

UX-Bridge Developer Documentation

Version 1.1

State RELEASED

Date 2013-03-07

Department Produktmanagement

Author/ Authors C. Feddersen

Copyright 2012 e-Spirit AG

File name UX-Bridge_DeveloperDocumentation_EN

http://www.e-spirit.com/

UX-Bridge Developer Documentation

UX-Bridge Developer Documentation  1.1  RELEASED  2013-03-07 1

Inhaltsverzeichnis

1 Concept ... 4

1.1 Generation and deployment concept .. 4

1.2 Data model and adapter .. 5

1.3 News distribution / routing .. 7

2 Quick Walkthrough .. 8

2.1 FirstSpirit .. 8

2.1.1 Installation .. 8

2.1.2 Data exchange format – FS Templating vs. WebApp

development .. 8

2.1.3 Creating and filling a presentation channel ... 9

2.1.4 Create and configure schedule ... 11

2.1.5 Workflow coupling ... 14

2.2 Adapters ... 15

2.2.1 Feedback ... 16

2.3 WebApplication .. 17

2.4 Routing ... 18

2.4.1 End points in FirstSpirit .. 18

2.4.2 Routing in the UX-Bus .. 20

2.4.3 End points in the adapter .. 22

3 Tutorials .. 23

3.1 News widget scenario .. 23

3.1.1 Web application .. 24

3.1.2 FirstSpirit development .. 27

UX-Bridge Developer Documentation

UX-Bridge Developer Documentation  1.1  RELEASED  2013-03-07 2

3.1.3 Adapters ... 36

3.2 News widget scenario without programming .. 44

3.2.1 CamelContext ... 44

3.2.2 Adjustments in FirstSpirit .. 47

3.3 News Drill-Down scenario ... 48

3.3.1 Web app development ... 49

3.3.2 FirstSpirit development .. 52

3.3.3 Adapters ... 60

3.4 Using the UXB service API ... 67

3.4.1 Creating a demo project .. 68

3.4.2 Use ... 68

3.5 Using the Camel component for generating a response 69

3.5.1 Integrating the component .. 69

3.5.2 Integrating the component .. 69

3.5.3 Structure of the URL ... 70

3.5.4 Parameter .. 70

4 Appendix .. 71

4.1 Conversion rules for Unicode to XML ... 71

UX-Bridge Developer Documentation

UX-Bridge Developer Documentation  1.1  RELEASED  2013-03-07 3

Introduction

The "UX-Bridge" module is a response to the trend of dynamic websites. Whenever

content cannot be pre-generated, CMS content has to be accessed dynamically.

In this case, "dynamically" means that the content can change for every website user

and at any point in time. UX-Bridge provides an infrastructure for the requirement for

a dynamic content delivery platform. Consequently, the module expands the hybrid

architecture approach by adding a standard component for dynamic content delivery.

Additional information can be found in the white paper, Chapter 1.3.

This documentation is intended to support development with the UX-Bridge

infrastructure and provide a look at the concept.

In the first chapter, it describes in general the steps which are to be taken into

account while using UX-Bridge. The chapter covers the topics of installation,

thoughts on data exchange format, setup in FirstSpirit, routing, and adapter and web

application integration.

Chapter 2 explains the use of UX-Bridge based on two tutorials. Here, we will go

through implementation in FirstSpirit, the creation of an adapter, and the web

application step-by-step, with concrete examples.

UX-Bridge Developer Documentation

UX-Bridge Developer Documentation  1.1  RELEASED  2013-03-07 4

1 Concept

Certain projects have requirements that are to be implemented using UX-Bridge.

In these cases, before implementation, a few questions have to be considered and

answered when defining the concept.

During definition of the concept, two distinct situations can arise. If a FirstSpirit

project is developed from scratch, then the focus of development is on the optimum

implementation of the specialized requirements. At the same time, the concept

should be flexible enough to make it easy to implement and integrate future

requirements. If, on the other hand, UX-Bridge is to be integrated into an already

existing project, then the main question is how best to integrate UX-Bridge into the

existing concepts and mechanisms.

In the following, some points will be considered which become relevant in

many projects.

1.1 Generation and deployment concept

In many projects, the website is updated through periodic generation and

deployment schedules. These schedules implement a complete or partial alignment

process. Under certain circumstances, these schedules can also be run manually.

If, in this scenario, UX-Bridge is to be used, it is often sufficient to expand the

existing schedules by adding the UX-Bridge-specific tasks. Details on this can be

found in Chapter "Create and configure schedule".

During generation, a message is sent to the UX-Bus for each page reference

generated within the UX-Bridge generation task. Within the project, it should thus be

ensured that, within this task, only the necessary page references are generated.

For instance, if only the news (maintained using a content source) in a project is to

be delivered via UX-Bridge, then only the necessary content projection pages should

be generated in the UX-Bridge generation task. In order to carry out this limitation,

you can, for example, use a partial generation. Alternatively, full generation can be

used for this. However, "stopGenerate" should then be used in order to cancel the

generation of page references in the UX-Bridge presentation channel, which are not

to generate any messages (see Online Documentation for FirstSpirit:

Vorlagenentwicklung\Vorlagensyntax\Systemobjekte\#global\vorschaubezogen\Abbr

uch einer Vorschau/Generierung).

UX-Bridge Developer Documentation

UX-Bridge Developer Documentation  1.1  RELEASED  2013-03-07 5

In other projects, a large proportion of the changes are released via workflows, which

subsequently carry out a generation and deployment of the participating objects.

In this, mostly the changed objects are identified by script, which then are defined as

start nodes of a partial generation. Objects are deleted using delete workflows.

UX-Bridge can be integrated into these scenarios also without problems

(see Chapter "Workflow coupling").

If the time in which the objects have to be available on the website plays a large role,

then the use of a workflow-oriented approach is often the better choice. The fewer

objects that have to be created during a generation process, the more quickly the

objects are available on the website. With FirstSpirit5, a simplified mechanism is

available for such scenarios with DeltaGeneration (Developer API\Delta Generation,

Access-API\Generate Task). In FirstSpirit4, this can already be achieved using the

revision API.

Altogether, UX-Bridge can be incorporated into the existing generation and

deployment concept or into one to be newly created, and for this purpose, brings no

independent (separate) solution with it.

1.2 Data model and adapter

If UX-Bridge is to be integrated into an existing FirstSpirit project, then the data

model is often preset in FirstSpirit. With heavily structured contents through the

database schema; with weakly structured contents through forms of the page and

section templates. Here, we recommend reviewing whether the web applications to

be created (which later are to access the UX-Bridge data) can work with this data

model, or whether a different data model makes more sense. This could be the case

if the web application requires a much simpler or a much more complicated

data model.

In the latter case, the FirstSpirit data is, in other words, just a part of the data model

of the web application. In the first case, a subset of the data model stored in

FirstSpirit is sufficient for many web applications. You also must consider whether

the data model of the web application is to be denormalized for performance

reasons.

If you have decided to use deviating data models, then you should clarify in which

step the transformation from one data model to another is to be carried out.

The answer is certainly project- specific, so that here, only the possible variants are

described. An evaluation has to be done in the context of the project:

UX-Bridge Developer Documentation

UX-Bridge Developer Documentation  1.1  RELEASED  2013-03-07 6

a) The transformation is done via the CMS syntax in the templates, which generate

the XML necessary for UX-Bridge (see Chapter "Data exchange format – FS

Templating vs. WebApp development"). The adapter itself does not carry out any

large transformations, but rather writes the objects in such a manner in the

content repository as was defined by the data exchange format.

b) The data exchange format corresponds to the data model in FirstSpirit 1:1.

The transformation in the data model for the content repository is carried out

within the adapter.

c) It is a hybrid approach, which carries out transformations in both components.

This depends on where it is easier to be implemented.

The following considerations can help during the evaluation:

1) If the data is to be written to multiple content repositories, then it is often

sensible to keep the data exchange format generalized and carry out any

necessary/logical transformations for writing to the content repository within

the adapter.

2) If the data are to be written to multiple content repositories, then for every

content repository, a unique adapter can be implemented which contains only

the logic necessary for this repository. Alternatively, an adapter can write the

data to both content repositories. This is useful, for example, if the data is

supposed to be written within a transaction bracket.

3) Does an adapter handle only one particular type of object, or are multiple

object types bundled into one adapter? Object types refer to different types

of contents. Say, for example, you would like to make all products and all

news from a FirstSpirit data source available via UX-Bridge. Here, for

example, we need to determine whether the two types of objects are to be

transferred to the same content repository and / or data model or not.

4) In general, it is to be considered whether, for decoupling and maintenance

reasons, it would be better to use multiple (but lean) adapters or one adapter

that contains all the logic.

5) A general data exchange format has the advantage that only one message

has to be sent via UX-Bus, which, however, then has to be processed by

multiple adapters and can be written to multiple content repositories.

In addition, no adaptations to the data exchange format may be necessary if

new content repositories and web applications are to be connected in the

course of the project.

UX-Bridge Developer Documentation

UX-Bridge Developer Documentation  1.1  RELEASED  2013-03-07 7

6) If UX-Bridge is to communicate with a system which can already receive

JMS messages, then it may make sense to carry out a transformation directly on

the UX-Bus. In this way, no adapter has to be implemented, which in turn would

generate JMS messages only. In such cases, the routing can be expanded on

the UX-Bus by adding corresponding transformation instructions.

1.3 News distribution / routing

As mentioned in the previous chapter, for every page reference within the

generation, a message is generated and sent to the UX-Bus. A part of the UX-Bus is

a routing component which receives the message and forwards or routes it to

another so-called "end point". Details on the standard configuration can be found in

the chapter on "Routing".

This configuration can be adapted for the project-specific requirements. In this,

with the Apache Camel Spring XML Syntax, there is a simple domain-specific

language (DSL) available, with which all current enterprise integration patterns

(see http://camel.apache.org/enterprise-integration-patterns) can be implemented.

With this powerful integration framework, the UX-Bus can be used as an information

hub for the website and all participating systems.

Here are some examples which can be implemented on the UX-Bus through

a routing:

1) A content router is configured which sends certain messages only to certain

end points / adapters.

2) New end points can be configured which serve as the interface to web

applications or back-end systems. Through this, an adapter can, for example,

direct a web application to empty its cache because new data was written to

the content repository.

3) Existing third-party applications can send messages to the UX-Bus, which

then are processed by the web application, adapters or FirstSpirit.

In the standard configuration of UX-Bridge, a routing is already configured which is

sufficient for standard scenarios. Project-specific adaptations are necessary only for

more complex scenarios (see "Data model and adapter").

UX-Bridge Developer Documentation

UX-Bridge Developer Documentation  1.1  RELEASED  2013-03-07 8

2 Quick Walkthrough

In this chapter, the steps for implementing UX-Bridge in a project are described.

The Quick Walkthrough is intended for experienced FirstSpirit template developer

and web application developers. A more in-depth, step-by-step introduction can be

found in the "Tutorials" chapter.

2.1 FirstSpirit

2.1.1 Installation

The starting point for development in the context of UX-Bridge is the installation of

the components.

To do so, first, the provided module should be installed in the server settings of the

FirstSpirit server. Through this, the UX-Bridge service is started, and the UX-Bridge

components are available in the projects of the server (compare to UX-Bridge

installation handbook: "Installation of the FirstSpirit Module").

Alongside the FirstSpirit module, the installation of the UX-Bus is also necessary.

For local development, the installation in standalone operation is recommended

(refer to UX-Bridge installation handbook: "Standalone Operation").

2.1.2 Data exchange format – FS Templating vs. WebApp development

The architecture of UX-Bridge allows the development of solutions on the basis of

UX-Bridge to be divided into two roles. A template developer creates the necessary

templates, workflows and schedules. A (web) application developer develops the

adapter for the content repository and the (web) application. If the roles are done by

different people, then during conceptual design, a common data exchange format

should be defined. With this, the data format is intended that is generated by the

templates and sent to the adapter via the UX-Bus as a message.

The data exchange format thus forms the interface between the components and

thus also between the two roles. From the point of view of the template developer,

this involves the end product of their work. For the (web) application developer,

this represents the input for the adapter. Here, only an outer container is prescribed

by UX-Bridge. The rest can be freely defined (see the next chapter).

UX-Bridge Developer Documentation

UX-Bridge Developer Documentation  1.1  RELEASED  2013-03-07 9

A carefully selected data exchange format can significantly reduce the

implementation effort. The following questions can help during the selection:

 Do the data, and thus the data model, already exist in FirstSpirit? If yes,

then you are subject to certain limitations. If no, it is advisable to match the

data exchange format as closely as possible to the content repository or the

web application.

 For performance reasons, it can make sense to write the data to the content

repository in denormalized form. Possible inconsistencies can be corrected

through a full deployment, because the data usually continues to be available

in normalized form in FirstSpirit.

 Are the data to be written to more than one content repository? If yes, it is to

be determined whether a data exchange format is sufficient and/or the

adapter(s) can take over the transformation and persistence in the content

repository. In some cases, it can also be more efficient to generate two data

exchange formats through FirstSpirit, which then can be taken over without

a transformation step in the respective content repository.

2.1.3 Creating and filling a presentation channel

In order to be able to use UX-Bridge, first a new template set (UXB) has to be

created in the project settings under "Template sets". As a presentation channel,

"XML" is to be configured as conversion rule "Unicode to XML" and "xml" is to be

configured as the target file extension.

UX-Bridge Developer Documentation

UX-Bridge Developer Documentation  1.1  RELEASED  2013-03-07 10

The conversion rule "Unicode to XML" (see Conversion rules for Unicode to XML)

serves to transform special and control characters into corresponding XML entities,

which otherwise would be interpreted in XML as a part of the markup language or

would display invalid characters.

In order to send messages to the UX-Bus, which is to generate the messages,

the fields which were defined in the data exchange format are to be output in XML

form in the corresponding template.

Only the following structure is predefined:

<uxb_entity

 uuid = String

 destinations = String

 language = String

 command = String

UX-Bridge Developer Documentation

UX-Bridge Developer Documentation  1.1  RELEASED  2013-03-07 11

 objectType = String

>

 <uxb_content>

 […] definiertes Datenaustauschformat […]

 </uxb_content>

</uxb_entity>

Property Description Example Required field

Uuid Unique identifier of the object,

for example, fs_id

1234 Yes

destinations Destination(s) of the message

(live repository, comma-

separated),

postgres,mongodb Yes

language Language of the message DE (German) No

command Command to be executed

by the adapter (e.g. create/

delete)

Add No

objectType Object type evaluated by the

adapter (e.g. News, Products)

News No

The language, command and objectType attributes are optional, but have proven

helpful with the adapters implemented by E-Spirit.

2.1.4 Create and configure schedule

In order to convert the data from FirstSpirit into messages that can be further

processed by UX-Bus, it is mandatory for a schedule to be created or an existing

schedule extended so that it generates XML. This is then forwarded to the UXB

service, which generates a message from it and sends this to the UX-Bus.

The schedule can be started later via a workflow (see Release Workflow).

In this chapter, two schedules are now to be explained, which are probably needed

in every project that uses UX-Bridge.

UX-Bridge Developer Documentation

UX-Bridge Developer Documentation  1.1  RELEASED  2013-03-07 12

2.1.4.1 Partial generation

In order to publish new content quickly on the website, it is useful to create

a schedule or to expand one in such a manner that it carries out the steps described

in the following; and, in doing so, only the new content is generated and published.

A typical generation schedule which uses UX-Bridge is divided into multiple actions

as described in the following:

First, all of the complete static pages that are needed for display on the website are

to be generated (e.g. news overview pages) in a generation action. This generation

action takes place in the deployment schedules commonly used to date, and does

not have to be adapted.

In the next step, the content generated in the previous step should then be

transferred to the web server as usual (in the example, via rsync). In this step, too,

no adaptations are usually necessary.

Afterward, in order to use UX-Bridge, a new, additional action is to be added which,

by means of querying the script, activates the generation for UX-Bridge:

#! executable-class

com.espirit.moddev.uxbridge.inline.UxbInlineUtil

In the following generation action, the exact page should be generated (e.g., the news

detail page) that the XML creates, which is to be forwarded to the UXB Service. It is

important to ensure that the UXB template set was enabled in the advanced properties.

UX-Bridge Developer Documentation

UX-Bridge Developer Documentation  1.1  RELEASED  2013-03-07 13

The Delta generation in FirstSpirit 5 now adapts this generation action automatically,

so that it no longer generates all pages, but rather just the page desired.

In addition, for example, a workflow script that initiates the generation can transfer

the generated page to the schedule.

The last action, "UX-Bridge Statistics Report", is optional, and enables the cycle

times for the messages in the bus to be measured until publication to the website.

INFO 22.08.2012 09:59:54.631

(de.espirit.firstspirit.server.scheduler.ScheduleManagerImpl):

starting task 'UX-Bridge Statistics Report' - schedule entry 'UX-

Bridge-Test (News)' (id=5142)

INFO 22.08.2012 10:00:04.645

(com.espirit.moddev.uxbridge.service.UxbServiceImpl): Time for

#uxb/pressreleasesdetails/UXB/EN/256 (postgres): 242ms

INFO 22.08.2012 10:00:04.645

(com.espirit.moddev.uxbridge.service.UxbServiceImpl): Time for

#uxb/pressreleasesdetails/UXB/DE/256 (postgres): 224ms

INFO 22.08.2012 10:00:04.645

(com.espirit.moddev.uxbridge.service.UxbServiceImpl): 2/2 deployed

successfully (overall: 233ms, postgres: 233ms).

INFO 22.08.2012 10:00:04.646

(de.espirit.firstspirit.server.scheduler.ScheduleManagerImpl):

finished task 'UX-Bridge Statistics Report' - schedule entry 'UX-

Bridge-Test (News)' (id=5142)

To do so, the following script call is necessary:

import com.espirit.moddev.uxbridge.service.UxbService;

uxbService = context.getConnection().getService(UxbService.class);

uxbService.waitSeconds(10);

uxbService.getTimings(context.getStartTime().getTime());

In the example, the service waits 10 seconds, until the adapters' answers

are evaluated. If there is no answer in this time frame, then the message is classified

as having a delivery error. Because the response times can vary depending on

UX-Bridge Developer Documentation

UX-Bridge Developer Documentation  1.1  RELEASED  2013-03-07 14

message and system variant, this value can be configured (for example,

uxbService.waitSeconds(10)).

2.1.4.2 Complete alignment process

It makes sense to create an additional schedule which carries out a complete

alignment process in order to maintain the data inventory in the content repository in

the most current state. For this, the data deleted in FirstSpirit must likewise be

deleted in the external repository.

The following procedure is recommended:

1) Complete generation of the static pages in FirstSpirit.

2) Run UX-Bridge schedule in order to write all data to the ContentRepository

(see also the previous section). These data are given an up-to-date

time stamp, which is saved in ContentRepository in the "lastmodified" field.

3) Run script that calls up the cleanup method with a timestamp as a parameter

that describes the latest project revision of the schedule. The cleanup method

then deletes all data that have saved an older time than the one given to

them in the "lastmodified" field. Those are the data that were already deleted

in the FirstSpirit project and thus, in step 2, have no new timestamp saved

in "lastmodified".

import com.espirit.moddev.uxbridge.service.UxbService;

uxbService = context.getConnection().getService(UxbService.class);

uxbService.removeUxbEntriesByTime(context.getStartTime().getTime()

, "news", "postgres,mongodb");

2.1.5 Workflow coupling

The publication of contents via UX-Bridge can be started directly via scripts and

schedules or indirectly via workflows.

2.1.5.1 Release Workflow

In order to publish content, an existing workflow simply has to be expanded by

adding a workflow script that starts a schedule which, alongside generation and

deployment, also generates XML messages and forwards them to the UXB service

(see Partial generation).

UX-Bridge Developer Documentation

UX-Bridge Developer Documentation  1.1  RELEASED  2013-03-07 15

2.1.5.2 Delete Workflow

In order to delete content, an existing delete workflow has to be expanded by adding

a workflow script that generates an XML message, which is forwarded to the

UXB service.

The call-up of the UXB service in the script is as follows, where "msg" (string)

corresponds to the XML message:

UxbService uxbService =

context.getConnection().getService(UxbService.class);

uxbService.removeUxbEntry(msg);

The XML message follows the following example:

<uxb_entity uuid=STRING language=STRING destinations=STRING

objectType=STRING command=STRING />

Property Description Example Required

field

Uuid Unique identifier of the

object, for example, fs_id

12345 Yes

Destinations Target(s) of the message

(comma-separated)

postgres Yes

Command Command to be executed

by the adapter

delete Yes

Language Language of the message DE (German) No

objectType Object type evaluated by

the adapter (e.g. News,

Products)

news No

2.2 Adapters

Adapters also serve to read out the data from the JMS messages and to write them

to the selected repositories. In the tutorial, two adapters are implemented as web

applications as an example, but other implementations (e.g. standalone Java) are

also possible.

UX-Bridge Developer Documentation

UX-Bridge Developer Documentation  1.1  RELEASED  2013-03-07 16

2.2.1 Feedback

FirstSpirit expects a response from the adapter in the form of an XML document after

a message has been written to a repository. The response is expected for both

successful and failed processing. The XML document is structured as follows:

<uxb_entity command=STRING createTime= STRING destinations=STRING

finishTime=STRING language=STRING path=STRING schedulerId=STRING

startTime=STRING status=STRING uuid=STRING ><uxb_error>STRING

</uxb_error></uxb_entity>

Property Description Example Required

field

destinations The target repository to

which the object was

written or should be

written.

postgres Yes

startTime Timestamp for the start

of the action (appended

to the XML document by

FirstSpirit)

1314567899516 Yes

finishTime Timestamp for completion

of the command

1314567899516 Yes

path FirstSpirit-internal path

(appended to the XML

document by FirstSpirit

during the action)

the/Path/to/ Yes

status Status of the action.

Possible values: "OK" if

successful, "FAIL" if the

action fails

OK Yes

uuid Unique identifier of the

object, for example, fs_id

123456 Yes

UX-Bridge Developer Documentation

UX-Bridge Developer Documentation  1.1  RELEASED  2013-03-07 17

schedulerId Unique ID for the

schedule (appended to

the XML document

by FirstSpirit during

the action)

123456 Yes

command Command executed by

the adapter

delete No

language Language of the message DE (German) No

createTime Timestamp for the

creation of the action

(appended to the XML

document by FirstSpirit

during the action)

1314567899516 No

uxb_error The container element

for the error message

present in the event of

an error

com.mongodb.

MongoException

No

2.3 WebApplication

Through the open architecture of UX-Bridge and the circumstance that the type and

number of repositories is not preassigned, the technology and the framework for

developing the WebApplication can be freely selected. It is useful to base the

selection of technology and the framework both on the application and the

knowledge/company standards that is in place.

UX-Bridge Developer Documentation

UX-Bridge Developer Documentation  1.1  RELEASED  2013-03-07 18

2.4 Routing

UX-Bridge uses Apache Camel to route messages. As a transportation and message

protocol, Java Message Service (JMS) is used. Both participating components of the

FirstSpirit Server and adapter function in the role of a producer, which generates

messages and makes them available in an end point, and in the role of a consumer,

which retrieves the messages from an end point and processes them further.

The UX-Bus, in this scenario, simply takes over the routing of the messages

between the participating end points.

2.4.1 End points in FirstSpirit

The configuration of the UXB service can be reached via the FirstSpirit Server

configuration and the Module subitem. On the expanded module tree, UXB service

has to be selected and opened via the "Configure" button, the configuration of

services (Spring DSL) opens, which also contains the end points and a route.

The configuration does not usually have to be adapted; however, if the names of the

end points configured in the bus are changed, then these also have to be adapted in

the configuration in FirstSpirit. You must use the Adapter-Statistics-Response-Route

with the UxbServiceStatisticsResponseHandler bean if UX-Bridge is to use its own

monitoring (see Installation Handbook: Monitoring in the Schedule).

UX-Bridge Developer Documentation

UX-Bridge Developer Documentation  1.1  RELEASED  2013-03-07 19

Within Spring DSL, a Camel context is described which contains the routes and

end points:

<camelContext xmlns="http://camel.apache.org/schema/spring"

id="camelContext" trace="false">

 <package>com.espirit.moddev.uxbridge.service</package>

 <template id="producerTemplate"/>

 <endpoint id="FS-OUT" uri="activemq:topic:FS_OUT"></endpoint>

 <route id="Adapter-Statistics-Response-Route">

 <from uri="jms:topic:FS_IN"/>

 <convertBodyTo

type="com.espirit.moddev.uxbridge.service.UXBEntity"/>

 <bean ref="UxbServiceStatisticsResponseHandler"

method="print"/>

 </route>

</camelContext>

<bean id="UxbServiceStatisticsResponseHandler"

class="com.espirit.moddev.uxbridge.service.UxbServiceStatisticsRes

ponseHandler">

 <constructor-arg ref="camelContext"/>

</bean>

In the example, there is an end point with the ID "'FS_OUT", which serves as an end

point for messages which are sent by the service.

UX-Bridge Developer Documentation

UX-Bridge Developer Documentation  1.1  RELEASED  2013-03-07 20

Alongside that, the route "Adapter-Statistics-Response-Route" is defined, which

consumes the messages from the end point "jms:topic:FS_IN". The messages are

converted back into an object (UXBEntity) by the UXB service, and afterward the

UxbServiceStatisticsResponseHandler is used on the objects so that these can

again be evaluated for, say, timing purposes.

2.4.2 Routing in the UX-Bus

The Spring DSL in the UX-Bus contains a Camel Context with four end points,

which form two routes. The first route goes from the end point from the FirstSpirit to

the end point of the adapter and the second from the end point of the adapter in

reverse order to the end point of the FirstSpirit service.

<camelContext trace="false"

xmlns="http://camel.apache.org/schema/spring">

 <route id="uxbridge-router">

 <from uri="activemq:topic:FS_OUT"/>

UX-Bridge Developer Documentation

UX-Bridge Developer Documentation  1.1  RELEASED  2013-03-07 21

 <filter>

 <xpath>//uxb_entity[contains(@objecttype, 'products')]</xpath>

 <to uri="activemq:topic:VirtualTopic.BUS_OUT_mongo"/>

 </filter>

 <filter>

 <xpath>//uxb_entity[contains(@objecttype, 'news')]</xpath>

 <to uri="activemq:topic:VirtualTopic.BUS_OUT_postgres"/>

 </filter>

 </route>

 <route id="uxbridge-router-response">

 <from uri="activemq:topic:BUS_IN"/>

 <to uri="activemq:topic:FS_IN"/>

 </route>

</camelContext>

In the standard configuration, virtual end points are used

(see http://activemq.apache.org/virtual-destinations.html). The advantage of virtual end

points is that no modifications have to be carried out on the routing for additional

adapters. The virtual end points follow the naming schema VirtualTopic.%destination-

endpoint%“. Through the virtualization, messages are not read as in a queue by only

one adapter; rather, all corresponding adapters get the message.

The first route sends messages from the end point "activemq:topic:FS_OUT" in the

direction of the adapter to its end point "activemq:topic:VirtualTopic.BUS_OUT".

Via XPath, for example, another differentiation for multiple adapters is carried out.

"@objecttype" refers here to the JMS message header (see Creating and filling a

presentation channel).

Messages that are sent by the adapters to the end point "activemq:topic:BUS_IN"

in the FirstSpirit Service direction are redirected to the end point

"activemq:topic:FS_IN".

In this configuration, usually adaptations in the route to the adapter are carried out

only if the name of the end point is to be changed, or special routing mechanisms

such as a case differentiation for multiple adapters is to be carried out.

http://activemq.apache.org/virtual-destinations.html

UX-Bridge Developer Documentation

UX-Bridge Developer Documentation  1.1  RELEASED  2013-03-07 22

2.4.3 End points in the adapter

The adapter can, in contrast to use in FirstSpirit and in UX-Bus, be freely

implemented. The only requirement is that the adapter can receive JMS messages

from an end point and can generate them in an additional end point. Two examples

from adapters used with Camel can be found in the "Tutorials" below.

UX-Bridge Developer Documentation

UX-Bridge Developer Documentation  1.1  RELEASED  2013-03-07 23

3 Tutorials

In the following tutorials, two examples are explained step-by-step. These examples

can be transferred into your own projects or used as a suggestion for your own

implementations.

A freshly set up "Mithras Energy" project was used as a basis for the examples. It is

included as a sample project in every FirstSpirit installation.

Current versions of the source code for the examples is found under:

https://github.com/e-Spirit/uxbridge-samples

For these examples, basic knowledge of the following technologies is useful.

- FirstSpirit

- Spring

- JAXB

- Apache Tomcat

- Apache Camel

- Hibernate

- MongoDB

- Apache ActiveMQ

Aside from that, it is required that the UX-Bus is in operation and is accessible.

Information for the operation of UX-Bus can be found in the Installation Documentation.

With the applications, it is required to adapt the database configuration to the

local conditions. Information on where the respective configurations are can be taken

from the respective chapter.

3.1 News widget scenario

In this example, a simple widget is created which shows the latest articles.

The display is automatically updated via JavaScript as soon as new articles are

added to the live repository.

https://github.com/e-Spirit/uxbridge-samples

UX-Bridge Developer Documentation

UX-Bridge Developer Documentation  1.1  RELEASED  2013-03-07 24

FirstSpirit is the leading system; in other words, the pages are generated statically

and stored on the server. The dynamic widget is installed in the page by JavaScript

at runtime.

In the example application, the widget is integrated into the right column on the

start page.

The source code for this example can be found in the Github repository under

newsWidget.

https://github.com/e-Spirit/uxbridge-samples/tree/master/newsWidget

3.1.1 Web application

The web application provides only the JavaScript as a jQuery plugin and a service

with JSONP support for updating the data. The basic framework of the widget is

administered in FirstSpirit.

The web application was created with the Grails web framework in Version 2.1.0.

https://github.com/e-Spirit/uxbridge-samples/tree/master/newsWidget

UX-Bridge Developer Documentation

UX-Bridge Developer Documentation  1.1  RELEASED  2013-03-07 25

3.1.1.1 Configuration

All configuration files are in the typical file for Grails applications

<grailswidget>/grails-app/config.

In this area, the important files are DataSource.groovy and Config.groovy

3.1.1.1.1 DataSource.groovy

Here, the database connections are configured for the different environments,

in other words, test, development and production.

3.1.1.1.2 Config.groovy

Here, the connection to MongoDB is also configured alongside the URLs for the

different environments.

3.1.1.1.3 UrlMappings.groovy

Here, 2 mappings were added:

"/rest/v1/articles" indicates the action "list" of the ArticleRestController.

"/rest/v1/article/$id" indicates the action "show" of the ArticleRestController.

3.1.1.2 Domain class

In this application, there is an individual domain class:

com.espirit.moddev.examples.uxbridge.widget.Article

Grails, like the adapter, uses the persistence framework Hibernate. Therefore, it is

necessary to take care to use the same names for the attributes, tables and indices

that were already used in the adapter.

3.1.1.3 Rest controller

The com.espirit.moddev.examples.uxbridge.widget package contains the

ArticleRestController. Via this controller, the widget loads the list of articles.

The ArticleRestController provides the two methods, list and show.

UX-Bridge Developer Documentation

UX-Bridge Developer Documentation  1.1  RELEASED  2013-03-07 26

3.1.1.3.1 Method: list

This method returns a certain number of articles in JSONP format.

3.1.1.3.2 Method: show

This method provides an article based on the FirstSpirit ID and the language in

JSONP format. If, for the parameters transferred, no article is found, the method

delivers a 404 error code.

3.1.1.4 Service

The ArticleService is in the package com.espirit.moddev.examples.uxbridge.widget.

For this example, the two methods getLatestArticles and ellipsis have been

implemented.

The ArticleService is used in the ArticleRestController.

3.1.1.4.1 getLatestArticles

The method returns the most up-to-date articles from the live repository

3.1.1.4.2 ellipsis

The method shortens the text after a certain number of characters. This method is

used to shorten the text for the widget.

3.1.1.5 SQL and NoSQL

In contrast to the adapters, an adaptation of the source code of the web application

is not usually necessary. Thanks to the use of the Grails framework, the domain

classes can be saved in a relational and a NoSQL database.

3.1.1.6 Starting the example application

The application is started via the command line:

grails run-app

UX-Bridge Developer Documentation

UX-Bridge Developer Documentation  1.1  RELEASED  2013-03-07 27

To start the application with the MongoDB Live repository, the corresponding

environment must be indicated

grails mongo run-app

3.1.2 FirstSpirit development

The News widget is installed in this tutorial in the standard project Mithras Energy.

That is why you import this first and carry out all the following changes in this project.

The complete, finished example project is delivered at the same time under the

name "uxbridge_tutorial_newsWidget.tar.gz" and can be used to view the template

code and the settings.

3.1.2.1 Project configuration

In the first step, there should be a new template set for UX-Bridge created in the

project configuration, which is to be configured as follows.

In order to send messages to the UX-Bus, in the corresponding template, which is to

generate the messages, the fields which were defined in the data model are to be

output in the form of XML (compare to Creating and filling a presentation channel).

UX-Bridge Developer Documentation

UX-Bridge Developer Documentation  1.1  RELEASED  2013-03-07 28

3.1.2.2 Project settings

In the project settings, the URL for the web application is defined from which later the

fitting articles are dynamically reloaded and shown in the widget. For this,

the template for the project settings is expanded by one field.

<CMS_GROUP>

 <LANGINFOS>

 <LANGINFO lang="*" label="UX-Bridge"/>

 </LANGINFOS>

 <CMS_INPUT_TEXT name="ps_baseURL_UXB" hFill="yes"

singleLine="no" useLanguages="no">

 <LANGINFOS>

 <LANGINFO lang="*" label="Base URL UXB Widget"

description="Insert the base URL for the UX Bridge Widget"/>

 <LANGINFO lang="DE" label="Basis URL UXB Widget"

description="Geben sie hier die Basis URL für die UX Bridge Widget

an"/>

 </LANGINFOS>

 </CMS_INPUT_TEXT>

 </CMS_GROUP>

As soon as this is done, the URLs can be updated for UX-Bridge. This base URL is

that of the Grails application widgetExample, in other words, for example,

http://localhost:8080/widgetExample

In the global content area, a new global page, based on the template

"multilanguagelabel" has to be created with the unique name "latestarticles".

German: Neueste Artikel

English: Latest articles

3.1.2.3 Page templates

The page templates that UX-Bridge is to use are expanded in the example by an

input component. This input component has the effect that the marginal column is

enlarged so that the widget to be installed has more space available. The reason for

that is that the marginal column is too small in its standard width to show the news

widget in an appropriate resolution.

http://localhost:8080/widgetExample

UX-Bridge Developer Documentation

UX-Bridge Developer Documentation  1.1  RELEASED  2013-03-07 29

<CMS_GROUP>

 <LANGINFOS>

 <LANGINFO lang="*" label="UX Bridge Features"

description="Enable/Disable UX Bridge features for this page"/>

 <LANGINFO lang="DE" label="UX Bridge Funktionen"

description="Aktivieren/Deaktivieren von UX Bridge-

Funktionalitäten für diese Seite"/>

 </LANGINFOS>

 <CMS_INPUT_TOGGLE

 name="pt_enableUxBridgeLayout"

 type="radio"

 hFill="yes"

 preset="copy"

 singleLine="no"

 useLanguages="no">

 <LANGINFOS>

 <LANGINFO lang="*" label="Enable UX Bridge layout for

this page" description="Enables UX Bridge for this page"/>

 <LANGINFO lang="DE" label="UX Bridge Layout für diese

Seite aktivieren" description="UX Bridge Layout für diese Seite

aktivieren"/>

 </LANGINFOS>

 <OFF>

 <LANGINFO lang="*" label="No"/>

 <LANGINFO lang="DE" label="Nein"/>

 </OFF>

 <ON>

 <LANGINFO lang="*" label="Yes"/>

 <LANGINFO lang="DE" label="Ja"/>

 </ON>

 </CMS_INPUT_TOGGLE>

 </CMS_GROUP>

These changes in addition serve to activate UX-Bridge on only the pages that

integrate them.

Alongside the expansion of the input form, the code also has to be adapted in

the template.

UX-Bridge Developer Documentation

UX-Bridge Developer Documentation  1.1  RELEASED  2013-03-07 30

At the beginning of the page template, a variable must be stored in the body area in

a variable, so that the variables that are set in the body are available already at the

beginning of the page template, for example:

$CMS_SET(set_pt_bodyright)$$CMS_VALUE(#global.page.body("Content

right"))$$CMS_END_SET$

$CMS_SET(set_pt_bodyright, set_pt_bodyright.toString)$

The output at the former location of the body is then, for example:

$CMS_VALUE(set_pt_bodyright)$

The header of the page template must still be extended by adding the following call,

which initializes the page variables of UX-Bridge:

$CMS_SET set_pt_insertIntoHead,““)$

The HTML header must then be extended by adding the following call in order to

import the Java scripts:

$CMS_VALUE(set_pt_insertIntoHead)$

3.1.2.4 Section template

The News widget is integrated into the marginal column of the desired page via

a section template. In addition, first a new section template with the name

"uxb_widget" is created as follows.

<CMS_HEADER>

</CMS_HEADER>

$CMS_IF(pt_enableUxBridgeLayout)$

 $CMS_SET(set_st_insertIntoHead)$

 $CMS_RENDER(template:"uxbridge_widget_head",

set_news_count:st_entries)$

 CMS_END_SET

 <div class="clearfix teasermodule uxbWidgetContainer">

 <div class="uxbWidgetHeader">

 $CMS_VALUE(#global.gca("latestarticles"))$

 </div>

 <div id="uxbWidgetContent"></div>

 </div>

UX-Bridge Developer Documentation

UX-Bridge Developer Documentation  1.1  RELEASED  2013-03-07 31

 $CMS_SET(#global.pageContext["set_pt_insertIntoHead"],

set_st_insertIntoHead.toString)$

CMS_END_IF

The classes clearfix and teasermodule use CSS properties from Mithras and are
designed to be used in the "Content right" area of the standard page template or on
the homepage.

In the form suitable for this, you can define how many news entries are to be shown
in the widget.

<CMS_MODULE>

 <CMS_INPUT_NUMBER

 name="st_entries"

 allowEmpty="no"

 hFill="yes"

 max="20.0"

 min="1.0"

 preset="copy"

 singleLine="no"

 useLanguages="yes">

 <LANGINFOS>

 <LANGINFO lang="*" label="Number of entries"

description="Choose the number of entries shown in the widget"/>

 <LANGINFO lang="DE" label="Anzahl der Einträge"

description="Anzahl der Einträge im Widget"/>

 </LANGINFOS>

 </CMS_INPUT_NUMBER>

</CMS_MODULE>

3.1.2.5 Format template

In the example, a new format template (uxbridge_widget_head) is used which
contains the required JavaScript and CSS-Code. The parameters with which the
jQuery plugin "uxb_widget" is installed can be configured.

<script type="text/javascript"

src="$CMS_VALUE(ps_baseURL_UXB)$/static/bundle-

ui_head.js"></script>

<link rel="stylesheet"

href="$CMS_VALUE(ps_baseURL_UXB)$/static/bundle-ui_head.css"/>

UX-Bridge Developer Documentation

UX-Bridge Developer Documentation  1.1  RELEASED  2013-03-07 32

<script>

 $(document).ready(function () {

 $("#uxbWidgetContent").uxb_widget({lang:'DE',url:"$CMS_VALUE(ps_ba

seURL_UXB)$/rest/v1/articles",speed:2000, fadeFrom: "#F7D358",

fadeTo: "white", count: $CMS_VALUE(set_news_count)$});

 });

</script>

3.1.2.6 Create page

In order to use UX-Bridge, a new template of the type "uxb_widget" is installed in any

page, and, where appropriate, the section in the page template for the marginal

column must also be allowed in advance.

3.1.2.7 Table and Table template (XML)

Based on the table press releases already defined in the schema, a table template

should then be created, which generates the XML that is forwarded to the

UXB service:

<uxb_entity

 uuid = String

 destinations = String

 language = String

 command = String

 objectType = String

>

 <uxb_content>

 <fs_id/>

 <language/>

 <url/>

 <date/>

 <headline/>

 <subheadline/>

 <teaser/>

 <content/>

 </uxb_content>

UX-Bridge Developer Documentation

UX-Bridge Developer Documentation  1.1  RELEASED  2013-03-07 33

</uxb_entity>

The child elements in the uxb_content tag are simultaneously the content fields

which are written by the adapter to the connected content repository, and therefore,

should also be taken into account during creation of the data structure.

Here, the code example represents only the structure of this table template.

The complete code can be found in the sample project in the table template with the

reference name "Products.press_releases".

3.1.2.8 Deployment

In the example project, the generation of JMS messages, and with it, entry into the

connected content repositories, can be started automatically via a workflow directly

from the data source. Likewise, it is possible to delete objects in FirstSpirit and the

connected content repositories directly from the data sources using an additional

workflow. To do so, the workflows use, alongside the scripts, table queries and

schedules, which are first to be configured.

3.1.2.8.1 Create table queries

Table queries have to be created for the generation of a data record and all data

records for the News table. The queries for a data record still have to have

a limitation on the column "fs_id", with the parameter to be newly created, "Id".

The complete code can be found in the table query with the reference name

"Products.pressdetailfilter".

3.1.2.8.2 Create schedule

A new schedule has to be created which, alongside the generation of JMS

messages for the UXB service, also takes over the generation and deployment of

overview pages. In addition, a generation action must first be added to the schedule,

which generates the overview pages. The Delta deployment extends this action

during runtime by adding the detail page of the data record currently to be

generated. Afterward, a script action has to happen which activates UX-Bridge:

#! executable-class

com.espirit.moddev.uxbridge.inline.UxbInlineUtil

A partial generation is to take place in the generation to be created thereafter.

Page and data record are later entered automatically through the Delta deployment,

UX-Bridge Developer Documentation

UX-Bridge Developer Documentation  1.1  RELEASED  2013-03-07 34

so that only the desired JMS message is generated. Afterward, the web pages can

be deployed as usual.

If the processing time for the messages in the bus until deployment on the website is

measured, then in the end, the action "UX-Bridge Statistics Report" has to be added,

which contains the following script:

import com.espirit.moddev.uxbridge.service.UxbService;

uxbService = context.getConnection().getService(UxbService.class);

uxbService.waitSeconds(10);

uxbService.getTimings(context.getStartTime().getTime());

In the example, the service waits 10 seconds, until the adapters' answers are

evaluated. If there is no answer in this time frame, then the message is classified as

having a delivery error. Because the response times can vary depending on

message and system, the value can be configured.

3.1.2.8.3 Import workflow scripts

In the next step, the required workflow scripts must be imported:

- uxb_content_release_init

- uxb_content_release_script

- uxb_content_delete_init

- uxb_content_delete_script

The Init scripts, in this case, initiate variables and write them to the session, so that

the methods of the UXB module which are queried in the other scripts can

access these.

The following parameters have to be configured in uxb_content_release_init:

Parameter Example value Description

detail_page pressreleasesdetails Page reference of the

page which contains

the JMS messages

UX-Bridge Developer Documentation

UX-Bridge Developer Documentation  1.1  RELEASED  2013-03-07 35

query_uid Products.pressdetailsfilter Table query which

generates all the data

records

single_query_uid Products.pressdetailfilter Table query which

contains the ID of the

data record that is

to be generated as

a parameter

query_param Id Parameter name of

the table query

schedule_name UX-Bridge Name of the schedule

that is to generate the

JMS messages

scheduler_uxb_generate UX-Bridge Generate Name of the

generation action of

the JMS messages

scheduler_generate Generate Name of the

generation action for

the HTML pages

The script "uxb_content_release_script" then starts the previously configured

schedule and carries out the defined transition.

The following parameters have to be configured in uxb_content_delete_init:

Parameter Example value Description

Destinations postgres Name of the content

repositories from which

the data record is to be

deleted

UX-Bridge Developer Documentation

UX-Bridge Developer Documentation  1.1  RELEASED  2013-03-07 36

transition_name release Name of the transition

in the workflow (see

workflow) which is to

be switched to after the

content_delete_script

object_type news Type of object that is to

be deleted

Within the following script, "uxb_content_delete_script", the selected data record is

deleted in FirstSpirit and a message is sent via the UXB service and the bus to the

connected content repository, which triggers the delete action there.

3.1.2.8.4 Import workflows

In order to provide the editor a simple option to run the previously defined scripts on

a data record, both workflows "uxb_content_release" and "uxb_content_delete" from

the demo project are used. The workflows then run the desired operations

(approval, release) in FirstSpirit and also via UX-Bridge in the configured content

repository.

3.1.2.8.5 Complete alignment process

In the FirstSpirit sample project, the complete alignment process is implemented in

the "UX-Bridge Full Deployment" schedule.

Notes on the procedure for the complete alignment process are found in

Chapter 2.1.4.2, page 14 Complete alignment process .

3.1.3 Adapters

This example contains two adapters. One for a relational database (PostgreSQL),

and one for a NoSql database (MongoDB).

Under https://github.com/e-Spirit/uxbridge-samples/newsWidget/adapter, alongside

the projects for the two adapters (Hibernate, mongodb), there is a third project which

contains the Java classes that are used in both adapters.

UX-Bridge Developer Documentation

UX-Bridge Developer Documentation  1.1  RELEASED  2013-03-07 37

3.1.3.1 JAXB

To process the exchange format, JAXB is used. The corresponding classes are located

in the project https://github.com/e-Spirit/uxbridge-samples/newsWidget/adapter/base in

the Package com.espirit.moddev.uxbridge.entity.

JAXB makes it easy to work with Java objects without having to think about parsing

the XML. Similarly to JPA, here, work is done with annotations.

@XmlRootElement(name = "uxb_entity")

@XmlAccessorType(XmlAccessType.FIELD)

public class UXBEntity {

 @XmlAttribute

 private String uuid;

 @XmlAttribute

 private String language;

 @XmlAttribute

 private String destinations;

 @XmlElement(type = UXBContent.class)

 private UXBContent uxb_content;

 @XmlAttribute

 private String command;

 @XmlAttribute

 private long createTime;

 @XmlAttribute

 private long finishTime;

3.1.3.1.1 DateType: XmlAdapter for the date format

Date input is formatted in the FirstSpirit output channel according to the format "yyyy-

MM-dd'T'HH:mm:ssZ". So that this format can be read into the JAXB classes,

the DateAdapter class has been implemented. This class is located in the

com.espirit.moddev.examples.uxbridge.widget.entity.type package.

@XmlElement()

@XmlJavaTypeAdapter(value = DateAdapter.class, type = Date.class)

private Date date;

UX-Bridge Developer Documentation

UX-Bridge Developer Documentation  1.1  RELEASED  2013-03-07 38

3.1.3.1.2 UXBEntity and UXBContent

Both classes on the one hand implement the part prescribed by UX-Bridge (UXBEntity),

and the project-specific part (UXBContent) of the exchange format on the other.

3.1.3.2 Relational database

The adapter for relational databases was implemented with the aid of Hibernate.

In this example, PostgreSQL is used; the adapter, however, should also function with

other Hibernate-supported databases.

3.1.3.2.1 Domain class: Article

The Domain class Article is located in the project widgetExample/adapter/base in the

package com.espirit.moddev.examples.uxbridge.widget.

The class has a generated ID:

@Id

@GeneratedValue(strategy = GenerationType.AUTO)

private Long id;

The ID attribute is used so that the domain class is compatible with Grails

implementation in the web application.

In order to prevent complex database structures, in this example, an object was

generated for each language. This means that the FirstSpirit ID is no longer unique

in this context. Access to the data is therefore done via the FirstSpirit-ID (aid) and

the language.

The use of a compound primary key would make sense here. In this example,

however, due to the complexity, this option is intentionally not used.

It is to be noted that, after deleting and reinserting an article into the live repository,

the ID changes. Therefore, it is necessary to always use the FirstSpirit ID and the

language for access.

3.1.3.2.2 ArticleHandler

Access to the database is made in the ArticleHandler (package

com.espirit.moddev.examples.uxbridge.widget.jpa). It takes care of answering and

editing the data. In the example, for each of the supported commands, a unique

method was implemented in the handler.

UX-Bridge Developer Documentation

UX-Bridge Developer Documentation  1.1  RELEASED  2013-03-07 39

3.1.3.2.2.1 Command: add

Saving or updating a press release in the live repository.

3.1.3.2.2.2 Command: delete

Deleting a press release in the live repository.

3.1.3.2.2.3 Command: cleanup

Deleting all press releases which are older than the date indicated.

3.1.3.2.3 Configuration

The configuration for this adapter is located in the WEB-INF/applicationContext.xml file.

In this Spring Xml file, alongside the database, the JMS, the ArticleHandler and the

Camel routes are configured.

3.1.3.2.3.1 CamelContext

In this context, you configure which messages are of interest to this adapter and

processed by it.

<camelContext id="camelContext" trace="false"

xmlns="http://camel.apache.org/schema/spring">

 <package>com.espirit.moddev.examples.uxbridge.newswidget.entity</p

ackage>

 <onException>

 <exception>java.lang.Exception</exception>

 <handled>

 <constant>true</constant>

 </handled>

 <to

uri="adapterReturn:jms:topic:BUS_IN?destination=mongodb&bodyVa

lue=bodyTemp " />

 </onException>

 <route id="uxbridge-commands">

 <from uri="jms:topic:BUS_OUT" />

 <filter>

 <xpath>//uxb_entity[contains(@destinations, 'mongodb')]</xpath>

UX-Bridge Developer Documentation

UX-Bridge Developer Documentation  1.1  RELEASED  2013-03-07 40

 <filter>

 <xpath>//uxb_entity[@objectType = 'news']</xpath>

 <camel:setHeader

headerName="bodyTemp"><simple>${body}</simple></camel:setHeader>

 <filter>

 <xpath>//uxb_entity[@command = 'add']</xpath>

 <convertBodyTo

 type="com.espirit.moddev.examples.uxbridge.newswidget.entity.UXBEn

tity" />

 <bean ref="articleHandler" method="add" />

 </filter>

 <filter>

 <xpath>//uxb_entity[@command = 'delete']</xpath>

 <convertBodyTo

 type="com.espirit.moddev.examples.uxbridge.newswidget.entity.UXBEn

tity" />

 <bean ref="articleHandler" method="delete" />

 </filter>

 <filter>

 <xpath>//uxb_entity[@command = 'cleanup']</xpath>

 <convertBodyTo

 type="com.espirit.moddev.examples.uxbridge.newswidget.entity.UXBEn

tity" />

 <bean ref="articleHandler" method="cleanup" />

 </filter>

 <to uri="adapterReturn:jms:topic:BUS_IN?destination=mongodb" />

 </filter>

 </filter>

 </route>

 <route>

 <from uri="jms:topic:BUS_IN" />

 <to uri="stream:out" />

 </route>

 </camelContext>

A detailed explanation of creating feedback can be found in Chapter 3.5.

UX-Bridge Developer Documentation

UX-Bridge Developer Documentation  1.1  RELEASED  2013-03-07 41

3.1.3.2.3.1.1 Reception of messages

Using the From-Tag (<from uri="

activemq:Consumer.newsWidgetHibernate.VirtualTopic.BUS_OUT" />), you can

configure the URI used to read in messages. At this location, a virtual end point is

used (see http://activemq.apache.org/virtual-destinations.html). The advantage of

virtual end points is that no modifications have to be carried out on the routing for

additional adapters. New, virtual end points simply have to follow the

"Consumer.%any adapter name%.VirtualTopic.%source termination point%" naming

schema. Through the virtualization, messages are not read as in a queue by only

one adapter; rather, all corresponding adapters get the message.

If, for example, the new adapter "myAdapter" is also to consume messages that are

delivered at the end point FS_OUT, then a possible end point could appear

as follows:

activemq:Consumer.myAdapter.VirtualTopic.BUS_OUT

3.1.3.2.3.1.2 Filters for the live repository

By means of XPath expression (//uxb_entity[contains(@destinations, 'postgres')]),

the messages which are to be written to this live repository are filtered.

3.1.3.2.3.1.3 Filtering the object type

With the expression //uxb_entity[@objectType = 'news'], the messages are limited to

News type objects.

3.1.3.2.3.1.4 Adding and deleting articles

With these expressions, filtering is done according to the corresponding command.

"//uxb_entity[@command = 'add']" involves an addition to the repository, and

"//uxb_entity[@command = 'delete']" involves deletion from the repository.

Before the actual method query, the exchange format is changed by means of JAXB

and the Camel instruction <convertBodyTo

type="com.espirit.moddev.examples.uxbridge.widget.entity.UXBEntity"/>. The query

of the corresponding method in the ArticleHandler is then done with an object of

type UXBEntity.

http://activemq.apache.org/virtual-destinations.html

UX-Bridge Developer Documentation

UX-Bridge Developer Documentation  1.1  RELEASED  2013-03-07 42

3.1.3.2.3.2 ArticleHandler

The ArticleHandler is the part of the adapter which processes the command and

writes the article to the repository or deletes the article from it.

The ArticleHandler requires both the EntityManagerFactory for access to the

database and the CamelContext and the name of the routes on which the messages

can be sent back to FirstSpirit.

3.1.3.3 MongoDB

For the NoSQL live repository, the MongoDB database driver was used exclusively.

The use of a persistence framework was deliberately omitted, because the

DB structure of the web application had to be recreated in the adapter.

3.1.3.3.1 Domain class article

The MongoDB adapter uses the same domain class that is used by the

Hibernate adapter. The JPA annotations are not taken into account in this.

3.1.3.3.1.1 Id generation

In the web application, Grails GORM is used for the database access. In order for

the adapter to use the identical database structure, a helper method

generateIdentifier had to be introduced. In this method, IDs are managed via an

extra collection (http://www.mongodb.org/display/DOCS/Collections).

3.1.3.3.2 ArticleHandler

The procedure in the ArticleHandler is no different from the procedure of the

Hibernate ArticleHandler (see also Chapter 3.1.3.2.2 ArticleHandler).

3.1.3.3.3 Configuration

The configuration is only marginally different from the configuration of the

Hibernate adapter.

The destination filter filters messages for the mongodb destination.

The parameters for the connection to the database are transferred directly to the

ArticleHandler.

http://www.mongodb.org/display/DOCS/Collections

UX-Bridge Developer Documentation

UX-Bridge Developer Documentation  1.1  RELEASED  2013-03-07 43

3.1.3.4 Starting the sample adapters

The API can be loaded into the local Maven repository using the following call:

mvn install:install-file -Dfile=<path-to-file> -DgroupId=

com.espirit.moddev.uxbridge -DartifactId= uxbridge-camel-component

-Dversion=<version> -Dpackaging=jar

An example implementation could appear as follows:

mvn install:install-file -Dfile=D:\ uxbridge-camel-component-

1.2.4.1133.jar -DgroupId=com.espirit.moddev.uxbridge -

DartifactId=uxbridge-camel-component -Dversion=1.2.4.1133 -

Dpackaging=jar

The sample adapters can be built via the command line:

mvn package

The War file resulting from this can be deployed on any ServletContainer

(Tomcat, Jetty etc.).

Alternatively, you can start the adapters using the command line:

mvn tomcat7:run

To adapt the port of the Tomcat which was started in this process, the file pom.xml

has to be adapted in the directory of the respective adapter.

3.1.3.5 Tests contained

In the sample project, there are unit and integration tests. For the tests, an In-

Memory database and jMockMongo (https://github.com/thiloplanz/jmockmongo)

are used. The jMockMongo jar file has to be imported into the local repository or the

following Maven repository has to be used so that the tests for the MongoDB adapter

can be started:

<repositories>

 <repository>

 <id>thiloplanz-snapshot</id>

 <url>http://repository-

thiloplanz.forge.cloudbees.com/snapshot/</url>

 </repository>

</repositories>

UX-Bridge Developer Documentation

UX-Bridge Developer Documentation  1.1  RELEASED  2013-03-07 44

The dependency must appear as follows:

 <dependency>

 <groupId>jmockmongo</groupId>

 <artifactId>jmockmongo</artifactId>

 <version>0.0.1-SNAPSHOT</version>

 <scope>test</scope>

 </dependency>

The integration tests can be started with the following call:

mvn verify -Pintegration-test

3.2 News widget scenario without programming

As in the previous example, a simple widget is created in this example that displays

the latest articles. The difference stems from the way the adapter is implemented.

It has been implemented without programming, using Camel alone.

Using the ArticleHandler is not necessary. The functions of the ArticleHandler are

replaced by a configuration of the CamelContext here.

Most items are identical to the previous example. Therefore, only the changes

required to implement the example without programming are described in

the following.

3.2.1 CamelContext

In some spots, the explanations for CamelContext are identical to those in the

previous example. The entire Context is explained below regardless.

<camelContext id="camelContext" trace="false"

 xmlns="http://camel.apache.org/schema/spring">

 <onException>

 <exception>java.io.IOException</exception>

 <handled><constant>true</constant></handled>

 <to

uri="adapterReturn:jms:topic:BUS_IN?destination=mongodb&bodyVa

lue=bodyTemp" />

 </onException>

 <route id="uxbridge-commands">

UX-Bridge Developer Documentation

UX-Bridge Developer Documentation  1.1  RELEASED  2013-03-07 45

 <from uri="jms:topic:BUS_OUT" />

 <filter>

 <xpath>//uxb_entity[contains(@destinations, 'mongodb')]</xpath>

 <filter>

 <xpath>//uxb_entity[@objectType = 'news']</xpath>

 <camel:setHeader headerName="bodyTemp">

 <simple>${body}</simple>

 </camel:setHeader>

 <filter>

 <xpath>//uxb_entity[@command = 'add']</xpath>

 <camel:split stopOnException="true">

 <camel:xpath>/uxb_entity/uxb_content/text()</camel:xpath>

 <camel:convertBodyTo type="java.lang.String" />

 <camel:setBody>

 <language

language="groovy"><![CDATA[request.getBody().substring(request.get

Body().indexOf("<![CDATA[")+9,request.getBody().lastIndexOf("]]]]>

<![CDATA[>"))]]></language>

 </camel:setBody>

 <camel:convertBodyTo type="com.mongodb.DBObject" />

 <to

 uri="mongodb:myDb?database=newsWidget&collection=article&o

peration=save" />

 </camel:split>

 </filter>

 <filter>

 <xpath>//uxb_entity[@command = 'delete']</xpath>

 <camel:split stopOnException="true">

 <camel:xpath>/uxb_entity</camel:xpath>

 <camel:convertBodyTo type="java.lang.String" />

 <camel:setBody><camel:groovy>'{aid:'+request.getBody().substring(r

equest.getBody().indexOf('uuid=')+6,request.getBody().indexOf('"',

request.getBody().indexOf('uuid=')+6))+',"language":"'+request.get

Body().substring(request.getBody().indexOf('language=')+10,request

.getBody().indexOf('"',request.getBody().indexOf('language=')+10))

+'"}'</camel:groovy></camel:setBody>

 <camel:convertBodyTo type="com.mongodb.DBObject" />

 <to

 uri="mongodb:myDb?database=newsWidget&collection=article&o

peration=remove" />

 </camel:split>

UX-Bridge Developer Documentation

UX-Bridge Developer Documentation  1.1  RELEASED  2013-03-07 46

 </filter>

 <filter>

 <xpath>//uxb_entity[@command = 'cleanup']</xpath>

 <camel:split stopOnException="true">

 <camel:xpath>/uxb_entity</camel:xpath>

 <camel:convertBodyTo type="java.lang.String" />

 <camel:setBody><camel:groovy>'{"lastmodified":{$lt:'+request.getBo

dy().substring(request.getBody().indexOf('createTime=')+12,request

.getBody().indexOf('"',request.getBody().indexOf('createTime=')+12

))+'}}'</camel:groovy></camel:setBody>

 <camel:convertBodyTo type="com.mongodb.DBObject" />

 <to

 uri="mongodb:myDb?database=newsWidget&collection=article&o

peration=remove" />

 </camel:split>

 </filter>

 <to uri="adapterReturn:jms:topic:BUS_IN?destination=mongodb" />

 </filter>

 </filter>

 </route>

 </camelContext>

CamelContext begins with exception handling. The manner for processing

exceptions is defined in the onException tag for this. Which exceptions are

processed is defined first. In this case, it is a java.io.Exception. Multiple exceptions

can also be specified simultaneously.

Setting the handled tag to true specifies that the exception is handled. In this case,

the exception is no longer thrown and the entire process is not interrupted.

This corresponds to a try-catch block for all routes. An explicit try-catch block for

specific areas is possible if exceptions are to be handled separately for them.

Finally it is specified what happens in the event of an exception. In this case,

a message is sent to BUS_IN. The exact structure is described in Chapter "Using the

Camel component for generating a response".

Initially, the passed XML is analyzed within the route using filter and xpath and the

corresponding calls are made.

A DBObject has to be generated in order to be able to communicate with

a Mongo database. It is generated using <camel:convertBodyTo

type="com.mongodb.DBObject" />. A JSON object in the form of a string is expected as

the transfer parameter. A JSON object is passed within the XML document for

UX-Bridge Developer Documentation

UX-Bridge Developer Documentation  1.1  RELEASED  2013-03-07 47

this purpose. The content of an XML tag, the JSON object in this case, is read out using

text(). If the JSON object contains data that has already been interpreted by an XML

parser, the JSON has to be enclosed by a CDATA section to prevent unwanted

interpretation. This section has to be removed before creating the DBObject. This can be

done using <language

language="groovy"><![CDATA[request.getBody().substring(request.getBody().indexOf("

<![CDATA[")+9,request.getBody().lastIndexOf("]]]]><![CDATA[>"))]]></language>.

<to

uri="mongodb:myDb?database=newsWidget&collection=article&operation

=save" /> is called to transmit the DBObject to the Mongo database. The database,

collection and operation are also passed as parameters.

The JSON objects are created in the delete and cleanup area using groovy.

The required information (uuid,language,createTime) is parsed from the XML

document's uxb_entity tag and placed in the corresponding spot in the JSON object.

This makes it unnecessary to pass a JSON object within the XML document.

3.2.2 Adjustments in FirstSpirit

A slight adjustment in FirstSpirit is required in order to be able to use the News

widget scenario without programming. As described earlier in the chapter,

the information in JSON format has to be passed wrapped in an XML document.

3.2.2.1 Adding content

The Products.press_release UXB channel's database schema has to be adjusted in

order to add content. The UXB channel has to appear as follows:

<?xml version="1.0" encoding="UTF-8" ?>

$CMS_SET(_id)$$CMS_VALUE(#row.id)$$CMS_VALUE(#global.language.hash

Code())$$CMS_END_SET$

<uxb_entity uuid="$CMS_VALUE(#row.id)$"

language="$CMS_VALUE(#global.language)$"

destinations="postgres,mongodb" command="add" objectType="news">

 <uxb_content><![CDATA[

 {

 "_id":$CMS_VALUE(_id)$,

 "aid":$CMS_VALUE(#row.id)$,

 "language":"$CMS_VALUE(#global.language)$",

 "url":"$CMS_REF(#global.node, contentId:#row.getId(),abs:1,

templateSet:"html")$",

UX-Bridge Developer Documentation

UX-Bridge Developer Documentation  1.1  RELEASED  2013-03-07 48

 $CMS_IF(#global.preview)$"lastmodified":$CMS_VALUE(#global.now.get

TimeInMillis())$,

 CMS_ELSE

"lastmodified":$CMS_VALUE(#global.getScheduleContext().getStartTim

e().getTimeInMillis())$,

 CMS_END_IF

 $CMS_IF(!cs_date.isEmpty)$"date":{"$date":"$CMS_VALUE(cs_date.form

at("yyyy-MM-dd'T'HH:mm:ss'Z'"))$"},$CMS_END_IF$

 $CMS_IF(!cs_headline.isEmpty)$"title":"$CMS_VALUE(cs_headline.conv

ert2)$",$CMS_END_IF$

 $CMS_IF(!cs_subheadline.isEmpty)$"subHeadline":"$CMS_VALUE(cs_subh

eadline.convert2)$",$CMS_END_IF$

 $CMS_IF(!cs_teaser.isEmpty)$"teaser":"$CMS_VALUE(cs_teaser.convert

2)$",$CMS_END_IF$

 $CMS_IF(!cs_content.isEmpty)$"content":"$CMS_FOR(section,

cs_content)$$CMS_SET(tmp)$$CMS_VALUE(section)$$CMS_END_SET$$CMS_SE

T(tmp,tmp.toString)$$CMS_VALUE(tmp.convert2)$$CMS_END_FOR$"$CMS_EN

D_IF$

 }]]>

 </uxb_content>

</uxb_entity>

As described previously, an XML document is generated with the JSON object

embedded inside.

3.3 News Drill-Down scenario

In this example, an overview of press releases is generated which can be filtered by

category via a drill-down function.

The web application is the leading system in this, in other words, the drill-down

function and the overview page are created dynamically; the detail pages and the

remaining pages are generated statically. Header and footer are integrated as HTML

fragments in the overview page. These fragments are likewise generated

by FirstSpirit.

The news articles, categories and meta categories are written to a content repository

with the aid of UX-Bridge, to which the web app has access. This implementation is

kept simple for the example, and not performance-optimized; as with every update of

a news item, both the category and the meta category are accessed and updated if

necessary. In a real adapter, of course, you would optimize them, and categories

and meta categories would be read out once only, and an update would be carried

out only in the event of changes to the categories. All categories and meta

categories are shown in the web app in a drill-down menu, where you can mark the

UX-Bridge Developer Documentation

UX-Bridge Developer Documentation  1.1  RELEASED  2013-03-07 49

categories for which the news is to be shown with checkboxes. With every selection

and deselection of a checkbox, an AJAX query is sent. The returned HTML is

integrated into the news list on the page. A pagination guarantees clarity.

This likewise uses AJAX, because the number of the news items to be listed varies

with the selected categories.

The sample application newsExample consists of the adapter (Hibernate), the web

application (Grails) and the FirstSpirit sample project.

3.3.1 Web app development

The web application was created with the web framework Grails in Version 2.1.0.

3.3.1.1 Configuration

All configuration files are in the folder typical for Grails applications,

<newsExample>/grails-app/conf.

The important files here are DataSource.groovy and Config.groovy.

UX-Bridge Developer Documentation

UX-Bridge Developer Documentation  1.1  RELEASED  2013-03-07 50

3.3.1.1.1 DataSource.groovy

Here, the database connections are configured for the different environments,

in other words, test, development and production.

3.3.1.1.2 Config.groovy

Here, the URLs for the navigation generated from FirstSpirit are defined.

3.3.1.2 Domain classes

Create three domain classes with the names News, Category and MetaCategory.

Grails, like the adapter, uses the persistence framework Hibernate. Therefore, it is

necessary to make sure that the same names are used for the attribute, tables and

indices that were already used in the adapter.

3.3.1.3 Rest controller

Create the fitting controller for the domain class news and implement the

method "list". Via this method, the web -application loads the list of articles.

3.3.1.3.1 Method: list

This method is used to render the gsp of the same name.

3.3.1.3.2 Method: listNews

This method renders the gsp template "newsListing" for a certain list of news,

which is fetched from the FilterService.

3.3.1.3.3 Method: drilldown

This method renders the template of the same name which makes the drill-down

menu and the JavaScript necessary for it.

The drill-down menu is rendered directly in the page when the page is viewed.

The JavaScript contained within it uses jQuery and administers checking and

unchecking the checkboxes for the individual categories and meta categories.

UX-Bridge Developer Documentation

UX-Bridge Developer Documentation  1.1  RELEASED  2013-03-07 51

With every click on a checkbox, an AJAX query with the currently selected

categories is sent to the controller's "listNews" method. The HTML returned is then

inserted into the news overview page of the div intended for it. The list of news

remains clearly arranged and is edited with a pagination, which likewise dynamically

loads the correct pages via AJAX queries with the correct articles.

3.3.1.4 Service

3.3.1.4.1 FilterService

This service provides methods to retrieve news according to their categories.

3.3.1.4.1.1 filter

This method returns a map with the following keys:

newsInstanceList: A list of news in the queried categories

newsInstanceTotal: The total number of news items in the queried categories

(is required for pagination)

msg: If categories are not found based on an ID, the string "noCategory" is returned,

which is used by the controller in order to show a message about this

With the aid of the parameter "categories", all categories can be indicated which

should be shown. You pass a string to this with the "cat_1cat_2_cat_4" format in

order to, for example, display the categories with the IDs 1, 2 and 4. If the string

contains "all", all categories are returned.

The parameters "max" and "offset" are required to be able to use pagination.

3.3.1.4.1.2 filterForCategory

This method returns all news of an indicated category. It is queried by the filter

method for each individual category.

3.3.1.4.2 RenderService

This service provides a method to render HTML.

UX-Bridge Developer Documentation

UX-Bridge Developer Documentation  1.1  RELEASED  2013-03-07 52

3.3.1.4.2.1 renderHtml

You transfer the URL to the method. An http request is run which fetches the

HTML snippet. The correctly formatted HTML snippet is then returned.

3.3.1.5 RenderTagLib

This TagLib provides 3 tags to render the header, the footer and the left

navigation column. These tags are used in the main.gsp.

3.3.1.6 Starting the sample application

The application is started via the command line:

grails run-app

3.3.1.7 Overview page as a Grails app

As soon as the application was successfully started, you can query the news

overview page by the following URL:

http://localhost:8080/newsDrilldown/

The links to the news articles on the dynamic overview page indicate the statically

generated news detail pages. In this way, a high level of dynamics can be achieved

on the website without losing performance.

3.3.2 FirstSpirit development

The news scenario is integrated in this tutorial in the standard Mithras

Energy project. That is why you import this first and carry out all the following

changes in this project.

The completely finished FirstSpirit sample project is delivered under the name

"uxbridge_tutorial_newsDrilldown.tar.gz", and can be used to view the template code

and the settings.

http://localhost:8080/newsDrilldown/

UX-Bridge Developer Documentation

UX-Bridge Developer Documentation  1.1  RELEASED  2013-03-07 53

3.3.2.1 Server configuration

In the first step, a new conversion -rule is stored in the server properties.

The corresponding rule is to be stored beforehand as a text file.

3.3.2.2 Project configuration

In the project configuration, a new template set for UX-Bridge is to be created,

which is to be configured as follows.

In order to send messages to UX-Bus, the fields which were defined in the data

model are to be output in the form of XML in the corresponding template that is to

generate the messages (refer also to Creating and filling a presentation channel).

3.3.2.3 Section templates

First, create four new section templates with the names "navigation_header",

"navigation_footer", "navigation_left" and "navigation_css" and fill the HTML output

channel with the necessary HTML and CSS fragments of Mithras Energy Navigation.

These are then output separately and installed in the web app.

In the sample project, you will find this in the folder "Header / Footer" in the section

templates.

UX-Bridge Developer Documentation

UX-Bridge Developer Documentation  1.1  RELEASED  2013-03-07 54

3.3.2.4 Page templates

Create a new page template and insert your previously created section templates for

the allowed content areas in the Properties tab. Finally, edit your HTML output

channel as follows:

$CMS_VALUE(#global.page.body("content"))$

Make sure that you do not use an HTML basic framework in your page template!

3.3.2.5 Create page

Now, based on the previously created page templates, create three new pages in

your content store and insert the following section templates.

3.3.2.6 Table and Table template (XML)

In the schema, you now have to define the data structure for the news,

the categories and the meta categories, if they are not already available.

UX-Bridge Developer Documentation

UX-Bridge Developer Documentation  1.1  RELEASED  2013-03-07 55

In the "Press_Releases" table, the general content of the press release is defined.

Among other things, a header, the text, and the date belong to this. Using an

n:m relationship, the table "Press_Category" is referenced, in which you can save

the name of a category. Using an additional m:n relationship, multiple meta

categories can be added to a category.

Based on the news table, a table template is to be created based on the following

schema which generates the XML, which is forwarded to the UXB Service.

<uxb_entity

 uuid = String

 destinations = String

 language = String

 command = String

 objectType = String

>

 <uxb_content>

 <fs_id/>

 <language/>

 <url/>

 <date/>

UX-Bridge Developer Documentation

UX-Bridge Developer Documentation  1.1  RELEASED  2013-03-07 56

 <headline/>

 <subheadline/>

 <teaser/>

 <content/>

 <metaCategories>

 <metaCategory>

 <fs_id/>

 <name/>

 <categories>

 <category>

 <fs_id/>

 <name/>

 </category>

 </categories>

 </metaCategory>

 </metaCategories>

 </uxb_content>

</uxb_entity>

The child elements in the uxb_content tag are simultaneously the content fields

which are to be written to the attached content repository by the adapter and

therefore are also to be taken into account when creating the data structure.

Also create two table templates alongside the news table for the category and the

meta category, and then fill these in in your content sources. In the sample project,

you will find them in the schema "Products" with the reference names

"Products.press_category" and "Products.press_metacategory".

3.3.2.7 Deployment

In the sample project, it is possible to generate the JMS messages, and therefore,

also the entries in the connected content repositories automatically via a workflow,

directly from the content source. Likewise, it is possible to delete objects in FirstSpirit

and the connected content repositories directly from the data sources using an

additional workflow. To do so, the workflows use, alongside the scripts, table queries

and schedules, which are first to be configured.

UX-Bridge Developer Documentation

UX-Bridge Developer Documentation  1.1  RELEASED  2013-03-07 57

3.3.2.7.1 Create table queries

Table queries have to be created for the generation of a data record and all data

records for the News table. The query for a data record therefore has to receive

a limitation on the "fs_id" column with the parameter "ID", to be newly created.

3.3.2.7.2 Create schedule

A new schedule has to be created which, alongside the generation of JMS

messages for the UXB service, also takes over the generation and deployment of

overview pages. In addition, a generation action must first be added to the schedule,

which generates the overview pages. The Delta deployment extends this action

during runtime by adding the detail page of the data record currently to

be generated. Afterward, a script action has to happen which activates UX-Bridge:

#! executable-class

com.espirit.moddev.uxbridge.inline.UxbInlineUtil

A partial generation is to take place in the generation to be created thereafter.

Page and data record are later entered automatically through the Delta deployment,

so that only the desired JMS message is generated. Afterward, the web pages can

be deployed as usual.

If the processing time for the messages in the bus until deployment on the website is

measured, then in the end, the action "UX-Bridge Statistics Report" has to be added,

which contains the following script:

import com.espirit.moddev.uxbridge.service.UxbService;

uxbService = context.getConnection().getService(UxbService.class);

uxbService.waitSeconds(10);

uxbService.getTimings(context.getStartTime().getTime());

In the example, the service waits 10 seconds, until the adapters' answers are

evaluated. If there is no answer in this time frame, then the message is classified as

having a delivery error. Because the response times can vary depending on

message and system, the value can be configured.

UX-Bridge Developer Documentation

UX-Bridge Developer Documentation  1.1  RELEASED  2013-03-07 58

3.3.2.7.3 Import workflow scripts

In the next step, the required workflow scripts must be imported:

- uxb_news_example_release_init

- uxb_news_example_release_script

- uxb_news_example_delete_init

- uxb_news_example_delete_script

The Init scripts, in this case, initiate variables and write them to the session,

so that the methods of the UXB module which are queried in the other scripts can

access these.

In uxb_news_example_release_init, the following parameters have to be configured:

Parameter Example value Description

detail_page pressreleasesdetails Page reference of the

page which generates

the JMS messages

query_uid Products.pressdetailsfilter Table query which

generates all the data

records

single_query_uid Products.pressdetailfilter Table query which

contains the ID of

the data record that is

to be generated as

a parameter

query_param Id Parameter name of

the table query

schedule_name UX-Bridge Name of the schedule

that is to generate the

JMS messages

UX-Bridge Developer Documentation

UX-Bridge Developer Documentation  1.1  RELEASED  2013-03-07 59

scheduler_uxb-

generate

UX-Bridge Generate Name of the

generation action of

the JMS messages

scheduler_generate Generate Name of the generation

action for the HTML

pages

transition_name Release Name of the transition

in the workflow (see

workflow) which is to

be switched to after the

content_release_script

The script "uxb_news_example_release_script" then starts the previously configured

schedule and executes the defined transition.

In uxb_news_example_delete_init, the following parameters are configured:

Parameter Example value Description

destinations postgres Name of the content

repositories from which

the data record is to be

deleted

transition_name release Name of the transition

in the workflow (see

workflow) which is to

be switched to after the

content_delete_script

object_type news Type of object that is to

be deleted

Within the following script "uxb_news_example_delete_script", the selected data

record is deleted in FirstSpirit, and a message is sent via the UXB Service and the

bus to the attached content repository, which triggers the delete action there.

3.3.2.7.4 Import workflows

The workflows "uxb_news_example_release" and "uxb_news_example_delete"

query the previously configured scripts.

UX-Bridge Developer Documentation

UX-Bridge Developer Documentation  1.1  RELEASED  2013-03-07 60

3.3.2.7.5 Complete alignment process

In the FirstSpirit sample project, the complete alignment process is implemented in

the "UX-Bridge Full Deployment" schedule.

Notes on the procedure for the complete alignment process are found in

Chapter 2.1.4.2, page 14 Complete alignment process .

3.3.3 Adapters

The adapter is the component which reads in the data from the UX-Bus and writes

them to the live repository.

3.3.3.1 JAXB – XML processing

For the processing of the XML defined in the output channel, in this example,

JAXB is used. The corresponding classes are located in the

com.espirit.moddev.examples.uxbridge.newsdrilldown.entity package.

Like with JPA, in JAXB, work is done to bind the XML tags to a Java object

with annotations.

@XmlRootElement(name = “uxb_entity”)

@XmlAccessorType(XmlAccessType.FIELD)

Public class UXBEntity {

 @XmlAttribute

 private String uuid;

 @XmlAttribute

 private String language;

 @XmlAttribute

 private String destinations;

 @XmlElement(type = UXBContent.class)

 private UXBContent uxb_content;

 @XmlAttribute

 private String command;

 @XmlAttribute

 private String createTime;

 @XmlAttribute

UX-Bridge Developer Documentation

UX-Bridge Developer Documentation  1.1  RELEASED  2013-03-07 61

 private String finishTime;

3.3.3.1.1 DateType: XmlAdapter for the date format

Date input is formatted in the FirstSpirit output channel according to the format "yyyy-

MM-dd'T'HH:mm:ssZ". So that this format can be read into the JAXB classes,

the DateAdapter class has been implemented. This class is in the

com.espirit.moddev.examples.uxbridge.newsdrilldown.entity.type package.

@XmlElement()

@XmlJavaTypeAdapter(value = DateAdapter.class, type = Date.class)

Private Date date

3.3.3.1.2 UXBEntity, UXBContent, UXBMetaCategory and UXBCategory

These classes represent the exchange format defined in the output channel.

3.3.3.1.3 UXBEntity

This class corresponds to the basic framework of the exchange format prescribed

by UX-Bridge.

3.3.3.1.4 UXBContent, UXBMetaCategory and UXBCategory

The project-specific JAXB classes for processing the exchange format. Here, the

actual information of the objects that are distributed via UX Bridge is contained.

In this example, these are in other words the press releases with the corresponding

meta categories and categories.

3.3.3.2 Hibernate domain classes

The domain classes are located in the com.espirit.moddev.uxbridge package.

In order to map multiple languages, every object contains a language, and every

language is saved as an independent object in the repository.

This procedure has, as a consequence, the result that the FirstSpirit-ID (UUID) is no

longer unique. Therefore, standard Hibernate/JPA mechanisms are used to generate

a unique ID.

UX-Bridge Developer Documentation

UX-Bridge Developer Documentation  1.1  RELEASED  2013-03-07 62

@Id

@GeneratedValue(strategy = GenerationType.AUTO)

private Long id;

This ID in the live repository changes after deleting it from the repository and adding

it again. If your application situation requires a different behavior, then you can use

a compiled primary key, made up of the FirstSpirit-ID and the language.

3.3.3.2.1 News, NewsCategory, NewsMetaCategory

The structure of the classes corresponds to those in the database schema defined

in FirstSpirit. This procedure is not absolutely necessary, but is being described here

as an aid to understanding.

3.3.3.3 NewsHandler

The NewsHandler in the com.espirit.moddev.exsamples.uxbridge.news.jpa

package is the class which takes the data and processes it. In the example, for each

of the supported commands, a unique method was implemented in the handler.

3.3.3.3.1 Command: add

Saving or updating a press release in the live repository.

In this situation, it must be ensured that the meta categories and categories are

transferred in the exchange format within the press release. In the repository,

categories and meta categories are, however, saved separately.

For this example, this means that the categories and meta categories have to be

newly created or updated with this command, alongside the press release.

3.3.3.3.2 Command: delete

Deleting a press release in the live repository and the detail page belonging to it as

defined in the schedule script (see Create schedule) on the web server. In order for

the methods to be able to find the correct page on the web server, in the

applicationContext.xml in the news handler bean, the "webpath" parameter on

the path to the web server directory (for example, ''(/home/tomcat/ webapps") must

be set.

UX-Bridge Developer Documentation

UX-Bridge Developer Documentation  1.1  RELEASED  2013-03-07 63

<constructor-arg name="webpath" value="/home/tomcat/webapps"/>

Note that the implementation in this example does not provide for the deletion of

meta categories or categories if there is no press release in one of these categories.

3.3.3.3.3 Command: cleanup

Deleting all press releases which are older than the date indicated.

3.3.3.4 Routing

Components are configured in the Spring XML file:WEB-INF/applicationContext.xml.

This means that the database connection, ConnectionPooling, JMS and the routing

are defined.

The routing is defined in the XML area <camelContext id="camelContext" ...>.

<camelContext id="camelContext" trace="false"

xmlns="http://camel.apache.org/schema/spring">

 <package>com.espirit.moddev.examples.uxbridge.newsdrilldown.entity

</package>

<onException>

 <exception>java.io.IOException</exception>

 <handled>

 <constant>true</constant>

 </handled>

 <to

uri="adapterReturn:jms:topic:BUS_IN?destination=postgres&bodyV

alue=bodyTemp" />

 </onException>

 <route id="uxbridge-commands" >

 <from uri="activemq:Consumer.newsDrillDown-

Hibernate.VirtualTopic.BUS_OUT" />

 <filter>

 <xpath>//uxb_entity[contains(@destinations, 'postgres')]</xpath>

 <filter>

 <xpath>//uxb_entity[@objectType = 'news_article']</xpath>

 <camel:setHeader headerName="bodyTemp">

 <simple>${body}</simple>

 </camel:setHeader>

UX-Bridge Developer Documentation

UX-Bridge Developer Documentation  1.1  RELEASED  2013-03-07 64

 <filter>

 <xpath>//uxb_entity[@command = 'add']</xpath>

 <convertBodyTo

type="com.espirit.moddev.examples.uxbridge.newsdrilldown.entity.UX

BEntity" />

 <bean ref="newsHandler" method="add" />

 </filter>

 <filter>

 <xpath>//uxb_entity[@command = 'delete']</xpath>

 <convertBodyTo

type="com.espirit.moddev.examples.uxbridge.newsdrilldown.entity.UX

BEntity" />

 <bean ref="newsHandler" method="delete" />

 </filter>

<filter>

 <xpath>//uxb_entity[@command = 'cleanup']</xpath>

 <convertBodyTo

type="com.espirit.moddev.examples.uxbridge.newsdrilldown.entity.UX

BEntity" />

 <bean ref="newsHandler" method="cleanup" />

 </filter>

 <to uri="adapterReturn:jms:topic:BUS_IN?destination=postgres" />

 </filter>

 </filter>

 </route>

 </camelContext>

Additional information and options can be found under

http://camel.apache.org/spring.html.

A detailed explanation of creating feedback can be found in Chapter 3.5.

3.3.3.4.1 The route uxbridge-commands

Any number of routes can be defined. In this, the routes defined in the adapter are

not to be confused with the routes of the UX-Bus or take over their tasks. The routes

in the adapter should only contain the routes important for this adapter.

In this example application, a route was defined:

<route id="uxbridge-commands">

http://camel.apache.org/spring.html

UX-Bridge Developer Documentation

UX-Bridge Developer Documentation  1.1  RELEASED  2013-03-07 65

3.3.3.4.2 Message source

With the From tag, the integration framework from which the data is read

(Apache Camel) is indicated. In this example, the from tag appears as follows:

<from uri="activemq:Consumer.newsDrillDown-

Hibernate.VirtualTopic.BUS_OUT" />

The data or messages are read out via JMS Topic "BUS_OUT". At this location,

a virtual end point is used (see http://activemq.apache.org/virtual-destinations.html).

The advantage of virtual end points is that no modifications have to be carried out on

the routing for additional adapters. New, virtual end points simply have to follow the

"Consumer.%any adapter name%.VirtualTopic.%source termination point%" naming

schema. Through the virtualization, messages are not read as in a queue by only

one adapter; rather, all corresponding adapters get the message.

If, for example, the new adapter "myAdapter" is also to consume messages that are

delivered at the end point FS_OUT, then a possible end point could appear

as follows:

activemq:Consumer.myAdapter.VirtualTopic.BUS_OUT

3.3.3.4.3 Filters

Through filtering messages, messages which are unimportant to the NewsHandler -

in other words, messages for a different repository or from a different type of object -

are filtered out.

To filter the messages, in this example, we just use XPath expressions.

In this functionally limited example, not all filter options are necessary, but have been

included to help inspire new ideas.

3.3.3.4.3.1 Destination filter

//uxb_entity[contains(@destinations, 'postgres')]

Here, messages are filtered which are to land in the PostgreSQL database. All other

messages that do not fit to this expression are not handled further. The messages

can be simultaneously written into different live repositories, and are processed in

this location with 'contains'.

http://activemq.apache.org/virtual-destinations.html

UX-Bridge Developer Documentation

UX-Bridge Developer Documentation  1.1  RELEASED  2013-03-07 66

3.3.3.4.3.2 Object type filter

//uxb_entity[@objectType = 'news_article']

The NewsHandler can only process objects of the type "news_article". Here, too,

the messages which do not affect this expression cannot be further handled.

Usually, messages always only contain one object of a type; therefore, this is

processed here with "=".

3.3.3.4.3.3 Command filter

<xpath>//uxb_entity[@command = 'add']</xpath>

In the last step, the messages are filtered according to commands.

3.3.3.4.3.4 JAXB conversion

<convertBodyTo

type="com.espirit.moddev.examples.uxbridge.news.entity.UXBEntity"

/>

The XML of the message is converted via a JAXB in a Java class.

3.3.3.4.3.5 Methods query

<bean ref="newsHandler" method="add" />

Finally, at the end of the filter chain, the corresponding method is queried in the

NewsHandler.

3.3.3.5 Starting the sample adapters

The API can be loaded into the local Maven repository using the following call:

mvn install:install-file -Dfile=<path-to-file> -DgroupId=<group-

id> -DartifactId=<artifact-id> -Dversion=<version> -

Dpackaging=<packaging>

An example implementation could appear as follows:

mvn install:install-file -Dfile= D:\uxbridge-module-api-

1.2.4.1133.jar -DgroupId=com.espirit.moddev.uxbridge -

DartifactId=uxbridge-module-api -Dversion=1.2.4.1133 -

Dpackaging=jar

UX-Bridge Developer Documentation

UX-Bridge Developer Documentation  1.1  RELEASED  2013-03-07 67

The sample adapters can be established via the command line:

mvn package

The War file resulting from this can be deployed on any ServletContainer

(Tomcat, Jetty etc.).

Alternatively, you can start the adapters using the command line:

mvn tomcat7:run

To adapt the port of the Tomcat which was started in this process, the file pom.xml

has to be adapted in the directory of the respective adapter.

3.3.3.6 Tests contained

In the sample project, there are unit and integration tests. For the tests, an In-Memory

database and jMockMongo (https://github.com/thiloplanz/jmockmongo) are used.

So that the tests for the MongoDB adapter can be started, the jMockMongo Jar has to

be imported into the local repository.

The integration tests can be started with the following call:

mvn verify -Pintegration-test

3.4 Using the UXB service API

If you would like to use the UXBService in a module or script, the API can be used.

To do so, the API jar file in the corresponding version has to be added to the

class path.

Then you receive access to the UXBService using the following call:

UxbService uxbService =

context.getConnection().getService(UxbService.class);

You can find an example implementation for delete and release executables in

the Github repository under uxbridge-api-example.

UX-Bridge Developer Documentation

UX-Bridge Developer Documentation  1.1  RELEASED  2013-03-07 68

3.4.1 Creating a demo project

Apache Maven is required to create a demo project. In addition, fs-access.jar has to

be installed as an artifact in the local Maven repository.

The project can be built using "mvn clean package" once these prerequisites have

been met. In this step, an FSM is created in the project's target directory; it can be

installed using the FirstSpirit Server admin console. Afterwards, the included sample

executables can be used.

3.4.2 Use

Both example implementations can be used in both of the previous tutorials.

This requires that you proceed as follows:

3.4.2.1 "Delete data record" script (uxb_content_delete_script)

The script has been implemented as an executable; therefore, just the executable is

called at this point.

#! executable-class

com.espirit.moddev.uxbridge.samples.workflow.DeleteEntityExecutabl

e

3.4.2.2 "Release data record" script (uxb_content_release_script)

This script has also been replaced by the corresponding executable.

#! executable-class

com.espirit.moddev.uxbridge.samples.workflow.ReleaseAndDeployEntit

yExecutable

3.4.2.3 CamelContext return

FirstSpirit expects feedback in the form of an XML document after interacting with an

adapter using UX-Bridge. There is a Camel component available that creates this

XML document.

In order to have access to the component in CamelContext, the component has to

be integrated as follows:

UX-Bridge Developer Documentation

UX-Bridge Developer Documentation  1.1  RELEASED  2013-03-07 69

<bean id="adapterReturn"

class="org.uxbridge.camel.component.AdapterReturnComponent">

 </bean>

In order to use the function, it also has to be called when forwarding data to BUS_IN.

<to uri="adapterReturn:jms:topic:BUS_IN" />

This happens regardless of whether the data is transmitted to the database

successfully or there is an exception. The function creates the appropriate response

in either case.

3.5 Using the Camel component for generating a response

This component can be used to generate the response that FirstSpirit expects from

an adapter. This is true for both: A regular response and for a response in the event

of an error. Using this component requires that the adapter is implemented using

Apache Camel. You can find more information on Apache Camel on the Apache

Camel website (http://camel.apache.org/).

3.5.1 Integrating the component

A Camel component has to be integrated in order for you to receive access to it.

This is done using the provided uxbridge-camel-component-<version>.jar file.

This has to be integrated into the project's Java class path. (For Eclipse: right-click

on the project->Java Build Path->Libraries->Add external JARs)

3.5.2 Integrating the component

The component has to be integrated as a bean in order for the component to be used

within an adapter. The call for this appears as follows: <bean id="adapterReturn"

class="org.uxbridge.camel.component.AdapterReturnComponent"></bean>

You can choose any ID. However, the structure of the URL changes accordingly in

relation to the example below.

http://camel.apache.org/

UX-Bridge Developer Documentation

UX-Bridge Developer Documentation  1.1  RELEASED  2013-03-07 70

3.5.3 Structure of the URL

The structure of the URL starts with the call for the component. This is done using

the ID specified when integrating the component. This is followed by the call for the

destination. The destination parameter is also added to the URL at the end.

The complete structure could then appear as follows:

<to uri="adapterReturn:jms:topic:BUS_IN?destination=mongodb" />

A second parameter is required when calling within exception handling; the call has

to be supplemented by attaching this parameter:

<to

uri="adapterReturn:jms:topic:BUS_IN?destination=mongodb&bodyValue=body

Temp" />

3.5.4 Parameter

Two parameters are passed to the component. The first parameter is the destination

the response is generated from. This parameter is appended directly to the URL

using a ?. Since multiple destinations can be passed within the call for the adapter,

this parameter is used to differentiate the destination that led to this response.

The second parameter is only required in the event of an exception. Since the current

status of the message is passed to the exception handler in the event of an exception,

there may be instances where the content is no longer complete and a part, such as the

root element for the XML document, is missing. Since processing requires the entire

XML document, however, the document has to be stored temporarily before processing

in the message's header. The content can be stored temporarily using <setHeader

headerName="bodyTemp"><simple>${body}</simple></setHeader>. You can choose

any HeaderName in the process, but it has to be shared with the component. This is

done using the second bodyValue parameter.

UX-Bridge Developer Documentation

UX-Bridge Developer Documentation  1.1  RELEASED  2013-03-07 71

4 Appendix

4.1 Conversion rules for Unicode to XML

[convert]

0x00=""

0x01=""

0x02=""

0x03=""

0x04=""

0x05=""

0x06=""

0x07=""

0x08=""

0x09=""

0x0A=""

0x0B=""

0x0C=""

0x0D=""

0x0E=""

0x0F=""

0x10=""

0x11=""

0x12=""

0x13=""

0x14=""

0x15=""

0x17=""

0x18=""

0x19=""

0x1A=""

0x1B=""

0x1C=""

0x1D=""

0x1E=""

0x1F=""

0x3c="<"

UX-Bridge Developer Documentation

UX-Bridge Developer Documentation  1.1  RELEASED  2013-03-07 72

0x3e=">"

0x22="""

0x27="'"

0x26="&"

[quote]

	1 Concept
	1.1 Generation and deployment concept
	1.2 Data model and adapter
	1.3 News distribution / routing

	2 Quick Walkthrough
	2.1 FirstSpirit
	2.1.1 Installation
	2.1.2 Data exchange format – FS Templating vs. WebApp development
	2.1.3 Creating and filling a presentation channel
	2.1.4 Create and configure schedule
	2.1.4.1 Partial generation
	2.1.4.2 Complete alignment process

	2.1.5 Workflow coupling
	2.1.5.1 Release Workflow
	2.1.5.2 Delete Workflow

	2.2 Adapters
	2.2.1 Feedback

	2.3 WebApplication
	2.4 Routing
	2.4.1 End points in FirstSpirit
	2.4.2 Routing in the UX-Bus
	2.4.3 End points in the adapter

	3 Tutorials
	3.1 News widget scenario
	3.1.1 Web application
	3.1.1.1 Configuration
	3.1.1.1.1 DataSource.groovy
	3.1.1.1.2 Config.groovy
	3.1.1.1.3 UrlMappings.groovy

	3.1.1.2 Domain class
	3.1.1.3 Rest controller
	3.1.1.3.1 Method: list
	3.1.1.3.2 Method: show

	3.1.1.4 Service
	3.1.1.4.1 getLatestArticles
	3.1.1.4.2 ellipsis

	3.1.1.5 SQL and NoSQL
	3.1.1.6 Starting the example application

	3.1.2 FirstSpirit development
	3.1.2.1 Project configuration
	3.1.2.2 Project settings
	3.1.2.3 Page templates
	3.1.2.4 Section template
	3.1.2.5 Format template
	3.1.2.6 Create page
	3.1.2.7 Table and Table template (XML)
	3.1.2.8 Deployment
	3.1.2.8.1 Create table queries
	3.1.2.8.2 Create schedule
	3.1.2.8.3 Import workflow scripts
	3.1.2.8.4 Import workflows
	3.1.2.8.5 Complete alignment process

	3.1.3 Adapters
	3.1.3.1 JAXB
	3.1.3.1.1 DateType: XmlAdapter for the date format
	3.1.3.1.2 UXBEntity and UXBContent

	3.1.3.2 Relational database
	3.1.3.2.1 Domain class: Article
	3.1.3.2.2 ArticleHandler
	3.1.3.2.2.1 Command: add
	3.1.3.2.2.2 Command: delete
	3.1.3.2.2.3 Command: cleanup

	3.1.3.2.3 Configuration
	3.1.3.2.3.1 CamelContext
	3.1.3.2.3.1.1 Reception of messages
	3.1.3.2.3.1.2 Filters for the live repository
	3.1.3.2.3.1.3 Filtering the object type
	3.1.3.2.3.1.4 Adding and deleting articles

	3.1.3.2.3.2 ArticleHandler

	3.1.3.3 MongoDB
	3.1.3.3.1 Domain class article
	3.1.3.3.1.1 Id generation

	3.1.3.3.2 ArticleHandler
	3.1.3.3.3 Configuration

	3.1.3.4 Starting the sample adapters
	3.1.3.5 Tests contained

	3.2 News widget scenario without programming
	3.2.1 CamelContext
	3.2.2 Adjustments in FirstSpirit
	3.2.2.1 Adding content

	3.3 News Drill-Down scenario
	3.3.1 Web app development
	3.3.1.1 Configuration
	3.3.1.1.1 DataSource.groovy
	3.3.1.1.2 Config.groovy

	3.3.1.2 Domain classes
	3.3.1.3 Rest controller
	3.3.1.3.1 Method: list
	3.3.1.3.2 Method: listNews
	3.3.1.3.3 Method: drilldown

	3.3.1.4 Service
	3.3.1.4.1 FilterService
	3.3.1.4.1.1 filter
	3.3.1.4.1.2 filterForCategory

	3.3.1.4.2 RenderService
	3.3.1.4.2.1 renderHtml

	3.3.1.5 RenderTagLib
	3.3.1.6 Starting the sample application
	3.3.1.7 Overview page as a Grails app

	3.3.2 FirstSpirit development
	3.3.2.1 Server configuration
	3.3.2.2 Project configuration
	3.3.2.3 Section templates
	3.3.2.4 Page templates
	3.3.2.5 Create page
	3.3.2.6 Table and Table template (XML)
	3.3.2.7 Deployment
	3.3.2.7.1 Create table queries
	3.3.2.7.2 Create schedule
	3.3.2.7.3 Import workflow scripts
	3.3.2.7.4 Import workflows
	3.3.2.7.5 Complete alignment process

	3.3.3 Adapters
	3.3.3.1 JAXB – XML processing
	3.3.3.1.1 DateType: XmlAdapter for the date format
	3.3.3.1.2 UXBEntity, UXBContent, UXBMetaCategory and UXBCategory
	3.3.3.1.3 UXBEntity
	3.3.3.1.4 UXBContent, UXBMetaCategory and UXBCategory

	3.3.3.2 Hibernate domain classes
	3.3.3.2.1 News, NewsCategory, NewsMetaCategory

	3.3.3.3 NewsHandler
	3.3.3.3.1 Command: add
	3.3.3.3.2 Command: delete
	3.3.3.3.3 Command: cleanup

	3.3.3.4 Routing
	3.3.3.4.1 The route uxbridge-commands
	3.3.3.4.2 Message source
	3.3.3.4.3 Filters
	3.3.3.4.3.1 Destination filter
	3.3.3.4.3.2 Object type filter
	3.3.3.4.3.3 Command filter
	3.3.3.4.3.4 JAXB conversion
	3.3.3.4.3.5 Methods query

	3.3.3.5 Starting the sample adapters
	3.3.3.6 Tests contained

	3.4 Using the UXB service API
	3.4.1 Creating a demo project
	3.4.2 Use
	3.4.2.1 "Delete data record" script (uxb_content_delete_script)
	3.4.2.2 "Release data record" script (uxb_content_release_script)
	3.4.2.3 CamelContext return

	3.5 Using the Camel component for generating a response
	3.5.1 Integrating the component
	3.5.2 Integrating the component
	3.5.3 Structure of the URL
	3.5.4 Parameter

	4 Appendix
	4.1 Conversion rules for Unicode to XML

