchronous communication, there is no waiting for a response. This

performance improvement can be very advantageous with large amounts of data.

http://activemq.apache.org/configuring-version-5-transports.html
http://activemq.apache.org/connection-configuration-uri.html
http://activemq.apache.org/failover-transport-reference.html
http://activemq.apache.org/tcp-transport-reference.html

UX-Bridge Installation

UX-Bridge Installation 1.0 RELEASED 2013-02-19 20

2.3 Installing adapters

Adapters are components that are developed within the project. To keep

administration and maintenance easy, it is advisable to develop the adapter as a

web application that is installed into a web/servlet container or application server. In

many cases, the necessary infrastructure already exists. However, this is not a

mandatory prerequisite, so the adapter can be developed as a stand-alone Java

application that is installed on a server.

For more instructions on developing adapters, refer to the DeveloperDocumentation

in Chapter 3.3 Adapters.

3 Configuration

Initially the UX-Bus has some default routes, but they can be adjusted and expanded

as needed.

Depending on the kind of installation, stand-alone or in FirstSpirit, changes to the

configuration have to be made at various places. These aspects are explained in the

first chapters.

In the following chapters, topics concerning high availability as well as Security,

Monitoring, and Logging are treated.

3.1 Routing

Routing pre-filters and distributes messages. Routing is configured in a Spring-XML

file expanded by Camel-DSL (http://camel.apache.org/spring.html).

By default, FirstSpirit requires two routes. FS_OUT for sending and FS_IN for

receiving messages. Different routes can be defined in Routing, depending on the

need and use case. The messages sent via the FS_* routes can be filtered and/or

distributed.

The default routes:

<beans

 xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://camel.apache.org/schema/spring

http://camel.apache.org/schema/spring/camel-spring.xsd

 http://www.springframework.org/schema/beans

UX-Bridge Installation

UX-Bridge Installation 1.0 RELEASED 2013-02-19 21

http://www.springframework.org/schema/beans/spring-beans.xsd">

 <camelContext id="camel"

xmlns="http://camel.apache.org/schema/spring">

 <route id="uxbridge-route1">

 <from uri="activemq:topic:FS_OUT"/>

 <to uri="activemq:topic:BUS_OUT"/>

 </route>

 <route id="uxbridge-route2">

 <from uri="activemq:topic:BUS_IN"/>

 <to uri="activemq:topic:FS_IN"/>

 </route>

 </camelContext>

</beans>

The routes, just like the adapters, are very project-specific. For a more detailed

introduction, refer to Chapter 3.5 Routing in the DeveloperDocumentation .

3.1.1 Stand-alone UX-Bus

The routing is defined in the conf/camel.xml file in the installation directory of the UX-

Bus. In the distribution provided, some default routes are already specified, so that

no adjustments are needed at first. For details on configuring the routing, refer to

Chapter 4.1 Changing the routing on page 38.

3.1.2 FirstSpirit Server

If the UX-Bus was installed in the FirstSpirit server, please proceed with configuring

the routes as follows.

1. Start the Server and Project Configuration

2. Open the server properties

3. In the left-hand menu, select the "Web application" item

4. Select the created global web application (see Chapter 2.1.2 Installing the

UX-Bus on the FirstSpirit server, page 12)

5. Click the "Configure" button

UX-Bridge Installation

UX-Bridge Installation 1.0 RELEASED 2013-02-19 22

6. In the dialog you can now create new routes or edit existing routes.

For a description of the routes to be configured in FirstSpirit, refer to Chapter 2.4.1,

End points in FirstSpirit, in the DeveloperDocumentation.

3.2 Logging

The chapter deals with the configuration of the logging mechanisms of Apache

ActiveMQ. In the event of errors, the log files and log outputs on the default output

are the first places to look for the causes.

Apache ActiveMQ uses Apache Commons Logging API for internal logging.

Therefore it can be used without any trouble with very diverse logging frameworks

used in the Java environment. Apache log4j is used for the logging in the default

configuration. For detailed information about configuring log4j, refer to the online

documentation for log4j: http://logging.apache.org/log4j/1.2/

The Apache ActiveMQ documentation also includes some information on the topic of

logging: http://activemq.apache.org/how-can-i-enable-detailed-logging.html

3.2.1 Logging in the UX-Bus

The default output file for the logging is data/activemq.log. If problems arise, this is

the place to start troubleshooting. The logging can be configured in the

conf/log4j.properties file in order, for example, to adapt the log level to the particular

requirements. The "INFO" log level is used in the default configuration. The following

are output on the console and in the log file:

 log4j.rootLogger=INFO, console, logfile

Furthermore, you can define packages which are to use a different log level. In the

default configuration these are:

log4j.logger.org.apache.activemq.spring=WARN

log4j.logger.org.apache.activemq.web.handler=WARN

log4j.logger.org.springframework=WARN

log4j.logger.org.apache.xbean=WARN

log4j.logger.org.apache.camel=INFO

For debugging purposes the log level can then be adjusted, for example, by

replacing the respective line. Thus for the debug level:

log4j.rootLogger=DEBUG, console, logfile

In doing so, you should be aware that many more messages will appear in debug

http://logging.apache.org/log4j/1.2/
http://activemq.apache.org/how-can-i-enable-detailed-logging.html

UX-Bridge Installation

UX-Bridge Installation 1.0 RELEASED 2013-02-19 23

mode, which makes it more difficult to filter out the relevant messages. To prevent

this, you could leave the rootLogger configuration at INFO and just set the

configuration for the package to be investigated to DEBUG or even TRACE. Thus:

log4j.logger.mein.eigenes.package=TRACE

In the delivered distribution it is enough to activate the following two lines in the

<activemq>/conf/log4j.properties file in order to receive appropriate debug messages

for the routing and processing of the messages:

Or for more fine grained debug logging uncomment one of these

#log4j.logger.org.apache.activemq=DEBUG

#log4j.logger.org.apache.camel=DEBUG

3.2.2 LoggingBrokerPlugin

LoggingBrokerPlugin enables even more detailed logging than log4j and, above all,

enables you to get more information about what happens in the UX-Bus. The plug-in

can simply be added to <plugins> in the conf/activemq.xml configuration file:

...

 <plugins>

 <loggingBrokerPlugin logAll="true"/>

 </plugins>

...

More detailed explanations and other attributes are included in the Apache ActiveMQ

documentation:

http://activemq.apache.org/logging-interceptor.html

3.2.3 Logging in clients

Logging of the UX-Bus helps in the event of errors and problems on the broker.

However, if errors arise outside of the UX-Bus, logging should also be possible to

quickly remedy the problems. Problems can arise at all clients linked to the bus. This

includes the UXB service and the implemented adapters.

As logging mechanism, the UXB service uses log4j, which is made available by

FirstSpirit API. The logging configuration also used by FirstSpirit server is used. To

retain DEBUG messages for the UX-Bridge Service, you need only to activate

DEBUG logging for the FirstSpirit server. To do so, in the server monitoring of the

FirstSpirit server, select the item Configuration -> Logging. Edit the active

http://activemq.apache.org/logging-interceptor.html

UX-Bridge Installation

UX-Bridge Installation 1.0 RELEASED 2013-02-19 24

configuration and change the first line as follows.

log4j.rootCategory=DEBUG, fs

After saving the configuration, the log level is automatically adjusted.

Adapters are used in the project, so the developer is responsible for providing

corresponding logging and documenting the usage accordingly.

3.3 High availability

If the UX-Bridge is used only for filling content repositories, the criteria pertaining to

availability are often already fulfilled by the default configuration. If the UX-Bus fails,

there is no direct impact on the website (live system), since the web applications

communicate only with the content repository. Therefore operation of the website is

ensured even during a temporary failure. During the failure, however, no data from

FirstSpirit can be written into the content repository.

Brief failures, such as from restarting a component, power failure, etc., are absorbed

in the default configuration by mechanisms such as automatic reconnects, redelivery

of messages, and the persistent message storage. In these cases, therefore, no loss

of data is to be expected.

If components fail irreparably, the original state can easily be recovered by

reinstalling the components and fully deploying the data.

If the UX-Bridge is used as an integration component with which other systems

communicate by exchanging messages, the demands on availability are usually

higher. In these cases, use of master/slave configurations can make sense for

ensuring high availability of the UX-Bus. If there is an extremely high number of

messages or the messages are very large, another option is to configure a load

balancing. Of course, both mechanisms can also be used in combination.

If data that FirstSpirit cannot generate is also saved in the content repositories,

special attention should be paid to backing up this data. Of course, in a high

availability scenario, the content repository should also be designed accordingly with

redundancy to avoid becoming a single point of failure. This is particularly critical

since the function of the entire website may be impaired.

The following chapters go into the individual components and aspects that have to

be taken into consideration when configuring a high availability scenario. The term

"broker" is used repeatedly and refers to the message component of the UX-Bus.

UX-Bridge Installation

UX-Bridge Installation 1.0 RELEASED 2013-02-19 25

Apache ActiveMQ is used in particular.

3.3.1 Message storage

KahaDB is used with activated persistence in the delivered distribution as the

message store of the UX-Bus. If you also want to implement a disaster recovery

strategy for the message storage, corresponding instructions are at

http://activemq.apache.org/replicated-message-store.html.

For detailed instructions on configuring the message storage, visit

http://activemq.apache.org/persistence.html.

3.3.1.1 Backing up the message storage

At delivery, KahaDB is configured for message persistence in the configuration

(\conf\activemq.xml):

<broker>

 <persistenceAdapter>

 <kahaDB directory="${activemq.data}/kahadb"/>

 </persistenceAdapter>

</broker>

To create a backup of the KahaDB, the following steps are necessary:

1. Freeze the file system that the database includes to ensure that a

consistent snapshot of the journal is created

2. Backup of the database using default backup mechanisms

For more information, visit:

http://activemq.apache.org/how-do-i-back-up-kahadb.html

http://www.mentby.com/Group/apache-activemq/kahadb-and-backups.html

If a JDBC persistence of the JMS messages is used as an alternative to the Kaha

persistence (http://activemq.apache.org/persistence.html), use the familiar database-

specific backup mechanisms.

3.3.2 Failover

If the UX-Bus fails, it should be ensured that the work of the UXB service and the

http://activemq.apache.org/replicated-message-store.html
http://activemq.apache.org/persistence.html
http://activemq.apache.org/how-do-i-back-up-kahadb.html
http://www.mentby.com/Group/apache-activemq/kahadb-and-backups.html
http://activemq.apache.org/persistence.html

UX-Bridge Installation

UX-Bridge Installation 1.0 RELEASED 2013-02-19 26

adapters is not impaired. This means that the sending of messages is either tried

again later or the sending occurs directly via a second instance.

All clients logged in at the respective UX-Bus should be able to reconnect to another

UX-Bus or retry establishing a connection after a certain waiting period. The failover

protocol exists to achieve this.

The failover protocol is already configured in the default configuration of the UXB

service:

<property name="brokerURL"

value="failover:(tcp://localhost:61616)"/>

In this case, the failover protocol ensures that if a connection is lost, attempts to

establish a new connection are made at certain intervals. Here you can determine

the various parameters yourself, such as how long the first wait should be, by what

factor the waiting time should be increased with each attempt, and how long the

maximum waiting time should be (initialReconnectDelay, backOffMultiplier,

maxReconnectDelay).

A failover configuration with multiple UX-Bus instances would look, for example, as

follows:

<property name="brokerURL" value="failover:(tcp://broker1:61616,

tcp://broker2:61616)?randomize=false"/>

In this case, broker1 is used for sending the messages. If this fails, the messages

are automatically sent by broker2.

If you use your own adapters, make sure that these also use the failover protocol to

protect against lost connections or failure of the UX-Bus.

You have the greatest advantage of the failover protocol if multiple UX-Bus instances

are configured in a cluster. (also refer to Chapter 3.3.3 Master/slave operation, page

27) Now multiple UX-Bus instances can be given, with which the failover protocol

can connect. If the connection with a UX-Bus is lost, a connection to another UX-Bus

is automatically established. For time-critical applications, the backup and

backupPoolSize parameters can also be used to establish a certain number of

backup connections that can be used immediately if an active connection is lost.

The advantage is that the connection already exists in a standby state and does not

have to be established if there is an emergency.

An alternative for using failover with clustering is to specify only one UX-Bus and,

when configuring the UX-Bus, to cause the logged-in clients to automatically receive

a list of every available UX-Bus with which they can establish a connection if there is

UX-Bridge Installation

UX-Bridge Installation 1.0 RELEASED 2013-02-19 27

a problem. The "updateClusterClients" and "rebalanceClusterClients" exist for this

purpose in the "TransportConnector" configuration of the UX-Bus.

For more information about the failover parameters, refer to the Apache ActiveMQ

documentation at: http://activemq.apache.org/failover-transport-reference.html

3.3.3 Master/slave operation

Master/slave operation is a good way to increase the fail-safe performance. Here, an

Apache ActiveMQ instance acts as master and one or more instances act as slave.

The clients always send their requests to the master; only if the master fails does

one of the slave instances become the new master and assumes its tasks. Now the

messages are processed by this instance.

Opposed to this is the use of a network of brokers (Chapter 3.3.4 Network of brokers

page 28), in which all Apache ActiveMQ instances have equal rights.

In both cases, it is important to configure the failover in the client as described in

Chapter 3.3.2 Failover on page 25.

3.3.3.1 Shared storage master/slave

In "Shared storage master/slave" clustering mode, the same KahaDB is used by

multiple brokers for permanently saving messages. Only one master can access the

persistence, while the slaves are blocked. The slaves check at regular intervals

whether they can get access to the persistence. If the master broker fails and shuts

down, the slave broker receives access to the persistence. Only at this moment does

the slave broker boot up completely and enable clients to establish a connection.

Two kinds of this shared persistence can be implemented:

One option is to use a relational database, in which the brokers store the data. One

advantage of this method is that databases are backed up quickly and easily.

The second option is to access a jointly used file system, on which the Apache

ActiveMQ brokers then deposit the KahaDB. The only requirement of this file system

is that there be a locking mechanism that ensures that there is always only one

broker with access to the KahaDB.

To configure "shared storage master/slave" clustering, you only need to configure

two brokers with access to the same persistence. Due to the fail-safe performance,

the brokers should run on different machines. The clients receive both broker

http://activemq.apache.org/failover-transport-reference.html

UX-Bridge Installation

UX-Bridge Installation 1.0 RELEASED 2013-02-19 28

addresses in the failover protocol, and if a master broker fails, a connection is

immediately established with the new master broker. This accesses the data of the

same persistence and thus is current.

In each of the brokers, the persistence adapter has to be adjusted so that they all

use the same directory.

<persistenceAdapter>

 <kahaDB directory="/sharedFileSystem/sharedBrokerData"/>

</persistenceAdapter>

For more information about configuring, refer to the official documentation at

http://activemq.apache.org/shared-file-system-master-slave.html.

Be aware that this mode is prone to errors in connection with the file system. If the

machine on which the file system is located fails, all brokers that are supposed to

access it lose access to the persistence and, in the worst case, have to be shut

down. If your own application is to be protected from errors in connection with the file

system, choose a file system that is also distributed over multiple machines and

remains functional if a machine fails.

3.3.4 Network of brokers

A "network of brokers" consists of at least two different brokers, each of which has its

own persistence store. In this case, it is not absolutely necessary for each broker to

have the same messages (or all messages). One use case for this architecture is the

load distribution.

In most usage scenarios, it is not necessary to use a network of brokers for

distributing the load. Generally a single UX-Bus can process the anticipated amount

of messages without any problem.

If load balancing is still desired, a client configuration would look something like this:

failover:(tcp://master1.IP:61616,tcp://master2.IP:61617)?randomize

=true

master1 and master2 are a "network of brokers"; the messages are randomly

distributed.

This architecture is best clarified by way of an example:

Broker A receives a message in Queue A and saves it in its own store. As long as no

client is listening for messages from Queue A at Broker B, these messages are not

http://activemq.apache.org/shared-file-system-master-slave.html

UX-Bridge Installation

UX-Bridge Installation 1.0 RELEASED 2013-02-19 29

needed at Broker B, which is why it does not receive them. As soon as a client of

Broker B listens for messages from Queue A, Apache ActiveMQ ensures that Broker

B also receives these messages in order to deliver them to the client.

Information about which clients are listening to which queues at which brokers is

exchanged between the various brokers by means of what are called "advisory

messages". This way every broker always knows which messages are or are not of

interest to other brokers.

When configuring individual brokers, you can also define filters for various messages

or exclude other brokers from messages.

From the perspective of the client, this concerns the high availability of the brokers,

but not the messages that are sent. The reason for this is that each broker has its

own database for messages. If a broker fails, the messages of this broker are not

distributed again until the broker has been restarted.

For more information on this topic, visit:

http://activemq.apache.org/networks-of-brokers.html and

http://activemq.apache.org/how-do-distributed-queues-work.html

3.3.5 Use with FirstSpirit GenerationServer

By using one or more generation servers, the generation load can be decoupled

from the FirstSpirit master server. In addition to generating the static pages, the

generation server can also take over generation of the messages. Messages

continue to be sent via the UX-Bus service, which runs on the FirstSpirit master

server.

By supporting the SEO Url generation expanded in FirstSpirit 5, the generation

server depends on the configuration of the FirstSpirit version.

In schedule for every generation server to be able to form nodes with the UX-Bus,

the initialization must be carried out via the template for project settings pages.

3.3.5.1 Configuring the schedule

http://activemq.apache.org/networks-of-brokers.html
http://activemq.apache.org/how-do-distributed-queues-work.html

UX-Bridge Installation

UX-Bridge Installation 1.0 RELEASED 2013-02-19 30

Since the UX-Bridge is no longer initialized via a script within the schedule, the

respective script has to be removed from the schedule.

The script is no longer needed, since the UX-Bridge is initialized by the project

settings template.

3.3.5.2 Configuration under FirstSpirit 4.2

To configure under FirstSpirit 4.2, the UX-Bridge has to be initialized only within the

project settings pages.

The following code has to be called up within the template in the presentation

channel of the UXB.

$CMS_SET(uxbFileSystem,

class("com.espirit.moddev.uxbridge.inline.UxbInitializer").initUxb

(#global))$

UX-Bridge Installation

UX-Bridge Installation 1.0 RELEASED 2013-02-19 31

3.3.5.3 Configuration under FirstSpirit 5

Another module has to be installed on the FirstSpirit server to support the url creator

in FirstSpirit 5.

UX-Bridge Installation

UX-Bridge Installation 1.0 RELEASED 2013-02-19 32

The module uxbridge-fs5cluster-<version>.fsm has to be installed via the

Administration Client from FirstSpirit.

To ensure that all modules are functional, restart the FirstSpirit server after

installing/updating a module.

Next, the template for the project settings page within the UXB presentation channel

has to be expanded by adding the following line.

$CMS_SET(uxbFileSystem,

class("com.espirit.moddev.uxbridge.fs5cluster.UxbInitializer").

initUxb(#global))$

Note: The package is different from the FirstSpirit 4.2 UXB initialization.

UX-Bridge Installation

UX-Bridge Installation 1.0 RELEASED 2013-02-19 33

3.3.6 High availability of the content repositories

Configuration of the content repositories is also critical along with the correct

configuration of the UX-Bridge infrastructure to ensure high availability.

Content repositories are selected depending on the specific project; please consult

the documentation for the repositories in use to learn more about high availability.

3.3.7 High availability of the adapters

Adapters are implemented depending on the specific project. During development,

the requirements regarding high availability have to be taken into account

accordingly. In many scenarios, the requirements can be covered by multiple

instances of the adapter and appropriate routing.

3.4 Security

In the default UX-Bus configuration, each application can be connected to the Bus to

send and receive messages. Depending on the area where the UX-Bridge and

dependent applications are used, this may not be desired, especially if sensitive data

is being transmitted.

It should not be possible to reach the UX-Bus from outside, rather it should send the

messages via an internal network only, to be able to ensure the highest possible

UX-Bridge Installation

UX-Bridge Installation 1.0 RELEASED 2013-02-19 34

security. Attention should be given here to blocking of connections to and from the

outside. We recommend ensuring this by means of the corresponding firewall rules

on the computers. Alternatively or additionally, this can be achieved by security

settings in the UX-Bus. One option is to use the "messageAuthorizationPolicy"

mentioned below. For more details, refer to the Apache ActiveMQ documentation

(http://activemq.apache.org/security.html).

The UX-Bus can be protected from access lacking authentication or authorization.

For simple use cases, using the "simple authentication plugin" from Apache

ActiveMQ is sufficient; this permits the access data to be stored in a configuration

file. The Apache ActiveMQ "JAAS plug-in" also enables the use of standardized,

easy to configure Java login modules, which allow authentication via various

sources, such as LDAP, property files, etc. In addition, you can write your own JAAS

login modules, which use mechanisms such as Kerberos, NTLM, NIS, etc. for

authentication or authorization. The ActiveMQ broker can also be operated with

certificate-based encryption (such as SSL).

If even more fine-grained control is to be set up, ActiveMQ offers the options of

"operation-level" authentication and "message-level" authentication. The "operation-

level" authentication can be used, for example, to specify which users can read/write

to/from which destination. Unlike authentication and authorization at the broker level,

the "message-level" authentication makes it possible to permit only certain

messages to the destination, for example, only messages for a certain recipient.

Using the Apache ActiveMQ plug-in API, it is also possible to write new security

plug-ins that are adapted to your own requirements.

For more detailed documentation, refer to http://activemq.apache.org/security.html.

We also recommend the Fuse MQ Enterprise documentation:

http://fusesource.com/docs/mqent/7.0/security/front.html

The following keywords may help with your search:

simpleAuthenticationPlugin, jaasAuthenticationPlugin, authorizationPlugin,

messageAuthorizationPolicy, jaasCertificateAuthenticationPlugin

Another security-relevant point is access via JMX. This is protected by default with

ActiveMQ and can be configured using the “jmx.access” and “jmx.password” files

(http://activemq.apache.org/jmx.html).

3.5 Monitoring

This chapter deals with various options for monitoring Apache ActiveMQ. Since high-

end applications always depend on good performance and low susceptibility to error,

http://activemq.apache.org/security.html
http://fusesource.com/docs/mqent/7.0/security/front.html
http://activemq.apache.org/jmx.html

UX-Bridge Installation

UX-Bridge Installation 1.0 RELEASED 2013-02-19 35

it is important to be able to localize bottlenecks quickly and reliably, and to be able to

quickly gain a reliable picture of the current state of the infrastructure if problems

arise.

3.5.1 Apache ActiveMQ Webconsole

Apache ActiveMQ comes with options for managing and monitoring the application.

For instance, there is the web console, which can be accessed at

http://localhost:8161/admin as soon as it is activated. Where appropriate, "localhost"

has to be replaced with the address of the machine where the UX-Bus is running.

For details on activating and configuring the web console, refer to the online

documentation: http://activemq.apache.org/web-console.html

Above all, it is necessary that not everyone has unlimited access to the web console.

In the conf/jetty.xml file, therefore, the line

<property name="authenticate" value="false" />

should be replaced with the line

<property name="authenticate" value="true" />

.

Authorized users and their access data can then be entered in the file conf/jetty-

realm.properties (the default user is "admin" with the username/password:

admin/admin).

The web console offers simple functions for viewing information via the broker and

getting a look at simple statistics. The display includes information about queues,

topics, subscribers, connections, and the network. Additionally, there is a function for

sending messages. This enables easy testing of applications without first writing

extra code. The web console is intuitively operated, self-explanatory, and therefore

not explained in greater detail here.

3.5.2 Apache ActiveMQ command line tools

Some useful command line tools are also delivered with Apache ActiveMQ; these

provide basic admin functions, including some functions for monitoring. Using the

"activemq-admin" tool and the "query" parameter you can, for example, retrieve and

read diverse information about Broker, Destination, Connector, and Connection.

Messages can be searched using the "browse" parameter.

http://activemq.apache.org/web-console.html

UX-Bridge Installation

UX-Bridge Installation 1.0 RELEASED 2013-02-19 36

For a more-detailed description of the functional range of all options, refer to the

official Apache ActiveMQ documentation: http://activemq.apache.org/activemq-

command-line-tools-reference.html

3.5.3 Monitoring using JMX

Another option for monitoring is to use the JMX API (Java Management Extensions).

Some parameters of the above-mentioned command line tools (such as "query")

also use the JMX API to get information about brokers, queues, etc. For details

about configuring JMX, please refer to the Apache ActiveMQ documentation:

http://activemq.apache.org/jmx.html

If the Apache ActiveMQ broker is configured to permit JMX connections, you can, for

example, write your own help programs, which produce a JMX connection and read

broker information.

To do so, refer to the official JMX API

(http://docs.oracle.com/javase/7/docs/technotes/guides/jmx/spec.html) and the

Apache ActiveMQ API, which provide additional functions

(http://activemq.apache.org/maven/5.6.0/activemq-core/apidocs/). The

"BrokerViewMBean" interface from the Apache ActiveMQ API is a good starting point

for reading out the broker's data using JMX.

The MBeans from Apache ActiveMQ are in the "org.apache.activemq" package and

can be read out using tools such as JConsole, JVisualVM, or the like. For

information about Apache Camel and the routes, refer to MBean org.apache.camel.

Via JMX Monitoring you can get information such as

 How many messages have been sent

 How many messages have been routed or have expired

 How many connections (UXB service, adapter) there are to the UX-Bus

In the event of an error, this can be used to gain valuable information via monitoring.

3.5.4 Monitoring using advisory messages

Advisory messages are used by Apache ActiveMQ to enable brokers to

communicate with each other and to exchange information about queues,

consumers, etc. To use these messages for your own monitoring purposes, for

example, you can write your own application for listening to advisory messages. For

http://activemq.apache.org/activemq-command-line-tools-reference.html
http://activemq.apache.org/activemq-command-line-tools-reference.html
http://activemq.apache.org/jmx.html
http://docs.oracle.com/javase/7/docs/technotes/guides/jmx/spec.html
http://activemq.apache.org/maven/5.6.0/activemq-core/apidocs/

UX-Bridge Installation

UX-Bridge Installation 1.0 RELEASED 2013-02-19 37

details on this, refer to the Apache ActiveMQ documentation:

http://activemq.apache.org/advisory-message.html

3.5.5 Monitoring in the schedule

The UXB service itself also provides an option for monitoring. Each message sent to

the UX-Bus receives a time stamp when created. If an adapter processes the

message, another time stamp is set as well as the status after the processing

(ok/fail). In the schedule, a method can be called up that queries the UXB service

and returns a list of messages, their processing time, and their status. To do so, a

script action has to be added to the end of the schedule:

import com.espirit.moddev.uxbridge.service.UxbService;

uxbService = context.getConnection().getService(UxbService.class);

uxbService.waitSeconds(5);

uxbService.getTimings(context.getStartTime().getTime());

Since the messages are processed asynchronously and can last different amounts

of time depending on the adapter and number of messages, it is possible to use the

waitSeconds() method to give the time in seconds that the service should wait for the

response message and that the processing times should be evaluated. This is done

via the getTimings() method, which receives the start time of the schedule as a

parameter, so that only messages of the current schedule cycle are taken into

consideration.

…

INFO 25.07.2012 10:38:44.811 Time for

#uxb/pressreleasedetails/UXB/DE/704 (mongodb): 220ms

INFO 25.07.2012 10:38:44.812 Time for

#uxb/pressreleasedetails/UXB/EN/704 (mongodb): 173ms

INFO 25.07.2012 10:38:44.813 48/48 deployed successfully (overall:

210ms, monogodb: 183ms, postgres: 238ms).

INFO 25.07.2012 10:38:44:813 finished task ‘GetTimings’ – schedule

entry ‘UX-Bridge (News)’ (id=6191)

The results of the messages that were not processed until after the specified waiting

period are kept in the memory. For these to be automatically deleted, a cyclical

server schedule can be created, which deletes it from the memory in a script action.

It is advisable to create a script variable (here: "daysToKeepTimings") to indicate

that timings are to be retained until a certain time:

import com.espirit.moddev.uxbridge.service.UxbService;

import java.util.Date;

http://activemq.apache.org/advisory-message.html

UX-Bridge Installation

UX-Bridge Installation 1.0 RELEASED 2013-02-19 38

uxbService = context.getConnection().getService(UxbService.class);

millisToKeepTimings =

Long.parseLong(daysToKeepTimings)*24*3600*1000;

uxbService.cleanupTimingsUntil(new Date().getTime() -

millisToKeepTimings);

4 Operation

4.1 Changing the routing

If the routing is to be changed, for example, because new adapters or content

repositories have been added, the configuration has to be adjusted as described in

Chapter 3.1 Routing page 20.

After the changes, the UX-Bus has to be restarted, so that the new or changed

routes are activated. When doing so, note that restarting the UX-Bus can result in

messages being lost.

If a deployment is running during the restart and the UX-Bus restart lasts longer than

the time that the failover transport requires to achieve the maximum number of

reconnect attempts, the deployment of the corresponding content elements is

interrupted and the attempts continue. Then this element will not be present in the

content repository later. To minimize this risk, it is advisable to test the failover

transport beforehand and configure it so that the UX-Bus can be restarted normally

without loss of data.

The default configuration uses the default parameters of failover. These are

described in the online documentation:

http://activemq.apache.org/failover-transport-reference.html

The parameters maxReconnectAttempts and startupMaxReconnectAttempts were

set to the following values:

maxReconnectAttempts=10

startupMaxReconnectAttempts=2

The first waiting period is 10 ms and is doubled with each of 10 attempts. This yields

a total waiting period of:

10+20+40+80+160+320+640+1,280+2,560+5,120=10,230 ms = 10.23 s

http://activemq.apache.org/failover-transport-reference.html

UX-Bridge Installation

UX-Bridge Installation 1.0 RELEASED 2013-02-19 39

Thus if the server is not available for longer than 10 s, a data record will be lost.

The UXB service does not have to be restarted while the UX-Bus is restarting, since

the failover transport automatically reestablishes the connection after restoring the

UX-Bus. We also recommend using the failover transport in self-implemented

adapters so that the connection is reestablished if lost and the adapter does not

have to be restarted.

4.2 Backup

Since the UX-Bridge consists of various components, the backup has to be designed

depending on the components.

4.2.1 Backing up the FirstSpirit project

For instructions on how FirstSpirit projects can be backed up and restored, refer to

the FirstSpirit admin documentation.

4.2.2 Backing up the message broker

Usually there are not too many messages on the message broker. A message in the

queue leaves the queue as soon as it is retrieved. The message broker passes

responsibility for subsequent handling of the message to the adapter. The messages

that still have not been "picked up" by the adapter are on the broker. If you want to

back these up, this can be accomplished by backing up the KahaDB if the messages

and the KahaDB are permanently saved. For details on this, refer to Chapter 3.3.1.1

Backup.

4.2.3 Backing up content repositories

The procedure for backing up the data in a content repository depends on the

solution employed. Depending on the system used, follow the instructions from the

corresponding documentation to create a backup.

4.3 Disaster recovery

Data can be damaged or lost after a system failure or critical error. In an emergency,

this data should be restored as quickly and reliably as possible.

In the case of failures in which messages have been lost, it is easiest to carry out a

UX-Bridge Installation

UX-Bridge Installation 1.0 RELEASED 2013-02-19 40

full deployment from FirstSpirit; then the current state of the project is written by UX-

Bridge to the content repository. Then you can be certain of having consistent,

current, and error-free data in the repository that other applications can work with

once again.

If for any reason it is not possible to renew the data using a full deployment, the data

will have to be restored manually.

The process for doing so depends on the component that has failed.

4.3.1 Errors in FirstSpirit

If the FirstSpirit server requires disaster recovery, please contact e-Spirit AG help

desk to receive corresponding instructions.

4.3.2 Errors in the UX-Bus

If the error occurs in the bus infrastructure and the infrastructure has been damaged,

backed-up data does not have to be manually restored in most cases. In the worst

case, the messages that were not yet processed on the bus and not permanently

saved are lost. In the default configuration, however, persistence is enabled.

With the Apache ActiveMQ, the KahaDB is used to save and process messages.

Therefore if data is lost, the KahaDB has to be restored. This is only possible, in turn,

if the broker is configured so that the KahaDB is permanently saved. Otherwise the

data that was on the UX-Bus at the time of the crash is lost. Normally the Apache

ActiveMQ itself takes care of restoring permanently saved data when restarting the

application. For custom configurations, for example in conjunction with a relational

database or the KahaDB on a shared file system, the backup mechanisms common

for the respective technology can be used. In addition, high availability is explained

in Chapter 3.2 of this documentation.

4.3.3 Errors in the adapter

No substantial problems should arise if the adapter has crashed, since data loss is to

be anticipated only in extreme situations. Normally the messages simply remain on

the broker until the adapter is restarted and retrieves messages.

Most likely, only the message that was being processed at the time of the crash is

lost, depending on the implementation of the adapter. In this case, you can carry out

a redeployment of the data in FirstSpirit.

UX-Bridge Installation

UX-Bridge Installation 1.0 RELEASED 2013-02-19 41

4.3.4 Errors in the external content repository

If data has to be restored in the external repository, whatever steps are necessary

have to be carried out there. These vary depending on the application used. Details

can be looked up in the respective documentation. A typical use case could be

restoring a relational database backup.

4.4 Error analysis

This section is intended to support the administrator or developer during

troubleshooting.

The UX-Bridge consists of multiple components, each of which can be the cause for

a fault.

The following checklist can be processed if contents do not appear on the website as

expected or are transferred into the content repository.

1. Check the FirstSpirit schedule that carries out the deployment

2. Check whether the messages are being routed correctly

3. Check whether the adapter is functioning correctly

4. Check the logs of the content repository

4.4.1 Check the FirstSpirit schedule

4.4.1.1 Errors in in the UX-Bridge task in the schedule

4.4.1.1.1 Symptom

The task ended with an error message and the contents were not transferred to the

content repository.

Example of the error message:

INFO 18.07.2012 12:29:31.180 {seID=6191}

(de.espirit.firstspirit.server.scheduler.ScheduleManagerImpl):

starting task 'UX-Bridge – Activate Generation' - schedule entry

'UX-Bridge (News)' (id=6191)

ERROR 18.07.2012 12:29:31.185 {seID=6191}

(de.espirit.firstspirit.server.scheduler.ScriptTaskExecutor):

UX-Bridge Installation

UX-Bridge Installation 1.0 RELEASED 2013-02-19 42

error during script execution :

de.espirit.firstspirit.access.ServiceNotFoundException: Service

com.espirit.moddev.uxbridge.service.UxbService' not found

de.espirit.firstspirit.access.ServiceNotFoundException: Service

com.espirit.moddev.uxbridge.service.UxbService' not found

 at

…

4.4.1.1.2 Cause

The UX-Bridge service has not been started.

4.4.1.1.3 Solution

Start the UX-Bridge service in the service properties and ensure that autostart is

enabled for this service.

4.4.1.2 Errors in the UX-Bridge generation schedule

4.4.1.2.1 Symptom

The generation schedule for the UX-Bridge presentation channel ends with errors.

4.4.1.2.2 Cause

There are two conceivable causes for this:

1. There are errors in the templates, which have to be resolved by the template

developer.

2. Error messages of the following type appear:

INFO 18.07.2012 12:40:45.943 {seID=6191}

(com.espirit.moddev.uxbridge.service.UxbServiceImpl): UXB Service:

calling Producer

ERROR 18.07.2012 12:40:51.098 {seID=6191}

(com.espirit.moddev.uxbridge.service.UxbServiceImpl): Could not

connect to broker!

UX-Bridge Installation

UX-Bridge Installation 1.0 RELEASED 2013-02-19 43

In this case, the connection to the UX-Bus could not be established.

4.4.1.2.3 Solution

 Ensure that the UX-Bus is available. Afterwards, restart the UX-Bridge

service. Ideally, the UX-Bus should be started before FirstSpirit Server.

 If the error messages occur despite having an active UX-Bus instance,

please check the configuration of the UXB service. Is the hostname/IP of the

UX-Bus correct? Correct the configuration if necessary and restart the UX-

Bridge service (UXBService).

 Check whether the communication is being blocked by a firewall.

4.4.1.3 Warnings occur in the UX-Bridge statistics report task

4.4.1.3.1 Symptom

The UX-Bridge statistics report task in the schedule ends with warnings.

Example:

INFO 18.07.2012 12:47:14.694 {seID=6191}

(de.espirit.firstspirit.server.scheduler.ScheduleManagerImpl):

starting task 'UX-Bridge Statistics Report' - schedule entry 'UX-

Bridge (News)' (id=6191)

WARN 18.07.2012 12:47:14.736 {seID=6191}

(com.espirit.moddev.uxbridge.service.UxbServiceImpl): Deployment

for target expired: #uxb/pressreleasesdetails/UXB/EN/256

(postgres)

INFO 18.07.2012 12:47:14.736 {seID=6191}

(com.espirit.moddev.uxbridge.service.UxbServiceImpl): Time for

#uxb/pressreleasesdetails/UXB/EN/704 (mongodb): 580ms

4.4.1.3.2 Cause

There are two potential causes conceivable for this:

1. The adapter was unable to process the message correctly; as a result, it did

UX-Bridge Installation

UX-Bridge Installation 1.0 RELEASED 2013-02-19 44

not send a message about the content repository update that occurred.

2. The adapter was able to process the message, but the message about the

update that occurred was not sent within the defined time frame. Also refer to

Chapter4.4.5.2 False positives in UX-Bridge statistics report task, p. 46 in this

regard.

4.4.1.3.3 Solution

Check whether the adapter routed and processed the message correctly. Refer to

Chapter4.4.3 Check whether the messages are being routed properly, p. 44 in this

regard.

4.4.2 Check whether the messages are being routed properly

The UX-Bus does not log any information regarding routing messages in the default

configuration.

In Chapter Logging, p. 22, you can find information on how to configure logging

accordingly.

4.4.3 Check whether the adapter is functioning correctly

It is possible that the adapter cannot process the message correctly. The developer

of the adapter should write corresponding log outputs during its implementation so

that these sorts of problems can be detected during ongoing operation.

4.4.4 Check the content repository

Depending on the content repository being used, its log files and administration tools

that may be available can provide support during troubleshooting. We cannot provide

additional information at this point since these components are selected specifically

for a project.

UX-Bridge Installation

UX-Bridge Installation 1.0 RELEASED 2013-02-19 45

4.4.5 Other errors

4.4.5.1 FirstSpirit Server reports that a JMS connection to the UX-Bus could not be

established

4.4.5.1.1 Symptom

Error messages stating that no JMS connection to the UX-Bus could be established

can be found in fs-server.log.

Example:

WARN 17.07.2012 16:30:46.483

(org.apache.camel.component.jms.DefaultJmsMessageListenerContainer

): Setup of JMS message listener invoker failed for destination

'FS_IN' - trying to recover. Cause: java.io.EOFException

WARN 17.07.2012 16:30:46.486

(org.apache.camel.component.jms.DefaultJmsMessageListenerContainer

): Setup of JMS message listener invoker failed for destination

Adapter-Statistics-Response-Route' - trying to recover. Cause:

java.io.EOFException

WARN 17.07.2012 16:30:46.488

(org.apache.camel.component.jms.DefaultJmsMessageListenerContainer

): Could not refresh JMS Connection for destination 'ROUTEIN' -

retrying in 5000 ms. Cause: Could not connect to broker URL:

tcp://localhost:61616. Reason: java.net.ConnectException:

Connection refused

WARN 17.07.2012 16:30:46.489

(org.apache.camel.component.jms.DefaultJmsMessageListenerContainer

): Could not refresh JMS Connection for destination Adapter-

Statistics-Response-Route' - retrying in 5000 ms. Cause: Could not

connect to broker URL: tcp://localhost:61616. Reason:

java.net.ConnectException: Connection refused

WARN 17.07.2012 16:30:46.489

(org.apache.activemq.transport.failover.FailoverTransport):

Transport (tcp://127.0.0.1:61616) failed, reason:

java.io.EOFException, attempting to automatically reconnect

ERROR 17.07.2012 16:30:51.666

(org.apache.activemq.transport.failover.FailoverTransport): Failed

to connect to [tcp://localhost:61616] after: 10 attempt(s)

4.4.5.1.2 Cause

The UX-Bus could not be reached when starting FirstSpirit Server or the connection

UX-Bridge Installation

UX-Bridge Installation 1.0 RELEASED 2013-02-19 46

was lost during operation.

4.4.5.1.3 Solution

 Ensure that the UX-Bus is available. Afterwards, restart the UX-Bridge

service (UXBService). Ideally, the UX-Bus should be started before FirstSpirit

Server.

 If the error messages occur despite having an active UX-Bus instance,

please check the configuration of the UXB service. Is the hostname/IP of the

UX-Bus correct? Correct the configuration if necessary and restart the UX-

Bridge service.

 Check whether the firewall is blocking communication

4.4.5.2 False positives in UX-Bridge statistics report task

4.4.5.2.1 Symptom

Changes are made in a content repository; the UX-Bridge statistics report task

returns warnings for the object regardless.

4.4.5.2.2 Cause

Messages are sent asynchronously via the UX-Bus, just like writing to a content

repository. This can make it take longer than 5 seconds before the adapter has

written the data and sends a response to FirstSpirit.

4.4.5.2.3 Solution

Edit the task and enter a higher value in the line

uxbService.waitSeconds(5);

This is the number of seconds the system waits before collecting the results.

UX-Bridge Installation

UX-Bridge Installation 1.0 RELEASED 2013-02-19 47

4.4.6 Configuring the UXBService results in an exception

4.4.6.1 Symptom

The following exception is thrown if UXBService has been selected in the admin

console and then "Configure" is clicked:

ERROR Tue Jul 24 14:37:30 CEST 2012

(de.espirit.firstspirit.client.AbstractGuiHost)

ExceptionHandler.uncaughtException() -

java.lang.SecurityException: Unable to create temporary file

java.lang.SecurityException: Unable to create temporary file

java.lang.SecurityException: Unable to create temporary file

 at java.io.File.checkAndCreate(null:-1)

 at java.io.File.createTempFile0(null:-1)

 at java.io.File.access$100(null:-1)

 at java.io.File$1.createTempFile(null:-1)

 at sun.misc.IOUtils.createTempFile(null:-1)

 at

javax.imageio.stream.FileCacheImageInputStream.<init>(null:-1)

 at

com.sun.imageio.spi.InputStreamImageInputStreamSpi.createInputStre

amInstance(null:-1)

 at javax.imageio.ImageIO.createImageInputStream(null:-1)

 at javax.imageio.ImageIO.read(null:-1)

 at

de.javasoft.plaf.synthetica.painter.ImagePainter.<init>(ImagePaint

er.java:234)

 at

de.javasoft.plaf.synthetica.painter.ScrollBarPainter.paintScrollBa

rThumbBackground(ScrollBarPainter.java:175)

 at

de.javasoft.plaf.synthetica.painter.SyntheticaPainter.paintScrollB

arThumbBackground(SyntheticaPainter.java:569)

 at

javax.swing.plaf.synth.ParsedSynthStyle$DelegatingPainter.paintScr

ollBarThumbBackground(null:-1)

…

Trace message truncated for length over 10K

4.4.6.2 Cause

The UX-Bridge module does not have the necessary permissions to make changes

to the configuration file.

4.4.6.3 Solution

Select the root node of the "UX-Bridge" module and click "Configure". Check "All

UX-Bridge Installation

UX-Bridge Installation 1.0 RELEASED 2013-02-19 48

permissions" in the dialog that appears.

Then confirm all of the windows with "OK" and restart FirstSpirit Server. Now the

module has the required permissions. The server configuration has to be closed and

reopened after making this change. Only then can you make changes to the

configuration.

5 Glossary

Adapter Project-specific interface between UX-Bus and content repository

Broker Message component for the UX-Bus, Apache ActiveMQ in this case

UX-Bus Central infrastructure component for distributing contents

UXBService (also UX-Bridge Service) Interface from FirstSpirit to the UX-Bus

6 Legal notices

The "UX-Bridge Installation" module is a product of e-Spirit AG, Dortmund, Germany.

Only a license agreed upon with e-Spirit AG is valid with respect to the user for using

the module.

Details regarding potential third-party software products in use not created by e-Spirit

AG, their separate licenses and, if applicable, their update information can be found

in the file "third-party-dependencies.txt" included with the module.

	1 Introduction
	1.1 Components
	1.1.1 UX-Bus
	1.1.2 FirstSpirit module
	1.1.3 UX-Bridge API
	1.1.4 Adapters
	1.1.5 Content repository

	2 Installation
	2.1 Installation of the UX-Bus
	2.1.1 Stand-alone operation
	2.1.1.1 Installation
	2.1.1.2 Testing the installation
	2.1.1.3 Installation as service

	2.1.2 Installing the UX-Bus on the FirstSpirit server

	2.2 Installing the FirstSpirit module
	2.2.1 FirstSpirit 4.2R4
	2.2.2 Configuring the UX-Bridge Service
	2.2.2.1 XML tab
	2.2.2.2 Options tab

	2.3 Installing adapters

	3 Configuration
	3.1 Routing
	3.1.1 Stand-alone UX-Bus
	3.1.2 FirstSpirit Server

	3.2 Logging
	3.2.1 Logging in the UX-Bus
	3.2.2 LoggingBrokerPlugin
	3.2.3 Logging in clients

	3.3 High availability
	3.3.1 Message storage
	3.3.1.1 Backing up the message storage

	3.3.2 Failover
	3.3.3 Master/slave operation
	3.3.3.1 Shared storage master/slave

	3.3.4 Network of brokers
	3.3.5 Use with FirstSpirit GenerationServer
	3.3.5.1 Configuring the schedule
	3.3.5.2 Configuration under FirstSpirit 4.2
	3.3.5.3 Configuration under FirstSpirit 5

	3.3.6 High availability of the content repositories
	3.3.7 High availability of the adapters

	3.4 Security
	3.5 Monitoring
	3.5.1 Apache ActiveMQ Webconsole
	3.5.2 Apache ActiveMQ command line tools
	3.5.3 Monitoring using JMX
	3.5.4 Monitoring using advisory messages
	3.5.5 Monitoring in the schedule

	4 Operation
	4.1 Changing the routing
	4.2 Backup
	4.2.1 Backing up the FirstSpirit project
	4.2.2 Backing up the message broker
	4.2.3 Backing up content repositories

	4.3 Disaster recovery
	4.3.1 Errors in FirstSpirit
	4.3.2 Errors in the UX-Bus
	4.3.3 Errors in the adapter
	4.3.4 Errors in the external content repository

	4.4 Error analysis
	4.4.1 Check the FirstSpirit schedule
	4.4.1.1 Errors in in the UX-Bridge task in the schedule
	4.4.1.1.1 Symptom
	4.4.1.1.2 Cause
	4.4.1.1.3 Solution

	4.4.1.2 Errors in the UX-Bridge generation schedule
	4.4.1.2.1 Symptom
	4.4.1.2.2 Cause
	4.4.1.2.3 Solution

	4.4.1.3 Warnings occur in the UX-Bridge statistics report task
	4.4.1.3.1 Symptom
	4.4.1.3.2 Cause
	4.4.1.3.3 Solution

	4.4.2 Check whether the messages are being routed properly
	4.4.3 Check whether the adapter is functioning correctly
	4.4.4 Check the content repository
	4.4.5 Other errors
	4.4.5.1 FirstSpirit Server reports that a JMS connection to the UX-Bus could not be established
	4.4.5.1.1 Symptom
	4.4.5.1.2 Cause
	4.4.5.1.3 Solution

	4.4.5.2 False positives in UX-Bridge statistics report task
	4.4.5.2.1 Symptom
	4.4.5.2.2 Cause
	4.4.5.2.3 Solution

	4.4.6 Configuring the UXBService results in an exception
	4.4.6.1 Symptom
	4.4.6.2 Cause
	4.4.6.3 Solution

	5 Glossary
	6 Legal notices

