FirstSpirit™

Unlock Your Content

FirstSpirit™ Manual for Developers

(Basics)
FirstSpirit™ Version 5.0

Version 1.16

Status RELEASED
Date 2013-05-15
Department FS-Core
Copyright 2013 e-Spirit AG

File name DEVB50EN_FirstSpirit_DeveloperDocumentationBasics

e-Spirit AG

Barcelonaweg 14
44269 Dortmund | Germany

T +49 231 .47777-0
F +49 231 .477 77-499

info@e-Spirit.com

www.e-spirit.com e"SPirit

http://www.e-spirit.com/
mailto:info@e-spirit.com
http://www.e-spirit.com/en

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

Table of contents

1 Introduction..........———— 9
1.1 Topics of this documentation..............ccccoeeiiiiiic s 9
1.2 Classification in the complete documentation...........c.ccccooevvviinnne. 11
1.3 GeNeral tErMS. ..o 12

1.3.1 TeMPIAtES ..o 12
1.3.2 New input COMPONENTS ... 13
1.3.3 Content STOrecoiiiccc s 14
1.3.4 WOTKFIOWS ...t 15
1.3.5 Integrated Preview ... 17
1.3.6 Content Highlighting & EasyEdit..........ccccccoovnniiiinnncce 19
1.3.7 Centralized error correction and system reporting............c.cococ.... 20

2 FirstSpirit JavaClient template store...........cccvvvnriricnisscnnnnan 21
2.1 GBNEIAL....cii s 21
2.2 General template store context menus ..., 22

2,21 NBW. et 23
2.2.2 Editing ON/Off ... 26
2.2.3 Reverting Changes ... 27
2,24 CUL e 27
2,25 COPY it 28
228 PASe ..o 29
227 RENAME ...t 30

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

2.2.8 Deletl... e 31
2.3 Special template store context menus.............cccccceeccccciccecicseee, 34
2.3 UPAALE ..o 34
2.3.2 EXPOIt... it 35
2.3.3 IMPOIE .t 38
2.3.4 Restoring deleted ODJECESccccvviiiiiiic s 43
2.3.5 Editexternally......... e 45
24 Template store administrative context menus..............ccccooeveeiiiccenn 47
2.4.1 Version NIStOrY.......ccociiicic s 47
242 Starting @ WOrkfloW...........ccccovviiiicccccccccceeeee e 48
2.4.3 RUNNING @ SCrIPL ..ot 48
244 Searchintemplates.........cciicicic s 48
245 Tools — Change permiSSiONScccierrrniieiennsneeesseeesees 48
24.6 Tools — Delete write protection............cccccoeoviiiiininiinceeeceees 49
2.4.7 Tools — Select/remove preview graphicccccoevvvvvnnsssennens 49
2.4.8 Tools — Display properties........ccccovievinieiiiiseieisseesssee e 50
249 ToOIS — DisSplay USEScccceoiriiiiiiiiisceise e 92
2.4.10 Tools — Apply template changes ..., 92
2411 Tools — Cancel editingccccoeveieeecccccccee e 53
2412 Tools — Change reference Name........ccovviennnnneesssns 53
2.4.13 Tools — Show dependencCies...........cccurrrriierenineieniiesese s 53
2.414 Tools — Create copy of this WOrkflow ..o 54
2.5 Page templates...... s 55
251 Preview tab....... e 56
2.5.2 PropertiesS tab ... o7
253 FOrM @D ..o 59

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

254 Template sets tab......ccccoiiiiiii s 60
255 RUIES D ..o 61
2.5.6 SNIPPELIAD ..o s 62
2.6 Section templates..........ccccciiiiiiiiicec s 63
2.6.1 Preview, Properties, Form, Template sets, Rules and Snippet tabs 64
2.7 Format templates ... 65
271 PropertiesS tab ... 66
2.7.2 Template sets tab.......c.ccooiiiiiic s 68
2.8 Style templates ... 69
2.8.1 Introduction: Inline tables...........c.ccooiiiici 69
2.8.2 Creating astyle template..........cccccoeeieccccci 70
2.8.3 Form area of a style template.............cccceoevnnniiince 71
2.8.4 Preassigning layout attributescccoooviiie 74
2.8.5 Presentation channel of a style template..........c.ccccocoviiinnnnnn. 75
2.8.6 Linking with standard table format templates...............ccccevrnnn. 75
2.8.7 EXAMPIES ..o 7
2.9 Table format templates.........ccccooiiiiiiiiiiiiic e 80
2.9.1 Creating and editing display rules..........ccccccovvnnnnisisssceee 82
2.9.2 EVvaluation Order..........ccccoiiiiiicii e 86
2.9.3 Inserting an inline table in the DOM editorcocooevvinnninee 87
210 LinK temMPIatesccoeecccccccee e 88
2.10.1 Standard lINK tYPesccvviiiiiiceer s 89
2.10.2 Generic liNK €ditOrS ... 89
2.0 SCFIPES et 91
2111 Properties tab ... 92
2.11.2 FOrM @D .o 94

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

2.11.3 Template sets tab.......c.ccccooiiiicii 95
2.12 Database schemata ... 96
2.12.1 New: Create SChema...........cccviiiiiie e 97
2.12.2 New: Creating a schema from a database............c...c.ccevvvennnn. 101
2.12.3 The FirstSpirit schema editor...........ccccccovviiiiiniieee 104
2124 Table templates ... 111
2125 QUETIES ... 114
2,13 WOIKFIOWS ... 118
3 Content sources in FirstSpiritcccccevvvrirnnicnnnnnnnnnesnenenne 119
3.1 T OIMIS e 120
3.2 StaANdard lQYEr ...t 121
3.3 DBA LQYE ... s 122
3.4 Content sources in FirstSpirit JavaClient............ccccoeovvviiiiiiininne, 124
4 WOTrKFIOWS. ... 126
4.1 OVEIVIBW ...ttt ettt ettt sttt et be st ne st eneseens 127
4.1.1 Task search (filtered Overview)cccccoeeeeecceccccccceeeeee, 129
4.1.2 EditiNg tasKS.....ccccoieiiiicei e 131
4.1.3 ClOSING ASKSc.ccverireiciiecccceteess e 132
4.2 Modeling WOrKFIOWSc.cooveiiciciciecccceeeeee e 133
4.21 Creating @ WOrkflowccccoiiniiiiicc e 133
4.2.2 Workflow editor tool bar............cooiiiiiiii, 134
4.2.3 Elements of the graphical workflow editor............ccccceovvvniininnne. 135
4.2.4 Keyboard shortcuts in the workflow editor............cccccccevvriininne. 137
4.2.5 Operating assistance for the editor............cccccoovviiiieennnnccnne, 138

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

4.2.6 Rules of MOdeling ..o 138
4.2.7 Examples for modeling rulesccccooveieceecccceceeeee, 139
4.2.8 Print preview for workflow models.............cccccceerieciiiiiniie, 140
4.3 Error handling in WOrkflOWSccccccciiiiiiicec e 142
4.3.1 General error handling........ccccooviiie s 142
4.3.2 Ermor state ... 142
4.3.3 Example: "Error" WOrkflow ..., 145
4.4 Form support for workflows (form)........ccccocovviiiiiiicccsceececee 147
441 Example: "GUI" WOrkflow.......cccoooviiiiiiiiccsccceccccceee e, 149
4.5 Properties of a workflow (configuration).............cccccocovvvviccccccccnn, 150
451 General Properti€s ... 150
4.5.2 Display logic for WOrkflowsccccoeviniininccceen, 151
4.5.3 Properties of astate.......cccovriiiiiiiccc 152
4.5.4 Properties of an activity ..., 156
4.5.5 Properties of @ transition ..o 161
4.6 Permission configuration for workflows.............ccccocovviescccccccccn, 165
4.6.1 General permission configuration using the template store...... 165
4.6.2 Changing or locking editor preselection............cccococveviviiiierienne, 166
4.6.3 Context-dependent permissions for starting a workflow 169
4.6.4 Context-dependent permissions for switching a workflow......... 172
4.6.5 Effects on the permissions configurationccccccoevvnininnne. 173
4.7 Write protection within WOrkflOwscccoooviiiniiiss e 178
471 GENEIAL...iiiie s 178
4.7.2 Write protection when creating and moving.........c.ccccccoeeeverrnenene. 178
4.7.3 Write protection within SCHPtS.........cccccoiirirercrceeee 179
4.8 Use of scripts in WOrKfIOWSccccovviiiiicnicceese e 180

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

4.8.1 Automatic activities and SCriptS........cccccoevmirriiiinccii e 180
4.8.2 Manual activities and SCriptS........cccocvirieiiiiiecci e 180
4.8.3 WOrKfOW CONEXL.........coeviiiicirece 181
4.8.4 Example: Output of messages in workflowsccccoeevvviinnnne. 183
4.8.5 Example: Persistent content within workflowscccccoevnne. 185
4.9 Deleting via @ WOrKfIOW..........cooiiiiiiiiicc e 187
4.9.1 Deleting via a workflow in the JavaClientccccooovnninnne. 187
4.9.2 Deleting via a workflow in the WebClient............ccccocoeviiiiinnne. 189
4.9.3 Permissions configurationccccocoeieiiiccccceeeeee 190
494 Example: "Delete" WOrkflowccccovvvvviviiccrcccccccccee, 193
49,5 Example: "ContentDeleteDemo" workflowccccoceiiiinnee. 196
4.10 Workflows with a complex function.............ccccoeevvirnvrssesecccccs 199
4.10.1 Example: "RecursiveLock" wWorkflow ..., 199
4.10.2 Example: "RecursiveRelease" workflowccccccevvvviviiiiiininnne. 203
4.11 Multiple WOrkflow Selection............cccceeeeiiiiiiiiics e 207
4.11.1 Multiple workflow selection.............ccccccoovviicccccccccee e, 207
4.11.2 Requirements for starting and advancement.............c.ccooouevnee. 208
4.11.3 Multiple selection via the task listcccooveveiiiciiiicce, 209
4.11.4 Multiple selection via the "Workflows" overviewc.c........... 210

5 Tracking changes via revision-metadata...............ccoceruruuee. 211
5.1 GelFEVISION ...t 212
5.2 Determining changes t0 @ revision ... 213
5.2.1 Determining the type of change...........cooniices 213
5.2.2 Determining changed elements ... 214
5.3 Changes since the last deployment ..o, 215

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

5.4 Changes between two reVviSions...........cccccevccicccceccceeeee e, 219

6 Server-side release ... —————— 223
6.1 Default rele@se...........cooiiiiicc e 224
6.2 SPECIFIC rEIEASE ..o 224
6.2.1 RECUISIVE FElEaSsEe ... 227

6.2.2 Dependent release...........oreceeeceeeeeeee s 228

6.2.3 Dependent release with recursive releaseccccccoeeevnnene. 229

6.2.4 Ensuring accessibility (parent chain).........ccccccoovvviiiiiiccee, 231

6.2.5 Ensure accessibility (parent chain) and recursive release 233

6.2.6 Ensure accessibility (parent chain) and dependent release 234

6.2.7 Ensure accessibility (parent chain), recursive and dependent release

... 236

6.2.8 Order for the release ... 238

7 Code completion for forms.........ccocniininnnsn 240
7.1.1 Inserting the input component tags.........cccccceovvveieiicicinsccenn 240

7.1.2 Inputting tags, parameters and key termsccccoeevevvvvieennn 241

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

1 Introduction

The objective of this Manual is to describe the implementation of FirstSpirit™ projects from the
perspectives of developers. In this context, the structure of the documentation has been chosen
to provide an overview of FirstSpirit™ mechanisms and respective applications that is as
comprehensive as possible (see Chapter 1.1, page 9).

Some areas, particularly those required for template development, are already documented in
detail in the FirstSpirit™ online documentation. For introducing the FirstSpirit™ concept from the
perspective of template development, Chapter 1.3 provides an explanation of general terms
(starting on page 12).

n This document is provided for information purposes only. e-Spirit may change the
contents hereof without notice. This document is not warranted to be error-free, nor
subject to any other warranties or conditions, whether expressed orally or implied in law,
including implied warranties and conditions of merchantability or fitness for a particular
purpose. e-Spirit specifically disclaims any liability with respect to this document and no
contractual obligations are formed either directly or indirectly by this document. The
technologies, functionality, services, and processes described herein are subject to
change without notice.

1.1 Topics of this documentation

This documentation describes the relevant functions and aspects for template development in
FirstSpirit. The structure is based largely on the user interface of FirstSpirit JavaClient.

The FirstSpirit JavaClient Template Store and all the available context menus and editing options
are described in Chapter 2 (see Chapter 2 starting on page 21).

FirstSpirit has efficient mechanisms for connecting databases. Chapter 3 handles the types of
layers available in FirstSpirit for connecting databases and lists some general recommendations
for handling data sources in FirstSpirit (see Chapter 3, page 119).

Workflows are a sequence of tasks that are processed according to a fixed, defined structure.
For example, they can be used to model release processes. Chapter 4 explains the workflow
editor used in FirstSpirit, including all configuration options (see Chapter 4 starting on page 126).

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

FirstSpirit provides an option for tracking changes via the FirstSpirit Access API. Chapter 5
describes access to revision metadata using specific API functions. Revision metadata contains
information on the type (which changes took place?) and the scope (which elements were
changed?) of a change to the project (see Chapter 5, page 211).

In addition to release via a workflow, all objects in FirstSpirit can be released server-side via the
Access API. Chapter 6 shows the methods for defining different release settings for an object
(see Chapter 6, page 223).

To support template developers, code completion is being introduced on the Form tab in
FirstSpirit Version 5.0. Chapter 7 explains how, via this code completion, all FirstSpirit input
components, as well as the parameters belonging to them, can be shown and inserted with the
push of a button.

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

10

FirstSpirit™ Manual for Developers (Basics)

1.2 Classification in the complete documentation

FirstSpirit

Some areas, particularly the areas required for template development, are already documented
in detail in the FirstSpirit™ online documentation. The classification of developer documentation

in the complete documentation is illustrated in Figure 1-1.

FirstSpirit FirstSpirit Javadoc
Online Documentation (HTML) Access API
FirstSpirit Interfaces
L refers to J
|
FirstSpirit Manual for FirstSpirit Manual for

Developers (Basic Principles) Developers (Components)

For Developers UU
(— requires 4)
FirstSpirit Manual for Editors FirstSpirit Manual for
JavaClient (PDF) Administrators (PDF)
FirstSpirit Manual for Editors FirstSpirit Installation
(WebClient) (PDF) Guide (PDF)
0] [
For Editors LU For Administrators

Figure 1-1: Classification of the developer documentation in the complete documentation

At least basic knowledge of the Manual for Editors and the Manual for Administrators is expected
for understanding the following chapters. A detailed description of individual template
components and the interfaces is given in the FirstSpirit Online Documentation.

Due to its scope, the documentation for developers is divided into this Manual, which explains
the basic aspects of template development, and the Developer Manual for Components, which
describes special aspects involving the development of modules and components for FirstSpirit.

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

11

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

The Manual for Developers (basics) examines the aspects listed in Chapter 1.1 (page 9).
The Developer Manual for Components examines the following aspects, among others:

= |nstalling and configuring modules

= The structure of modules and components
= The FirstSpirit GUI Object Model GOM

= The FirstSpirit security architecture

= Example listings

Knowledge of the following areas is also helpful for understanding the chapters that describe
expanding and adapting FirstSpirit:

e Programming in Java / BeanShell
¢ Relational database technology

1.3 General terms

1.3.1 Templates

Templates form the basis for every website. In them, the complete layout of the web page is
taken into account (among other things, corporate design and corporate identity). Templates are
needed to connect the contents entered in the page store and the media integrated into the
media store to the structure stored in the site store for a complete presentation when generating
the web page.

The basics of template development are communicated in a detailed, step-by-step-guide in the
FirstSpirit Online Documentation. The creation of the first templates is explained there based
on a simple example. The output language is HTML (see FirstSpirit Online Documentation /
Basics chapter / Step by step).

In FirstSpirit, different types of templates are available to the developer:

= Page templates create the basic framework of a page. The placement of logos and
navigation tools as well as similar, general settings are set in page templates. Moreover, the
page templates define the locations where an editor can insert content.

= Section templates are used to insert content into this basic framework. Section templates
are subdivided into individually specified input windows via which the editor can maintain the

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 12

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

editorial content of the section (in the Page Store).

= The formatting is defined in Format templates, which can be used in connection with the
DOM editor input element in the Page Store.

= The appearance of links is specified in detail by Link templates within a FirstSpirit project.
The template developers define all the input fields in which the editors can enter all required
content and the appearance of the link on the HTML page.

All template types are updated and administered in the FirstSpirit Template Store.

With FirstSpiritVersion 5.0, line numbers are indicated at many places in the Template Store as a
reading aid. They can be shown or hidden in JavaClient using the keyboard shortcut Ctrl + L.

1.3.2 New input components

In the scope of the fundamental revision that began with FirstSpirit Version 4.2 and the
consolidation of the input component model (compare with "FirstSpirit Roadmap 2009-2012"), a
series of input components that were previously separate were introduced together.

This consolidation affects the following input component groups:
= Single-value input components: link to other FirstSpirit objects, for example,

CM_INPUT_FILE, CM_INPUT_PICTURE, CM_INPUT_PAGEREF, etc.

= Set-valued input components: CM_INPUT_CONTENTLIST, CM_ INPUT_TABLIST,
CM_INPUT_CONTENTAREALIST, CM_INPUT_ILINKLIST

The new generation of input components,officially released with FirstSpirit Version 5.0, is
identified with the prefix "FS_" instead of the previous "CMS_INPUT_".

n For additional information on the new input components, see the FirstSpirit Online
Documentation’.

' ..Norlagenentwicklung/Formulare/Eingabekomponenten (new)

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

13

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

1.3.3 Content Store

The Content Store creates and administers heavily structured data inventories that are to be
used and updated in FirstSpirit. Such inventories are product catalogs and address lists, for
example. These data inventories are subjected to frequent changes. Usually, such data is
collected in databases. The Content Store data is saved in a relational database system
supported by FirstSpirit.

The separation of layout, content and structure applies for data collection in the Content Store. In
order to guarantee this, in the schema area (in the Template Store), the structure of the data and
the layout for the data acquisition screen is specified. With this layout, the content is
administered in database tables in the Content Store. In the Site Store, these databases can
then be inserted into the Website structure.

In a first step, a database schema is created in the Template Store via a graphic editor. This
schema can be created either based on an existing database structure and, if needed, adapted
in the schema editor, or generated as an empty schema in order to structure it with the aid of the
schema editor. In this schema, the tables and relations of a data model are to be mapped. In the
table templates, input elements are then defined for the table columns and queries formulated for
the data inventory.

In the Content Store, the data inventories are updated by the responsible editor. For this
purpose, database tables are created based on the settings in the Template Store and filled with
content via the input elements configured.

To illustrate the structured content on a Website, the database table is inserted as a content
source on a page of the Page Store. This page then becomes referenced in the Site Store.
Settings for the display of data records can be made on this page reference. For example, if only
a certain section of the database table is to be displayed, the queries defined in the Template
Store can be called up here.

All Content Store menus are described in the "Documentation for Editors (JavaClient)".

n For the concept on working with "Schemes, table templates, views of a database”,
see Chapter 3, page 119.

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

1.3.4 Workflows

A workflow is a sequence of tasks that are completed in a fixed, predefined structure. The tasks
also serve to transfer an object, for example, a page from the page store, from a start state (for
example, "Page changed") to an end state (for example, "Changed page checked and
released"). Due date deadlines and groups of authorized persons can be defined for the tasks to
be run between these states.

The workflows can be shown with a graphic editor in the Template Store. The task of the
Workflow Editor is to describe the workflow as abstractly and completely as possible. The
graphically created model can also be used subsequently as a basis for user support when
carrying out the work process.

The structure (sequence of tasks) and the properties (for example, without context) of a workflow
and the definition of authorized persons and groups who may move from one task to the task that
follows are defined within the Template Store (see Chapter4, page 126).

An example of a FirstSpirit workflow is the frequently used release process. It is the task of the
release process to ensure that a newly created entry made by an editor or a change to the
content is subjected to a test before going live. The release process can vary depending on
which workflows already are or are to be established in a company.

=] o []
Release Release
Mode modified Mode released
Figure 1-2: Example of a "simple" release

In this example, the editor-in-chief is responsible for inspecting the entries. Deployment is only
possible once the editor has checked the changes (see Figure 1-2).

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

] i)
Corraction |
as regards
contents

Coarrection finished Caorract a5 regards
W contents

Object Icha nged

Relez=a | FReloase request —
request

Release re quested

Check contents
¥

M| -
Content
— FRefuse changes
check ’
| Conterts not Ok

Accept changes

bt Al
Changes executed Juridizal
correction

C nntelnis Ol T
|

| Juridical correction
Juridical check |

" -

Juridical — Request correction
chedk

Juridically not Ok

Releaze object

v

Objectraleased

Figure 1-3: Release with "technical and legal" inspection

In this example, the testing of articles specified for deployment is organized into "technical" and
"legal" partial steps (see Figure 1-3). These partial steps are normally carried out by different
people. In this case, the workflow ensures that the legal inspection is only done after the content
inspection, so that necessary content corrections also go through this inspection step. If a
correction should be necessary due to legal aspects, the model then assumes that a new content
inspection is unnecessary (this could, however, be necessary in application areas with different
circumstances).

Important aspects in the use of workflows include:

= Coordination of workflows into "logical" subareas:
Example: In the media store, only the workflows "B" and "C" are possible in area "A", while
the Site Store uses the workflow "E".

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

= Assigning users/groups and workflows:
Example: Workflow "B" may be carried out only by the user group "G".

= Defining rights in workflows:
Example: The transition to the state "legally inspected" can be carried out only by members
of the "Lawyers" group.

= Defining data fields that can (or must) be filled out by the user when going through the
workflows:
Example: The person doing the testing inserts a "legal test note" into the corresponding form
field.

For further information on generating workflows, see Chapter 4, page 126 ff.

1.3.5 Integrated preview

JavaClient provides a direct WYSIWYG preview with the "Integrated preview" function ("View" /"
Show integrated preview" menu). For template development, it can be used to check changes
directly in the presentation channel of templates (for example, HTML or XLS-FO) in the preview
window because every time the template is saved, the (configurable) preview page is updated.

Moreover an integrated form preview is available within the template store. If a template is
selected in the form area, a live view of the template being edited appears in the preview area
with the defined fallback values of the input components (see Figure 1-4).

The integrated preview can optionally be shown to the right next to the workspace or in an
external window.

All input fields can be edited directly within the integrated template preview. The template must
not be blocked for editing.

n The editing option just forms an aid for the template developer. With it, you can
check directly whether a defined, remote configuration provides the desired results for an
input component. However, the content entered is not saved in the Form preview. Default
values cannot be defined in the Form preview.

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

17

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit™

The default values for the input components can be defined with the "Default values" button
on the "Properties" tab of a template (see Chapter 2.5.2, page 57). The language-dependent
default values are shown in the preview area immediately after saving the properties.

Editing properties Editing the Displaying the
(e.g. Default values) form preview of the form
1 I
1 1 I
| 1 I
& Text/Picture x| 1 & Preyiew: Texti Fi..
| Preview T Form | himl (HTML) 3 — htrl (HTHIL) | polf (PDF - FOF)
= Templates [0 Section templates = Text /Picture german | english | franch
Text | Picture
Unigque name textpicture
Headline
(BEGTREN Default Headling EN — — — — -
1
Template set Target ex. =a=tag I
e extanaion | HTML) htrnl T Text 1
pof (PDF - FOF) 0 - O v Ctandard v B! wx iz
RSS (ML) wmil 1
1
Preview page _ presshomepage = kd Default Text_EN I

Farm

Qfaultvalues

Recourse values

german

english

french

defined

1
Display of the

default values

dependent default values

and of the recourse valug @ | Headline

for an input component

Default Headline_EM

Text

K} - (M - Standard

Default Text_EM

-

QK

Cancel

Editing

Preview (Form)

Figure 1-4: Preview of the form area in the template store

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

18

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

1.3.6 Content Highlighting & EasyEdit

In order to make processing editorial content as easy and transparent as possible for the editor,
FirstSpirit offers a Content Highlighting function. This functionality links editorial maintenance in
FirstSpirit JavaClient to the output in the preview by automatically retrieving content and
highlighting it for editing. Content Highlighting functions bidirectionally.

In order to use this function in a project, the templates must first be adapted. The HTML
elements that are intended to be highlighted must be able to be referenced uniquely on an HTML
page. For this, identifiers known as editor identifiers are used; they can be stored by the template
developer within the HTML templates.

Because Content Highlighting was simplified with FirstSpirit Version 5.0, adapting existing
projects that still have the old functionality is absolutely necessary. Error-free use of Content
Highlighting cannot be ensured without these changes.

The template adaptations that are necessary for using the Content Highlighting function can have
an effect on WebClient 5 and are used there for the editorial processing of content. As in
JavaClient, the contents in WebClient are also highlighted in color and bordered surrounded by a
box. Control elements that allow the editor to edit the bordered contents directly (EasyEdit
functionality) are shown in this box.

A detailed description of the format templates and the style sheet is available in the FirstSpirit
online documentation®.

n The technologies used for Content Highlighting functionality are integrated into the
HTML source code of a FirstSpirit project more than the functions up to this point. The
ability to use Content Highlighting without making changes to a project's HTML cannot be
guaranteed. In particular, pixel-specific layouts in conjunction with CHTML can lead to
problems since some additional pixels are required in the HTML environment due to the
border around the highlighted content.

2 FirstSpirit online documentation - Chapter: ../Advanced topics/Content highlighting

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

19

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

1.3.7 Centralized error correction and system reporting

Infrastructure for collecting errors and exceptions is provided. A loader icon is displayed in the
bottom left area of JavaClient for this; it continually shows data transmission during editing work.
A small exclamation mark is displayed in the icon when an exception occurs. Additional
information on the error that occurred can then be requested by clicking on the icon.

For more information on this function, refer to the FirstSpirit Manual for Editors (JavaClient),
subchapter "Centralized error collection and system reporting” in Chapter 3 "Menus and icons in
FirstSpirit JavaClient".

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

20

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

2 FirstSpirit JavaClient template store

2.1 General

|E& Template store &

Templates form the basis for every website. The complete website layout is taken into account in
these templates (including corporate design and corporate identity). Templates are needed to
connect the contents entered in the page store and the media entered in the media store to the
structure stored in the site store for a complete presentation when generating the web page.

Different types of templates can be defined and edited in the template store.

= Page templates (see Chapter 2.5, page 55)
= Section templates (see Chapter 2.6, page 63)
= Format templates (see Chapter 2.7, page 65)
= Style templates (see Chapter 2.8, page 69)
= Table format templates (see Chapter 2.9, page 80)
= Link templates (see Chapter 2.10, page 88)

Furthermore, additional editing options are available for:

= Scripts (see Chapter 2.11, page 91)
= Database schemata (see Chapter 2.12, page 96)
= Workflows (see Chapter 2.13, page 118)

Moving using drag-and-drop: . Folders and . templates can be moved in template management
using the mouse for drag-and-drop (indicated by a small square on the mouse pointer).

Copying using drag-and-drop: Furthermore, it is possible to copy . folders and . templates in
the template store by using the mouse for drag-and-drop while holding the Ctrl key (indicated by
a small plus on the mouse pointer).

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

21

™

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

n The user has to have the required permissions to use drag-and-drop (moving,
copying) for nodes in the template store. Otherwise an error message appears, "This
action cannot be performed (insufficient permissions)!"

With FirstSpiritVersion 5.0, line numbers are indicated at many places in the Template Store as a
reading aid. They can be shown or hidden in JavaClient using the keyboard shortcut Ctrl + L.

2.2 General template store context menus

B3 Ags newtempite S

+ Editonioff Strg+E B8 Create folder Strg+Umschalt+M
Reset changes Strg+Umschalt+Z
Cut Strg+X
& Copy Strg+C
&8
| Rename Fa

Figure 2-1: General template store context menus

The template store context menus are described in the following chapters:

Context menu structuring (general, specific, administrative):
Context menus are all structured according to the same schema:

= General functions are located in the top area (see this chapter)

= Specific functions for the selected node are located in the middle area (see Chapter 2.3,
page 34).

= Functions that are normally only needed by project administrators are located in the bottom
area. Normally, these functions cannot be performed by normal users and are disabled for
this reason (see ltem 3) (see Chapter 2.4, page 47).

Calling up a context menu: To call up a context menu, an object such as a folder or template is
highlighted in the tree view on the left half of the screen and then the context menu for that node
is opened by right-clicking. Clicking the left mouse button selects the desired menu item.

Disabled menu items are shown in gray. If this is the case, the function is not available to the
user. The potential reasons for this are:

o The object is currently being edited by another template developer

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 22

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

e The state of the current object
e The user lacks the permissions to perform a specific action.

221 New

Figure 2-2: New function

New objects can be added to the project using the "New" context menu entry or the "New" icon in
the tool bar. The available selection depends on the object type for which the context menu or
function was called.

Overall, these objects can be created in the template store:

= Page and section templates
= Folders

= Format templates

= Table format templates

= Style templates

= Link templates

= Scripts

= Schemata

= Schemata from databases
= Table templates

» Queries

= Workflows

The function for creating a new object opens a dialog that has the following structure (see Figure

2-3):

= Display name
= Reference name
= Additional information (if it is necessary)

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

H Add new template [&J

Display name

German (DE)
Englizh (EM})

Reference name

Cancel

L

Figure 2-3: Creating a template

Display name: The language-dependent display name can be defined individually for every
project language. If language-dependent display of the tree view in JavaClient is activated(View /
Preferred display language menu), the display names entered here are displayed depending on
the selected project language. In contrast to unique reference names, language-dependent
designations can be changed at any time.

Reference name: A unique name for the new template is specified in the "Reference name"
field. Upon creation, the field for inputting the reference name is filled the same as the entry for
the display name. With that in mind, the display name is applied in the field (the first display
name entered if there are multiple languages). Blank spaces and special characters are replaced
by underscores in the process. The option for displaying the reference name allows the reference
name to be shown in Java Client's tree view (View / Preferred display language/ Show reference
names in tree menu). The reference name can be modified by the user during creation. After
being created, the reference name can be modified using the "Tools" context menu.
Subsequently modifying the reference name is, however, not recommended because otherwise
all of the references within the project are lost.

A unique reference to the template can be established using the reference name. In input
components (in the form area) for example, the unique reference name is used to establish
references to templates (see FirstSpirit online documentation, such as for the
CMS_INPUT_DOM input component).

If a reference name that has already been specified in another name space is entered when
creating a new object, the name is replaced by a unique name automatically, usually by
appending numbers to the name. (Invalid special characters are also replaced automatically.)

E.g.: A template page template already exists. A newly created section template called template
would then be saved under the reference name template 1 automatically.

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

24

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

The reference name for a template can be determined on the "Properties" tab (see Chapter
2.5.2, page 57).

n A reference name for a template should no longer be changed after creation since
otherwise all of the references within the project are lost!

Clicking this button attaches the new template to the directory tree and it can be edited
further.

Cancel | Clicking this button cancels the operation. A new template is not created.

Special considerations
Folders

Unlike template reference names (see Chapter 2.2.1), folder names do not have to be uniquely
specified.

Table templates

A table template has to be created under the schema for each input table in the database model.
This table template defines which input components the editor can use later on to add data to the
corresponding tables and where this data is to be saved in the database.

In addition to the display and reference names, selecting a table from the database schema (see
Figure 2-4) for which the template is to be created is necessary to create a new table template
(also see: Chapter 2.12.1, page 97)

n The combobox is empty if the schema does not contain any tables. In that case, a
table template cannot be created.

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

25

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit

-
BR Create new table template

Table Products
Display name
German (DE) | Products
English (EM)

Reference name |products

Ok

Cancel

b

Figure 2-4: Creating a table template

2.2.2 Editing on/off
. Edit onfoff Strg+E

Figure 2-5: Editing on/off function

You first have to enable editing mode in order to be able to make changes to an object. This
prevents another editor from simultaneously editing the same content and prevents conflicts that
could result from changing an element at the same time.

New objects can be blocked from being edited using the "Editing on/off" context menu entry on

the tool bar.

n Editing mode has to be disabled again after the desired changes have been made
in order to release the corresponding object for editing for other users. All changes made

are saved automatically upon exiting editing mode.

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

26

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

2.2.3 Reverting changes
Reset changes Strg+Umschalt+Z

Figure 2-6: Reverting changes function

This function can be used to undo changes made during the current editing operation that also
have not been saved yet. A confirmation prompt appears before changes are undone so that
content is not deleted accidentally.

The function is only active if editing mode is enabled on the object (see Chapter 2.2.2).
This function can be used for the following template store elements:

= Page and section templates

= Format (exception: system format templates), table and style templates
= Link templates

= Scripts

= Database schemata

= Table templates

» Queries

= Workflows

224 Cut
Cut Strg+x

Figure 2-7: Cut function

This function can be used to cut an object from the current tree position and store it in the
clipboard.

n The "Cut" function is only carried out once the cut object is reinserted. If a cut object
is not reinserted, it retains its original tree position; i.e. it is not deleted.

These objects can then be inserted at another location using the Paste function (see Chapter
2.2.6).

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

27

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

This function can be used for the following template store elements:

= All template store folders

= Page and section templates

= Format (exception: system format templates and folders that contain system format
templates), table format and style templates

= Scripts

= Database schemata

= Table templates

» Queries
Workflows

225 Copy
& Copy Strg+C

Figure 2-8: Copy function

A copy of the current object is generated and stored in the clipboard using this function. These
objects can then be inserted at another location using the Paste function (see Chapter 2.2.6).

This function can be used for the following template store elements:

= All template store folders

= Page and section templates

= Format, table format and style templates
= Scripts

= Database schemata

= Table templates

» Queries

= Workflows

Copying using drag-and-drop: Furthermore, it is possible to copy . folders and . templates in
the template store by using the mouse for drag-and-drop while holding the Ctrl key (indicated by
a small plus on the mouse pointer).

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 28

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

n The user has to have the required permissions to use drag-and-drop (moving,
copying) for nodes in the template store. Otherwise an error message appears, "This
action cannot be performed (insufficient permissions)!"

2.2.6 Paste

++| Paste Strg+V

Figure 2-9: Paste function

The contents of the clipboard are inserted at the current position in the tree structure using this
function. Thus, this function is only active if there is data in the clipboard that is allowed to be
inserted at the current position.

The clipboard is an area within JavaClient where a wide assortment of objects can be stored
(pages, page references, images, data records, sections, individual input components, text, files).
It is used as a "collection point" for the editor where materials and content can be centrally and
conveniently entered for later work steps.

More detailed information about the clipboard can be found in the release notes for FirstSpirit
5.0.

n Objects can only be inserted in the areas intended for the respective objects. It is
not possible, for instance, to paste a section template underneath the node for page
templates. In this case, the "Paste" entry is disabled.

This function can be used for the following template store elements:

= All template store root nodes
= All template store folders
= Database schemata (only for table templates)

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 29

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

2.2.7 Rename

[Rename Fg

Figure 2-10: Rename function

It is possible to modify the language-dependent display name of the current object in the
FirstSpirit JavaClient tree structure using this function. Calling this function opens a window with
the current display name; the name can then be modified.

-
ER Rename @

Display name

German (DE) ‘Standard
English (EM) | Standard

Reference name standard

Ok Cancel

b

Figure 2-11: Rename

n Unique reference names cannot be changed since otherwise the references to this
object would be lost (e.g. reference names from section or page templates). In this case,
the "Reference name" field is disabled and cannot be edited. Folders do not have unique
reference names. Thus, they can be renamed at any time.

This function can be used for the following template store elements:

= All template store folders

= Page and section templates

= Format, table format and style templates
= Link templates

= Scripts

= Database schemata

= Table templates

= Queries

= Workflows

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

30

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

2.2.8 Delete
Celete Entf

Figure 2-12: Delete function

It is possible to delete the currently highlighted object or the currently highlighted tree section
using this function. A confirmation prompt prevents content from being deleted accidentally.

Project administrators have the option of restoring deleted elements (see Chapter 2.3.4, page
43).

The "Delete objects" function is available for the following elements:

= Page templates

= Section templates (see Chapter 2.2.8.1)

= Format, table format and style templates (system format templates cannot be deleted)
= Link templates

= Scripts

= Workflows

= Database schemata, queries and table templates

The "Delete tree sections" function is available for the following elements:
= All template store folders

For more detailed information on deleting objects and tree sections, see FirstSpirit Manual for
Editors, Chapter 3.2.8 "Delete".

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

31

™

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

2.2.8.1 Deleting objects in use

n This function is only available to project and server administrators.

Templates still being used by other objects in the client can also be deleted. In this case, the user
is shown a confirmation prompt before individual objects are deleted.

H Confirmation I&

The object "Sitemap’ is currently in use.

? Are you sure you want to delete it?
||

Yes Show usage]

Figure 2-13: Deleting an object in use

Show usage | cjicking this button opens the "This object is still being referenced” dialog, which
shows the objects still currently using the object slated for deletion (see Figure 2-14).

ER The object is still being referenced I&l

The following references exist

Element] Femote project Release status

=) Homepage 303964 -

=) Contact 393931

Ll MNewsletter 393963

El win 393962 -
Close

Figure 2-14: This object is still being referenced

L Clicking this button deletes the object slated for deletion despite the uses present in the
project.

The reference continues to be shown in the reference graph after deletion. However, the deleted

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 32

™

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

object is now unknown. The reference is only removed after once again editing the existing
object.

H Dependencies of 'mithras_home' l — | =] |_i3-

Current status Release status

HIERARCHICAL - Grouping size: |10

@ Mithras homepage (G087E595) E Lnbekannt (G087E94)

LS =)

Figure 2-15: Reference graphafter deleting an object still in use

Likewise, the user is shown a confirmation prompt before deleting multiple objects where at least
one of the objects is still in use. However, the prompt differs from the one for deleting a single
object (see Figure 2-16).

F N
H ‘4" elements to delete ﬁ

Delete element ‘Mithras homepage’ (ID=6087695) and "3 further element(s)?

?

Delete Skip Delete all Cancel

Figure 2-16: Deleting multiple objects in use

In this case, the usage of the corresponding objects cannot be visualized. A distinction in the
deletion process is made using the "Delete" and "Delete all" buttons.

Clicking "Delete all" deletes the selection objects as a group after a preceding prompt asking
whether the objects in use are to be deleted as well or skipped.

Clicking "Delete" would function the same as the deletion of multiple objects up to this point. In
this case, the deletion for each selected object has to be confirmed individually.

If the object to be deleted is a section template being used as a section restriction in the content
area of a page template, then this restriction is automatically removed from the list of allowed

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 33

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

section templates for the content area upon deletion of the section template. If, in this context, it
is the only section restriction for the content area, all section templates are allowed for this
content area after refreshing the page template (also refer to Chapter 2.5.2, page 57).

2.3 Special template store context menus

Caorporate Content ¥

Add to Content Transport feature

Export

Figure 2-17: Special context menus — Template store (root)

Special functions for the respective object and functions that may be license-dependent are
available in the middle area of the context menu. The functions are also heavily dependent on
the selected object type or the scope of the license.

231 Update
Refresh F5
Figure 2-18: Update
This function can be used for the following template store elements:
= Template store root nodes

This menu entry can be used to update the template store view. This is necessary if multiple
persons are working and making changes to a project at the same time.

n This function may not be used if an object is currently being edited and the changes
have not yet been saved! Otherwise, the unsaved changes are overwritten by the version
on the server and are thereby lost.

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

34

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

23.2 Export
Export

Figure 2-19: Export function

Objects from a project can be combined into a compressed zip file and saved to the local file
system using the "Export" context menu entry. The export files can then be used to import the
exported contents of a project (source project) into other FirstSpirit projects (target project) (see
Chapter 2.3.3, page 38). The available selection depends on the object type for which the
context menu or function was called.

n The "Export" context menu available in FirstSpirit JavaClient is a client-side function
and, thus, places heavy demands on the main memory of the client system if large data
volumes are involved. Thus, this function should only be used to export small data
volumes.

This function can be used for the following template store elements:

= All template store folders

= Page and section templates
= Format templates (no system format templates)(see Chapter 2.3.2.2, page 36)
= Style and table format templates see Chapter 2.3.2.3, page 36)

(see Chapter 2.3.2.1, page 36)
(
(
(
= Link templates (see Chapter 2.3.2.3, page 36)
(
(
(
(
(

see Chapter 2.3.2.2, page 36)

= Scripts see Chapter 2.3.2.3, page 36)
= Database schemata see Chapter 2.3.2.4, page 36)
= Table templates see Chapter 2.3.2.5, page 37)
= Queries see Chapter 2.3.2.5, page 37)
= Workflows see Chapter 2.3.2.6, page 37)

Upon calling up the context menu, first an export window opens for selecting the desired save
location for the export file in the workstation computer's local file system.

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 35

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

2.3.2.1 Exporting folders

Folders can be exported and imported for use in other FirstSpirit projects. The directory structure
from the target project is retained when exporting.

2.3.2.2 Exporting templates

Templates can be exported and imported for use in other FirstSpirit projects. If templates are to
be exported from a source project and imported into a target project frequently, the use of the
license-dependent "Corporate Content" function is recommended since more information is
available in the target project for assignment and for the update state.

2.3.2.3 Exporting style and table format templates, link templates and scripts

Exporting style and table format templates as well as link templates and scripts works the same
way as exporting templates (see Chapter 2.3.2.2, page 36).

n Style and table format templates are closely linked with each other (also see
Chapter 2.8 and 2.9 starting from page 69) and should therefore be exported together if at
all possible. To accomplish this, it is best to combine them in one folder, which can be
exported as described in Chapter 2.3.2.1. However, style templates can also be exported
and imported later individually without issue. For table format templates, the style
templates used as the standard style template and in the display rules always have to be
exported as well.

2.3.24 Exporting schemata

Schemata can be exported and imported for use in other FirstSpirit projects (see Chapter 2.3.3.1,
page 39).

The following dialog is shown after displaying the export window used to select the desired save
location for the export file from the local workstation's directories:

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 36

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

H Export schema [&J

Expaort data of schema ‘Products” as well?

Vg

Yes Mo

L

Figure 2-20: Exporting data when exporting a schema
L Clicking this button adds the data from the current project's content store's schema to
the export file. This data is then available to users of the second project when the export file is
imported into another FirstSpirit project.

fig Clicking this button adds just the schema but not the schema's data from the current

project's content store. When the export file is imported into another FirstSpirit project, the
schema is available to the users in the second project, but the data from the first project's content
store is not.

The table templates associated with the schema are added to the export file automatically.

2.3.2.5 Exporting table templates and queries

If a schema is exported, the associated table templates (and queries) are added to the export file
automatically. Table templates (and queries) should always be exported together with the
associated schema if at all possible. If this is not possible, they can also be exported individually.

In this case, the template (and/or query) has to be imported in the target project at the
appropriate schema node. Otherwise there may be errors in the project since the mapping for the
table template no longer matches the schema's tables ("The referenced table 'xy' does not
exist").

2.3.2.6 Exporting workflows

Both individual workflows and folders with all included subfolders and workflows can be exported
to the computer's file system using this function. This allows workflows to be used at a later point,
i.e. in other projects.

To carry out the export, an export window opens where the desired save location for the export

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

37

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

file can be selected from the folders on the local workstation.

If scripts are used within a workflow, they can also be added to the export file. To accomplish
this, the desired workflow first has to be selected in the tree view and then the script using Ctrl +
click. Both objects are then included in the zip file if the "Export" function is selected using the
context menu. However, scripts can also be exported separately at a later time (see Chapter
2.3.2.3, page 36).

2.3.3 Import

Impart

Figure 2-21: Import function

Objects previously exported from a source project can be added to another FirstSpirit project
(target project) using the "Import" context menu entry. To do so, the desired zip file must first be
selected from the local workstation's file system and be imported to a suitable position in the
target project.

If the imported contents do not fit the context of the target project, they are imported into the
correct target project context automatically — to the extent this is possible. In this case, the import
is carried out independently of the object where the "Import" context menu was selected. If, for
example, a user tries to import a script's export file into the "Workflows" area, the selected script
is imported into the target project regardless, but it is placed in the correct "Scripts" area of the
target project instead of the "Workflows" area.

This automatic correction does not work in all cases. An error message is displayed instead if the
system cannot determine which target project object the import file can be assigned to.

The available selection depends on the object type for which the context menu or function was
called.

This function can be used for the following template store elements:

= All template store folders

= Style and table format templates (see Chapter 2.3.3.1, page 39)
= Link templates

= Database schemata (see Chapter 2.3.3.2, page 41)
= Workflows (see Chapter 2.3.3.3, page 43)

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

38

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

Page/section templates and folders, with all included templates and subfolders, exported to the
file system can be imported into the selected folder using this function.

To carry out the import, an import window opens where the user can browse for the desired
export file in the local workstation's folders.

Assigning template sets in a target project: When importing a template from a source project
to a target project, an attempt is made to transfer the contents of the template sets as well.

= |In the process, assignment is attempted using the name (name in the source project to the
name in the target project). This means that if the names of the template sets are identical in
the source and target project, the contents are applied in the target project.

= |f assignment using the name is not successful because the template sets are labeled
differently in the target project, assignment is attempted in the next step using the
presentation channel (name in the source project to the presentation channel in the target
project). In this context, a template set from a source project with the name "HTML" would be
assigned to the first located "HTML" presentation channel in the target project (regardless of
the name of the channel in the target project).

= |f the template set cannot be assigned using the name or the presentation channel, the
contents of the template sets cannot be imported into the target project from the source
project and have to be created or copied manually, if necessary.

2.3.3.1 Importing style and table format templates

Style and table format templates can be imported from other FirstSpirit projects. To accomplish
this, an export file from the desired templates first has to be exported from another FirstSpirit
project (see Chapter 2.3.2.3, page 36).

Style templates can be imported without issue. Table format templates should be imported
together with the style templates being used (see Chapter 2.8 starting from page 69). If these
style templates are not also exported, the table format templates can be exported regardless, but
the references to the style templates are lost.

To import style and table format templates, call up the context menu at the "Format templates”
root node or a folder below that root node and select the "Import" function. The import dialog
appears after selecting the desired export file.

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

39

FirstSpirit™ Manual for Developers (Basics)

Invert selection Ok Cancel

B Import &J
Type Reference name Import
E TableTemplate Products tableformattemp...

L

Figure 2-22: Importing a table format template

FirstSpirit

Import elements individually: This functionality is not available in the template store.

Type: Type of the element contained in the export file.

Reference name: Name of the element contained in the export file.

Import: If this checkbox is enabled, the associated element is imported into the target project; if

this checkbox is disabled, the element is not imported.

Invert selection | cjicking this button inverts the selection made in the "Import” column.

Clicking this button confirms the dialog selection and opens the "Select database layer"

dialog (see Figure 2-24).

Cancel

Clicking this button cancels the import operation.

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

40

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

2.3.3.2 Importing schemata

Schemata can be imported from other FirstSpirit projects. To accomplish this, an export file from
the desired templates first has to be exported from another FirstSpirit project (see Chapter
2.3.2.4, page 36).

The export file from the first FirstSpirit project can now be imported into the second project. To
accomplish this, the context menu at the "Database schemata" root node or a folder below that
root node is called up and the "Import" function is selected. The import dialog appears after
selecting the desired export file.

B Import [_J-E:h
Type Reference name Import
&1 schema Products v
Invert selection QK Cancel

Figure 2-23: Importing a schema with table templates

Import elements individually: This functionality is not available in the template store.
Type: Type of the element contained in the export file.
Name: Name of the element included in the export file.

Import: If this checkbox is enabled, the associated element (and all elements below it, such as
table templates) is imported into the target project; if this checkbox is disabled, the element is not
imported.

Invert selection | cjicking this button inverts the selection made in the "Import" column.

Clicking this button confirms the dialog selection and opens the "Select database layer"

dialog (see Figure 2-24).

Cancel | Glicking this button cancels the import operation.

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

Y|

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

H Choose database layer [&J
Database derby_project24227_0 -
Import data of schema’Products” W

Ok Cancel

Figure 2-24: Importing a schema

Database: Selection of the desired database layer. All of the layers that have been enabled for
the project by the project administrator are displayed in the drop-down list.

Import data from schema "xy': If this checkbox is enabled, the existing data maintained for this
schema in the source project's content store is applied to the target project. Upon creating a
table in the target project's content store based on the imported schema information, the
structured data maintained up until now is displayed in the target project.

[== Data sources (content store} & Current data records Released records
+ Wl Glossary = EE Data sources (1 Glossary FF Glossary
Glossa
&= = Setfilter - [Search: —
DT Term Description
842 Convection flows Convection flows
to balance outten
240 Heat exchanger A heat exchanger
energy can be trai
another.

Figure 2-25: Table view of the structured data in the target project

The data can also be modified in the target project; i.e. it is not write-protected.

If only the schema - and not the existing data maintained for this schema in the source project's
content store - is to be applied, either the schema has to be exported from the source project
without data (see Figure 2-20) or the "Import data from schema 'xy" checkbox has to be disabled
in the target project. The existing data (based on the associated schema) is ignored during
importing in both cases. This means it is protected from access from the target project.

If the existing data from the source project is, in fact, to be displayed in the target project but
modification to the structured data is to be prevented, write protection for the selected database
layer has to be enabled after importing the data.

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

42

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

2.3.3.3 Importing workflows

This function can be called up using the context menu in the Workflows area and at the folder
level.

Workflows and folders, with all included subfolders and workflows (and included scripts if
applicable), exported to the file system can be imported into the selected folder using this
function.

To carry out the import, an import window opens where the user can browse for the desired
export file in the local workstation's folders.

n The permissions configuration has to be adjusted specifically to the project during
importing if necessary (see Chapter 4.6, page 165).

2.3.4 Restoring deleted objects
Restore deleted objects

Figure 2-26: Restoring deleted objects

The Restore deleted objects function can be called for page, section, format and link templates
as well as scripts at both the root and folder level, as well as at the schema level for database
schemata. If an object is accidentally deleted from the tree structure, this function can be used to
restore it. A window containing the deleted objects opens after clicking this function.

H Deleted cbjects &J
1 15 | Objects per page
Revision — deleted on UID / Name D Object count |deleted by

20252 Jun 13, 2012 11:49:07 AM contentdeletedemo 3941058 1 Admin -
20152 Jun 13, 2012 11:17:55 AM k&l countertest 384100 1 Admin
20128 Jun 13, 2012 11:03:01 AM message 384098 1 Admin -

Selection

Revision 20252 (Jun 13, 2012 11:49:07 AM) Restore Cetails

| %

Figure 2-27: Deleted objects

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

At the root level, all of the objects that have an available backup are displayed, whereas at the
folder level only objects that have been located within this folder are displayed. The following
information is provided for each object:

Revision: Version number of the deleted object.
Deleted on: Date and time when the object was deleted.
UID / Name: The reference name of the deleted object.
ID: The unique ID number for the deleted object.

Object count: The number of objects located below the deleted object in the tree structure.

These can be displayed in a pop-up window using the ' P®l® | pytton. These hierarchically
lower-level objects are also reinserted if the object is restored.

Deleted by: Name of the user that deleted the object.

Select the specified object and activate the | R#1%"® button to restore the object.

B} Restore object "test (ID=313102)7 =

Restoration options
Check anly - do not restore
s Standard restore

Specific restoration

O Cancel

L

Figure 2-28: Restoring deleted objects

Only check — Do not perform a restore: If this option is selected, whether a restore can be
carried out without errors is checked. This simulates the restore, but the deleted object is not
restored. Whether or not a restore is possible is then displayed in a pop-up window.

Standard restore: This option is preset by default If a restore is carried out with this option, the

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

44

™

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

restore is carried out directly dependent on the object. Therefore, depending on the object,
different options can be selected in the "Specific restore" area.

Specific restore: This option can be selected to adapt the standard restore options manually.

Specific restore — Restore parent element (if necessary): If this option is selected, the parent
element is also restored if necessary.

Specific restore — Ignore missing dependent objects: If this option is selected, missing
references to the selected object are ignored during the restore.

n This option is only available to project administrators.

The position where the deleted object is to be inserted can be selected in the next dialog. A
subfolder is normally selected as the restore point in this dialog. If the root node of a store is to
be selected, the subfolder highlighted in the middle column has to be deselected by holding
CTRL and clicking on the subfolder.

2.3.5 Edit externally

Edit externally N Form

Export Rules
Internet (HTML)
Frint (FDF - FOF)
RS3 feeds (XML)

Figure 2-29: Edit externally function

This function can be called using the context menu on page templates and section templates. It
is divided into multiple areas: All of the template sets that have been configured for this project
in the server and project configuration are listed; the Form and Rules areas are also present.

If one of the available editing areas is activated, then the corresponding source file opens in an
external editor. An editor should be entered in the user settings of the Global Settings for editing
a source file in an external editor. An additional window displaying all of the opened templates
also appears.

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 45

FirstSpirit™ Manual for Developers (Basics) F i IS t SpiritTM

F ™
R Externally edited elements ﬁ

Save local copy and close Save local copy Discard local copy

E) Produki-Flash-Animation (ID=310593) - Form - file "310593_form.tt

[+ Autosave N

Figure 2-30: Edit externally

Modifications to the source text are saved, after the templates are highlighted, using the "Save
and close local copy" or "Save local Copy" buttons. The editor is then ended in the first step.
Likewise, unsaved modifications can be reverted using "Discard local copy".

Autosave: If this is checked, then all of the modifications saved in the external editor are also
saved in FirstSpirit Client.

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

46

FirstSpirit™ Manual for Developers (Basics) F i IS t SpiritTM

2.4 Template store administrative context menus

[
[Version history Strg+H

W Workilow 3

| Execute Script b

Select preview image

Remove preview image

Show usages Strg+U
Display properties Alt+P
Cancel editing Strg+Umschalt+E

Display dependencies

2.41 \Version history

The version history for each template store object can be retrieved using this function.

& Version history of object 'Homepage templates’ (UID=homepage_templates, ID=311065) @
1 15 | Objects per page Update I
£ 2| 3
Revision Date Editor Comment g =]
E = o
£ o =
bject'homepage_templates’ renamed " -

W Admin (Admin)

o o Q0

1818 Mo ct ‘hometextimageteaser mo "
18416 Nov 25, 2008 12:43:32 P W knoor (Kno nject’homepage_templates’ created as child of ... " "

Selection Options

1strevision [v" Show hidden Revisions

2nd revision (Ctrl) ¥ Show partially archived revisions

Figure 2-31: Version history for the section template folder

You can find general information on FirstSpirit's version history and on the functions of the dialog
in Figure 2-31 in the FirstSpirit Manual for Editors, Chapter 11.10.

In addition to the generally available information for a revision (revision, date, editor, comment),
the right side of the list display shows which element modification resulted in the allocation of a
new revision number (e.g. attribute, child list, preview, presentation channels). This depends on
which object the version history was retrieved for.

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 47

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

242 Starting a workflow

If a workflow is not yet active on the selected object, then all of the workflows that have been
defined for this node in the tree structure in the permissions system are listed under this menu
item. The required workflow can be started under this menu item.

If a workflow is already active for the selected object, then it can be advanced under this menu
item.

Detailed documentation of workflows is located in Chapter 4 starting on page 126 and in
FirstSpirit Manual for Editors, Chapter 12.
2.4.3 Running a script

All of the scripts that can be called at this position in JavaClient are listed under this menu item.
Scripts make it possible to have pre-programmed actions or calculations run. Information on
script development in FirstSpirit is located in the FirstSpirit Online Documentation.

244 Search in templates

This function is identical to the "Search in templates" function in the "Search" menu on the
FirstSpirit menu bar. Additional information on this search is located in theFirstSpirit Manual for
Editors, Chapter 3.

245 Tools - Change permissions

The permissions for the current node in the tree structure are defined using this function. It can
be called at every node using the context menu.

The entries in the lists in the areas "Inherited permissions" and "Permissions defined in this
object" are automatically displayed and are sorted alphabetically first by groups and then by
users.

You can find more detailed documentation on defining permissions in the FirstSpirit Manual for
Editors, Chapter 13.

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

48

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

2.4.6 Tools — Delete write protection

If write protection is present for the selected node due to an active workflow, the write protection
can be removed using this function. (Write protection is indicated in the tree by italics.) You can
find detailed information on write protection in workflows in Chapter 4.7 starting on page 178.

24.7 Tools - Select/remove preview graphic

This function can be called up using the context menu at the page/section level. The respective
object has to be in edit mode for this.

A preview graphic for the Preview tab of the respective object can be selected or an existing one
can be deleted using this function. For this purpose, a file window opens where the user can
browse for the desired preview graphic in the local workstation's folders. The graphic file has to
have the extension "gif", "jpg" or "png".

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

49

™

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

2.4.8 Tools - Display properties

The properties of an object can be displayed with the following information using this function.
The information when using this function can vary depending on the object type.

B} Information ﬁ

D Homepage

|_ Templates [Page Templates Homepage

Editorial | Technical

Display name (DE) Homepage

Display name (EN) Homepage

Status unknown

Revision 20003

Author Admin

Created on Oct 27, 2008 1:45:10 PM
Last saved May 31, 2012 2:22:45 PM
Last editor Admin (Admin)
Released by unknown

OK Copy details Generate report

Figure 2-32: Properties of a page template — Editorial

The properties for other objects can be displayed using the path.

Editorial tab

Object properties relevant for editorial work are shown on this tab.

Display name: Object display name (language-dependent)

State: Shows the state (e.g. "Not released", "Released"”, "Modified (not released)")

Revision: Shows the revision

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 50

™

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

Author: Name of the user that created the object

Created on: Time when the object was created in JavaClient, with date and time
Last save: Time when the object was last saved, with date and time.

Last editor: Name of the user that edited the object last

Released by: Name of the user that released the object

F -
B Information ﬁ

D Homepage

|_ Templates 3 Page Templates Homepage

Editorial | Technical

Label path Templates/Page Templates/Homepage
Reference name (UID) homepage

UID path root/Page Templates/homepage

0 GOBT16T

1D path GOST210/6087245/6087 167

Template name Homepage

Template ID 7

OK Copy details Generate report

Figure 2-33: Properties of a page template — Technical

Technical tab
Object properties relevant for technical work are shown on this tab.
Label path: Path to the current object (display name)

Reference name (UID): Reference name (UID) for the object

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 51

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

UID path: Path to the current object (reference name)
ID: Object ID

ID path: Path for the current object (IDs)

n The path information can also be requested using the keyboard shortcut
Ctrl + Shift + Q.

Template name: Display name for the underlying template
Template ID: ID for the underlying template

The "OK" button closes the dialog. All of the information from the dialog can be transferred to the
clipboard using the "Copy details" button. The information can be output as an HTML page using
the "Generate report" button. An additional comment, such as an error description, can be
entered as well.

249 Tools - Display uses

This functionality can be called using the context menu on page, section, format and table
templates as well as scripts.

It can be used to automatically jump to nodes in other stores related to the object where this
functionality has been run. If the object is used multiple times, a new window opens displaying all
of the nodes (e.g. sections from the page store) based on the current object. Double-clicking one
of these entries shows the corresponding node in the directory tree.

2410 Tools - Apply template changes

Changes to the definition of the content areas can be applied to a page template for existing
pages using this function.

The functionality is only available for page templates in the template store.

If, for instance, a content area is added to a page template, this change does not automatically
affect an existing page. The "Apply template changes" function can be used to update existing
pages if a change is made to a page template. The function checks the definition of the content

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

52

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

areas in the page template against the content areas of pages that use this template:

= |f content areas are found that are defined in the template but not present on the existing
page, these content areas are added to the page.

= [f, conversely, content areas are found that are missing in the templates but are present on
the page, then:
¢ They are removed from the page if they do not contain any sections.
o They remain on the page if they contain sections.

2.411 Tools - Cancel editing

You can use this function to exit edit mode on a node without saving changes that have been
made. However, you cannot undo changes that have already been saved using CTRL + S or the
save function on the icon bar.

2412 Tools - Change reference name

Object reference names can be modified retroactively using this function.

n A warning notice is displayed first since references for the object may still exist that
would be invalid once the reference name has been changed. If "Change anyway" is
selected, the reference name for the object can be changed in the next dialog.

2413 Tools - Show dependencies

Essential FirstSpirit functions are based on what is known as a project's reference graph. The
reference graph for a project is used for recognizing dependencies within the project and thus is
an essential component for complex functions, such as server-side release (see Chapter 6, page
223).

The visualization of the reference graph for an object can be requested by project administrators
using the "Tools — Show dependencies" context menu. This makes it possible to identify the
dependencies of a project even in complex projects.

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

53

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit

n Reference graphs for individual data records from the content store are retrieved
using the respective data record's context menu.

The tabs indicate the dependencies of the object in the form of incoming and outgoing arrows,

both for the current state and the last released state (see Figure 2-34).

The display can be reorganized to a hierarchical view, which is particularly recommended for
complex dependencies (see Figure 2-34). It is possible to update directly in the event of changes
and to zoom the view using the buttons in the upper area of the window. The view can also be
saved as an image for later use.

R Dependencies of 'Standard'

= | B [|

Currentstatus | Release status

HIERARCHICAL ~

Display tha next elements (14 total)
B Aboutus (311743)

) company (311694)

[E) powntoad center (312076)

B callery (312085)
D Global teasers (312375)
B imprint 311675)

[Jobs (311703)

" D Jobs (details) (311542)

|© operating figures (311701)

|C0 Press momepags) (312104)

Grouping size: 10

Display the naxt elements (48 total)

E Teut link (internal) (312993)
=4 hulletlE (310904)

AC_RunActiveContent (31 2330)|

= alpha (312500)

German (310793)

= l: E‘:tlahdard (310567)
g \
=4 bt_nav_neu (312979)
| Fluatux(anernaie)(31n?20)|

1 [E(310654)

Figure 2-34: Displaying dependencies using the reference graph

2.4.14 Tools - Create copy of this workflow

This function can be called for workflows. It creates a copy of the selected workflow below the

"Workflows" node.

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

™

54

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

2.5 Page templates

E Template store &

v |z Page templates
+ @ Global content area
D Common header
D Language dependent label
+ B Technical templates
E) Meta data
D Product (Flash animation)
D Project settings
D Homepage
D Standard

Figure 2-35: Template store tree view — Page templates

Page templates create the basic framework of a page. The placement of logos and navigation
tools as well as similar, general settings are set in page templates. Moreover, the page templates
define the locations where an editor can insert content.

Tree elements in page templates:
Root element of page templates
' Folder in the page template node

a Page template

With FirstSpiritVersion 5.0, line numbers are indicated at many places in the Template Store as a
reading aid. They can be shown or hidden in JavaClient using the keyboard shortcut Ctrl + L.

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

™

55

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit™

2.51 Preview tab

To obtain a preview of how the template will look later in a browser, a previously prepared

preview graphic (e.g. a screenshot) can be displayed on the "Preview" tab. This allows each user
to tell immediately which template has just been highlighted.

A graphic can be added to this tab in three different ways:

1. Locking the template, then clicking "Select preview graphic" from the context menu and
selecting a "gif", "jpg" or "png" file.

2. Locking the template, then selecting a "gif", "jpg" or "png" file from the file explorer, dragging
it to the preview spot with the mouse and dropping it there.

3. Locking the template, selecting a link-free graphic (while holding the Ctrl key) from a website
(only MS IE), dragging it to the Preview tab with the mouse and dropping it there.

Preview Properties [Form [Rules Snippet [Internet (HTML) [Print (PDF - FOP) [RSS feeds (XML

E Templates. [3 Page templates 0] Homepage

™ Deutsch B Stemap = Corfact Y Imprint 5 R3S Feeds

thin filim ma

B hore Information

Welcome to Mithras Energy &

02-Jan-2003

Mithras Energy again awarded the
Solar Prize of the City of
Sonningen

21-Maov-2008

Achievable optimum

Contact

Do you have any questions ahout
solar technology? Please contact us.

FirstSpirit

The mithras-eneray.de website is a
dema project of e-Spirit 4, Dartmund
We have compiled more information on
the FirstSpirit cortert management
aystem used for you (=

Solar energy is the energy ofthe future, and we have dedicated ourselves to this future. With
our solutions and products, we would like to make sure that you are hest equipped for this
energy afthe future. This is the only way for each of us to achieve the highest levels of
sustainahility and enviranmental protection for ourselves, our families and our companies

o

Sustainability for your own four walls &

There are many options for making your own home mare
ervironrmentally friendly. We would like to present one of
these options toyou in greater detail, by using our
crystalling solar modules. Crystalline modules are
extrernely efficient 25, due to the amarphous silicon in their

structure, they can achieve up to 10 percent greater
efiiciencies in the generation of solar energy than P
comparable thin film modules. Please read through these ”‘-‘,f’!_,«“"(

pages to find out about the other advantages crystalline
modules can provide for your power supply.
[Mare Informatian

All about inverters

Inverters are divided into two categaries: the & Modular
invertersand string inverters. We have taken a close look at
thern foryou g0 thatyou can precisely differentiate betwean
thern and their use in your photovoltaic systern and decide
which is most suitable foryour project. Specific
explanations are given on these pages

[Mare Information

Top topics H
Employees Energy Solar Prizes

Sonningen Firstspirit
Mewws & new developments Power

Protection Solarpark

Our products

In our product database you will find sl
products developed and sold by us,
clearly arranged together.

About us

Mithras Energy has set itself the goal of
innovatively developing and efficiently
seliing solar energy products, B

Figure 2-36: Page preview — "Preview" tab

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

56

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

2.5.2 Properties tab

The "Properties" tab contains different entries for page and section templates. The following
figure shows the properties for a page template:

Pre Properties Fo Rules Snippet ternet L t (PDF - FO 155 feeds (XM

’_ Templates O Page templates Homepage
Unigue name
Comment
Template set Replaceable Target ext.
File extensi htrnl (HTML) hitrml
18 BXIENSION y ot (PDF - FOP) pdf
RSS (XML) xml

Preview page mithras_home

Form Defaultvalues

Figure 2-37: Page template — "Properties" tab

Unique name: A unique designation that the template is saved under in the file directory is
specified in this field (see "Reference name" in Chapter 2.2.1, page 23).

Comment: A comment that describes the page or section template in more detail can be entered
here.

File extension — Template set: Name and type of the template sets defined by the project
administrator for the current project in the server and project configuration. Deactivated template
sets are grayed out and cannot be edited.

File extension — Overwritable: If this is checked, it means that the extensions of a page
template specified in one of the following two input fields can be overwritten by a section
template.

File extension — Target ext.: The template extension that is to be linked. The extension can be
edited by double-clicking in the field.

Preview page: A page from the site store where the template is used can be selected here. This
allows changes made to the template to be checked directly in the template store using the
preview function.

Hide template in selection list: Activating this option prevents an editor from using this

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

57

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

template when creating a new page.

Form: The "Default values" button that can be used to define default values for the template is
available at this spot. The maintenance dialog for defining the defaults opens. The language-
dependent default values are shown in the preview area immediately after saving the properties.

Content areas / Section restrictions: You can click on the icons in the top right to add a new
content area to the page template, delete an existing content area or resort the list of content
areas.

Just like all other templates, content areas can be created language-dependent and thus can be
provided with one (or more) language-dependent reference names and one unique reference
name.

Content areas

Unique name Allowed section templates Content area is active
\IG Content left Text/Image (marginal teaser), Tag-Cloud, Contact, Press releases teaser u
|l Content center Text/Image (homepage teaser), Product flash animation "
Il Content right Text/Image (marginal teaser), Tag-Cloud, Contact, Press releases teaser u

Figure 2-38: Defining content areas for a page template

Section restrictions can be defined for the page template by clicking on a content area.

Details

Unigque name Content center

v Activate content area for this page template
German English

Display name | mittlerer Bereich

Description

Allowed section templates
B4 Text/Image (homepage teaser) =4
B4 Productflash animation

Figure 2-39: Defining section restrictions

This is accomplished by allowing or prohibiting the desired section template by adding them to or
removing them from a list (for a content area). For the corresponding content areas, this means
that only the respective selected section templates are permitted. The templates are added by
selecting the content area and clicking the open folder symbol. The templates are deleted by

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

58

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

highlighting the restriction below the page template and then removing it using the delete key on
the keyboard or clicking on the trash can icon.

Optionally, all of the section templates for all of the content areas of a page template can also be
allowed. This repeals every section restriction for the page template. This is possible using the
checkbox "Allow all section templates".

n If all of the section restrictions within a page template are deleted, there are no
more restrictions for creating sections on the page. The layout of the page may be
damaged in process, such as by creating sections unsuited for the page layout.

2.5.3 Formtab

Preview Properties Form Rules Snippet Internet (HTHL Print (PDF - FOP RS58S feeds (XML

r Templates [0 Page templates Homepage

1 <CM5_ MODULE>
2
<CHM5 GROUP tabs="top">
<CHM5_GROUE>
<LANGINFOS>
<LANGINFC lang="*"
8 <LANGINFC lang=
9 </LANGINFOS>

he homepage components.™/>

e ihre Homepage-Informationen ein."/>

10
11 <CMS_INPUT TEXT name="pt_ headline"™ hFill="yes" noBreak="yes" singleLine="no" uselanguages="yes">
12 <LANGINFOS>

13 <LANGINFC lang=
14 <LANGINFC lang="DE" label
15 </LRNGINFOS>

16 </CMS_INPUT_TEXT>

" label 1 3 headline for that page."/>
ift der Seite."/>

Figure 2-40: Page template — "Form" tab

The "Form" tab shows the GULXML file. If a template is locked, changes can be made here
directly.

DTD validation is carried out when saving GUI.XML. Incorrect formatting would be disastrous
here; GUI.XML cannot be saved in that case. Other errors are just displayed.

n If a preview for GUI.XML is requested in the locked state then the changes are
saved automatically beforehand. (A new version is not created — that only occurs when
unlocking!)

For updating content areas on existing pages (when changing the definition within the page

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

template), see Chapter 2.4.10, page 52.

A listing of all of the available input elements can be found in the "FirstSpirit Online
Documentation”. The input elements are explained with all of their attributes and a schematic
example under the menu item Template development — Forms.

The addition of input components on the "Form" tab has been simplified by code completion (see
Chapter 7, page 240).

254 Template sets tab

Preview Properties Form Rules Snippet Internet (HTML Print (POF - FOP RSS feeds (XML

r Templates [0 Page templates Homepage
1 <CM5_ HEADER>

<CM5_FUNCTICN name="Navigation" resultname="pt_ mainNavi">

<CM5_PARAM name="expansionVisibility" value="all"/>
<CMS_PAREM name="wholePathSelected” walue="1"/>

<CM5_ARRAY PARAM name="innerBeginHTML">

: <CMS_ARRAY ELEMENT»><![CDATA[]]></CMS ARRAY ELEMENT>
10 </CMS_BRRAY PARAM>

Figure 2-41: Page template — Template sets tab

The "Internet", "Print" and "RSS feed" tabs are template sets that the project administrator
created during server and project configuration for this project. The tabs show the source text of
the different template sets for the current template. If the template is locked, changes can be
made here directly.

If a change has been made to the source text, the formatting of CMS_HEADER is checked for
the change when saving. If an error occurs, it is displayed immediately via a new window.

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 60

™

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

2.5.5 Rules tab

' Previewy ' Properties ' Form Rules Snippet ' Internet (HTHL) ' Frint (FDF » |»
|— Templates (3 Page Templates Standard
1 <RULES>
2
3 <CON_SAVE:
4 <WITH=
5 <NOT>
] <GREATER THAN=>
T <PROPERTY source="pt headline’ natme="LENGTH"/ >
g <MNUMEER>40</NUMEER>
] </GREATER_THAN>
1 </ HOT>
11 </WITH=
12 <D0
13 <WALIDATICHN>
14 <PROPERTY source="pt_headline”™ namwe="VILID"/ >
14 <ME3IZLAGE lang="+*" text="Cnly 40 characters allowed!"/ />
16 <ME3IIAGE lang="DE" text="Es =sind nur 40 Zeichen zugelassen!"/>
17 </ WVALIDATICON=
18 </ D
14 </ ON_SAVE=

n

A template developer can influence specific elements or properties of a form by defining rules
within the (form) template and can create a "dynamic form" this way. The "Rules" tab area is
used for defining rules. Here, for instance, an input component that has been defined in the
template's "Form" tab area can be linked to a rule.

You can find a detailed description of the rules in the FirstSpirit Online Documentation.

n Higher level objects, i.e. objects outside the actual form, cannot be included. This
means that you cannot influence which templates may be used in which areas of the site
store, for instance.

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 61

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

2.5.6 Snippet tab

Fresiew Froperies Form Rules Shippet Inte » | »
|_ Templates 3 Page Templates Standard

Thumhnail

1 pt_highlightPicture

2

3

4

&

B

v

g

Label

1 ifllpt_headline.isEmpty, pt_headline) +

2 ifllpt_headline isEmpty && Ipt_subheadlineisEmpty, " 1 +
3 iflpt_subheadline.isEmpty, pt_subheadling)

4

oo =] OnOh

Esxtract
truncatedpt_intro, 2500

1
2
3
4
g
5]
T
3

The way search results are to be displayed based on some template types can be specified via
the "Snippet" tab. The variable names of a template's input components are referenced for this.
This display is used in both JavaClient and WebClient.

The goal is to display search hits with the following instead of with just the object name:
= animage

= atitle

= atext excerpt

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

62

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

This should be information that best represents the respective object. This way, the editor is able
to receive a clear presentation of the content of the search hit in order to determine the most
relevant hit more easily and to get to the object being searched for more quickly.

In order to be able to adapt the output more strongly to the requirements of the respective
projects and editors, multiple input components can also be combined. In addition, methods that
can be used with $CMS_VALUE(...)$ can be implemented. Thus input editorial content can be
used for searching depending on the inputs. By default, if an input component specified on the
"Snippet" tab is not filled by an editor, the name is shown as the title and the path to the search
hit is shown as the text excerpt. The path is shown in WebClient in each case regardless.

You can find a detailed description of the snippet in the FirstSpirit Online Documentation.

2.6 Section templates

E Template store &

b |2 Pagetemplates
+ & section templates
p BB Homepage templates
« B Marginal column
E Contact
E Fress releases teaser
E Tag-Cloud
E Text/Image (marginal teaser)
E Related products
p BB Technical templates
E Picture gallery
E Download center
E Froduct flash animation

& Table

E Teaserlist

E test

&4 Text!Picture
& Text/Table / Picture

Figure 2-42: Template store tree view — Section templates

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

63

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

Section templates are used to insert content into the basic framework of a page defined by page
templates. All of the input elements that are to hold dynamic page content (text, tables, images,
data records, etc.) are defined in a section template. Any number of sections can be added in
each section area of a page. There are usually also multiple different section templates available
for the different types of potential content a page may have.

Tree elements in section templates:
& Root element of section templates
' Folder within section template node

& Section templates

2.6.1 Preview, Properties, Form, Template sets, Rules and Snippet tabs

The Preview, Properties, Form, Rules, Snippet and Template sets tabs of the section templates
are identical in function to the page template tabs of the same name and can be edited the same
way.

You can find information on the individual tabs in Chapter 2.5.1 (page 56) to Chapter 2.5.6 (page
62).

n There is also the option of using HTML anchor links on a page, such as when using
extensive page content. This requires that the <a> tag be enabled on the section
template's Properties tab. Subsequently, the anchor link is generated from the section
template's reference name automatically and can then be used within a link template.

You can find a detailed description of using anchor links in the FirstSpirit Online
Documentation.

n The option "Hide template in selection list" (see Chapter 2.5.2) is not available for
section templates.

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

64

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

2.7 Format templates

E Template store &

b |2 Pagetemplates
3 E Section templates
+ (B Formattemplates
p B8 Common format templates
+ B Mithras Energy format templates
» I Inline Table

k8] Home Teaser

Table underline

i Teaser boxtext

b8 Teaserinfo
p BB Technical format templates
» B8 Word import

Figure 2-43: Template store tree view — Format templates

Text formatting is defined using format templates. The formatting can then be used in the DOM
editor and DOM table input elements. Some format templates are included in the delivery by
default, such as format templates for sections ("standard"), line breaks (abbreviated as "br"),
"bold", "italic", to display tables (abbreviated as "table", "tr" and "td"), etc. They can be found in
the "Common format templates" folder in the "Format templates" area of the Template Store.

n These standard format templates are in many ways required for correct operation
and must not be deleted.

The format templates

= "Deleted" (abbreviated as "deleted"),

= "Deleted (Block)" (abbreviated as "deleted_block"),
= "Inserted" (abbreviated as "inserted") and

= "Inserted (Block)" (abbreviated as "inserted_block"),

are used to display version comparisons ("Version history"). Changing the properties of these

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

™

65

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

format templates (color, font size, border, etc.) (see section 2.7.1, page 66) affects how changes
are displayed in version comparisons.

It is even possible to change how other standard format templates are displayed in the DOM
editor.

In addition to the standard format templates, template developers can create other project-
specific format templates.

2.71 Properties tab

Properties Internet (HTHML Print (PDF - FOP RSS feeds (XML
= Templates 3 Format templates (2 Common format templates % Inzerted (Block)
Tag inserted block
Tool tip
Section Crientation

Show Indentation

Cluote 25

Appearance in editor

Font

Style
Color
Size Point
Border color

Background colar

Figure 2-44: Format template — "Properties™ tab

The basic properties of a format template are defined on the Properties tab page. The individual
fields have the following meanings in this context:

Tag: The text entered in this field is needed in the form area of a page and section template to
specify valid format templates for the input component. The corresponding xml tag name is

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

66

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

generated from this name, such as for the "Bold" format template (also refer to FirstSpirit Online
Documentation — Template syntax / format templates area). The name must be unique and
cannot contain any special characters. It is specified automatically according to the format
template's unique reference name. In order to ensure the uniqueness, the abbreviation should
not be changed manually (see Chapter 2.2.1, page 23).

n A unique name or abbreviation of a format template cannot be changed once it has
been created since otherwise all references within the project would be lost!

Tool tip: The text entered in this field appears as helpful text when the user hovers over it with
the mouse, such as in the DOM editor.

Section: The entire section is formatted if the "Section" checkbox is checked. If the checkbox is
unchecked, the formatting is only applied to individual, highlighted characters.

Alignment: If the "Section" checkbox has been checked, the alignment of the text, such as in the
DOM editor, can be specified here.

Display indent: Defines how the corresponding formatted text is to be displayed. All of the blank
spaces are displayed and the text is no longer automatically wrapped if this option is enabled.
Black spaces are shown in HTML notation if this option is disabled.

Quote: Selecting Yes applies the complete conversion rules to the individual template sets (the
convert part and quote part). Selecting No only applies the convert part of the conversion rules to
the individual template sets.

Additional formatting only shown in the editor can be defined using the "Display in editor" field.

Font: A font used to display the text is selected here. (This font has to be installed on every client
computer, otherwise a similar font is used.)

Style: You can select whether the text is to be shown in bold, italics or underlined in the DOM
editor here.

Color: The color for the displayed text can be selected here.

Size: The size that text is to be shown at in the DOM editor is specified here. Relative inputs are
also possible here (+2, -1, etc.).

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

67

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

Border color: The color for a border within an input component can be selected here.

Background color: The color for the background within an input component can be selected
here.

2.7.2 Template sets tab

Froperties Internet (HTML) Frint (FDF - FOP RS5 feeds (XML
|_ Templates (3 Format templates [Common format templates ¥ Inserted (Block)
Conversion Unicode to HTML4 =~
Template

1 §CMS VALUE (§¥content)§

Figure 2-45: Format template — Template sets tab

Conversion: One of the conversion rules configured in the server and project configuration in
the server properties can be selected here.

Template: The HTML code that generates the desired formatting for text on the website can be
entered here. The #content expression represents the text that has been entered in the DOM
editor.

A detailed description of the format templates and the conversion rules is available in the
FirstSpirit Online Documentation.

n The selected conversion rule is applied only when outputting CMS_INPUT_DOM or
CMS_INPUT_DOMTABLE input components via the #content system object, e.g. via
$CMS_VALUE (#content)$.

With FirstSpiritVersion 5.0, line numbers are indicated at many places in the Template Store as a
reading aid. They can be shown or hidden in JavaClient using the keyboard shortcut Ctrl + L.

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 68

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

2.8 Style templates

|& Template store &

b =l Pagetemplates
b 2l Sectiontemplates

« |[E | Format templates

p Wl Common formattemplates
w W Inline Table
5% Inline Table Style
LY Even Row
|g= Inline Table
p &8 Mithras Energy format templates
p & Technical format templates
p @8 Word import

Figure 2-46: Template store tree view — Style templates

2.8.1 Introduction: Inline tables

What are known as inline tables can be integrated into the flow of text using the DOM editor
(CMS_INPUT_DOM input component). This allows any number of design possibilities to be
made available to the editor down to the cell level.

The table layout is specified by both table format templates (see Chapter 2.9, page 80) and style
templates (start from Chapter 2.8.2, page 70). Style templates are used to define table layout
features, such as background color, text alignment, font, word wrapping, borders and border
spacing.

Each table format template can be assigned precisely one standard style template (for the entire
table) and multiple additional style templates for separately displaying individual table cells (see
Chapter 2.9.1, page 82). The style templates define the layout of individual table cells, such as
the background color ("bgcolor"), the alignment of text in a cell ("align") or the color of the text in
a cell ("color").

Therefore, a style template has to be created first in order to use inline tables in the DOM editor
(see Chapter 2.8.2, page 70).

Style and table format templates should be combined in a folder (e.g. "Table") for a better
overview.

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

69

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

Inline table icons:
S Folder
|2 Table format template

Style template

n The inline table function is also available in WebEdit.

With FirstSpiritVersion 5.0, line numbers are indicated at many places in the Template Store as a
reading aid. They can be shown or hidden in JavaClient using the keyboard shortcut Ctrl + L.

2.8.2 Creating a style template

Style templates are created in the "Format templates" area. Select the item New — Create style
template in the context menu to do this. A reference name for the style template has to be
specified in the window that opens. Specifying a display name is optional.

i '\
BR Create style template Lé]

Display name

German (DE) ‘Standard
English (EM)

Reference name |standard

Ok Cancel

b

Figure 2-47: New — Create style template

Clicking 9K creates the new style template. Input components that affect the properties of the
layout, such as background color, text alignment, font, word wrapping, borders and border
spacing, can be created using a style template's form area (see Chapter 2.8.3, page 71).

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

70

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

2.8.3 Form area of a style template

Unlike other format templates, style templates have a "Form" tab. In the form area of a style
template, input components can be created for maintaining layout attributes.

Preview Properties Farm Rules Internet (HTML Print (FDF - FOP RSS feeds (XML

l_ Templates [Format templates [Inline Table Inline Table Style

<CM5 MODULE>

<CMS_ INPUT COMBOBOX name="align" hFill="yes" singleline="no" uselanguages="yes">
<ENTRIES>
<ENTRY wvalue="left">
<LANGINFOS5>
7 <LANGINFO lang="*" label="left"/>
g <LANGINFO lang="DE" label="links"/>
9 </LANGINFOS>
10 </ENTRY>

Figure 2-48: Form area of a style template

Some specified layout attributes (with reserved identifiers) directly affect the display of the table
in the DOM editor.

= bgcolor: Determines the background color of a table cell
(for an example see Chapter 2.8.7.1, page 77)

= color: Determines the font color for text in a table cell
(for an example see Chapter 2.8.7.2, page 78)

= align: Determines the alignment of text in a table cell
(for an example see Chapter 2.8.7.3, page 79)

n The specified identifiers cannot be modified. The attributes always have to be
specified with name="Identifier" in the input component, e.g. <CMS_INPUT_TEXT

name="bgcolor" .../>

Other additional, freely defined attributes can certainly be maintained using the form area's input
component in addition to these standard attributes, e.g. CSS attributes.

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

71

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

Supported input components for maintaining layout attributes:

= CMS_ INPUT TEXT / CMS INPUT TEXTAREA: Text field for specifying a value, e.g. for the
background color.
(for an example see Chapter 2.8.7.1, page 77)

= CMS INPUT COMBOBOX: Selection from a predefined number of values, e.g. for specifying a
background color or alignment
(for an example see Chapter 2.8.7.2, page 78)

= CMS INPUT RADIOBUTTON: Selection from a predefined number of values, e.g. for
specifying a background color or alignment
(for an example see Chapter 2.8.7.3, page 79)

= CMS_ INPUT NUMBER: Specifying a numeric value (e.g. value for a cell's background color)
* FS BUTTON: Button for activating a script or executing a class

The addition of input components on the "Form" tab has been simplified by code completion (see
Chapter 7, page 240).

n The following applies to all input components used in a style template's form area:
The components should be defined as language-independent (useLanguages="no"). In
this case, the language-dependence of the component is covered by the language
selection in the DOM editor instance being processed by the editor.

n Additional input components for maintaining layout attributes (in style templates) are
not supported.

2.8.3.1 Preventing layout editing for editors

Editors can be prevented from performing layout attribute maintenance. Either the attribute
hidden="yes" or a corresponding rule has to be defined in the input component for this. The
attribute hidden="yes" causes the input component to be visible only in the template store but
not when maintaining the table in the page store. Thus the template developer can use the
attribute to prevent an editor from editing the layout and instead to specify defined values for the
layout such as the background color for cells (see Chapter 2.8.4, page 74).

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

72

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

If the attribute hidden="yes" is defined (for all of a style template's input components), the
editor does not have the option of modifying the layout properties of a table cell in the page store.
The corresponding "Cell properties" button is inactive in this case.

n If maintenance of layout properties was prevented by using validators, the button is
never inactive. Even if all of the input components are hidden. Consequently, an empty
dialog appears in both clients. This behavior also applies to the dialog for preassigning
layout attributes (see Chapter 2.8.4, page 74).

You can find more detailed information on validators in the FirstSpirit Online
Documentation.

If, on the other hand, individual components are "visible" (hidden="no") and others are
"hidden" (hidden="yes"), then the "Cell properties" button in the DOM editor (in the page
store) is active; however, the editor is only shown the "visible" components in the following
dialog.

All of the style template components are then displayed only if the template developer has not
defined any restrictions.

et o == e = ® F & Ex

Cell properies
I | 1

Figure 2-49: "Cell properties” button in the DOM editor

The editor opens a dialog for editing project-specific layout attributes by clicking the button (see
FirstSpirit Manual for Editors).

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

73

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

2.8.4 Preassigning layout attributes

Fallback values for the layout attributes can be defined in the template store. The input
component is preassigned values (e.g. with a color value) in a separate dialog that can be
opened on the "Properties" tab using the corresponding button.

BB Preview : StyleTemplate (ID=312489) S|
Align | A |
center > || Ead
Background Color Ead
dark grey ~ | k4
QK Abbrechen

Figure 2-50: Preview style template

In the dialog, a preassignment for the input component can be defined by the template
developer. A color value can be selected in the input component for "Background Color", for
instance (see Figure 2-50). This color value is applied to all table cells based on the
corresponding style template when creating an inline table in the DOM editor.

Depending on the defined value for the hidden attribute in the input component's definition, this
preassignment can be modified by the editor (see Chapter 2.8.3.1, page 72).

If editing is possible (hidden="no"), the editor can overwrite this predefined value when editing
a table cell in the DOM editor (see FirstSpirit Manual for Editors).

n The values in the dialog can only be edited or saved if the template is locked
("Switch to edit mode" button)!

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

74

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

2.8.5 Presentation channel of a style template

Inside a style template's presentation channel (e.g. "HTML"), the values input in the input
components can be read back out (see Chapter 2.8.4, page 74).

Preview Froperties Form Rules Internet (HTML}
l_ Templates [Format templates 3 Inline Table Even Row
1$CMS VALUE (if (bgocolor != null, "bgcolor=" + bgcolor, ""})}§

Figure 2-51: A style template's "HTML" presentation channel

The name of the input component has to be output using the instruction $CMS_VALUE (. ..) $ for
this:

| $CMS_VALUE (if (bgcolor != null, " bgcolor=" + bgcolor, ""))S$ |

or

| $CMS_IF (!bgcolor.isEmpty) $SCMS VALUE (bgcolor) $SCMS END IFS$ |

Refer to the FirstSpirit Online Documentation for more detailed information on outputting
variables®.

2.8.6 Linking with standard table format templates

Style template values can be linked to standard format templates for generating (and previewing)
tables in a project using the system object #style. The standard format templates for tables
made available by FirstSpirit are:

= Table (abbreviation: table): Formatting for tables
= Table cell (abbreviation: TD): Formatting for table cells
= Table row (abbreviation: tr): Formatting for table rows

For example, if, in a TD standard format template, the system object #style is used for
instance, values that have been defined by the editor in the "Cell properties" dialog (see

s FirstSpirit Online Documentation in the template development / variables area

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 75

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit

FirstSpirit Manual for Editors) or values that have been predefined for the style template by the
template developer (see Chapter 2.8.4, page 74) are taken into account during generation.

Example of the output to the HTML channel of the TD standard format template:

<td$CMS_VALUE (#style) $
SCMS_VALUE (if (#cell.rowspan != 0
SCMS VALUE (if (#cell.colspan != 0
SCMS VALUE (if (#content.isEmpty,
</td>

" rowspan='""
" colspan=""

4

14

+ #cell.rowspan + "'"))$
T #Cell_colspan Fomrmy) 8>

" ", #content))$

n For more detailed information about how properties and information from tables and
their contents can be accessed, see FirstSpirit Online Documentation, #cell, #content,
#table and #ir system objects in the template development/template syntax/system

objects area.

The values of layout attributes defined by the editor (or template developer) in the "Cell
properties" dialog are now taken into account when generating the table (see Figure 2-52):

H Eigenschaften Zelle

==

Background Color |#FFOOFF

Font Caolar default

Align
Left

« Center

OK

Right

Block

Abbrechen

b

Figure 2-52: Table cell properties

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16

= RELEASED = 2013-05-15

76

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

The source text of a table cell is now generated as follows, for instance:

<table>
<tr>

<td bgcolor="#ff00ff" align="center" color="#00ddee" rowspan='1l"
colspan='1'>This is a text.</td>

</tr>

</table>

2.8.7 Examples

2.8.7.1 Example: Text input component for entering a background color

Defining a component in the form area:

<CMS_MODULE>
<CMS_ INPUT TEXT name="bgcolor" useLanguages="no">
<LANGINFOS>
<LANGINFO lang="*" label="Background color:"/>
</LANGINFOS>

</CMS_INPUT TEXT>

</CMS_MODULE>

name="bgcolor": The input component uses the key value "bgcolor" to define a background
color. This name cannot be changed since it is a fixed key value.

Inputting a color value using an input component:

Background Color: [#

#FFOOFF
Figure 2-53: Input component for entering a background color

For outputting the value in the style template's presentation channel, see Chapter 2.8.5, page 75.

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 77

FirstSpirit™ Manual for Developers (Basics)

2.8.7.2 Example: Input component for entering a text color

Defining a component in the form area:

FirstSpirit

<CMS_ MODULE>
<CMS_ INPUT COMBOBOX name="color" uselanguages="no">

<ENTRIES>
<ENTRY value="">
<LANGINFOS>
<LANGINFO lang="*" label="default"/>
</LANGINFOS>
</ENTRY>
<ENTRY value="#eeO0ff">
<LANGINFOS>
<LANGINFO lang="*" label="superior"/>
</LANGINFOS>
</ENTRY>
<ENTRY value="#00ddee">
<LANGINFOS>
<LANGINFO lang="*" label="1lightGrey"/>
</LANGINFOS>
</ENTRY>
</ENTRIES>
<LANGINFOS>
<LANGINFO lang="*" label="Font Color"/>
</LANGINFOS>

</CMS_INPUT COMBOBOX>

</CMS_MODULE>

Selecting a color value using an input component:

Font Color [#% |

default
superior
lightGrey

Figure 2-54: Input component for selecting a color value for the text color

For outputting the value in the style template's presentation channel, see Cha

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

pter 2.8.5, page 75.

78

FirstSpirit™ Manual for Developers (Basics)

2.8.7.3 Example: Input component for entering text alignment

Defining a component in the form area:

FirstSpirit

<CMS_ MODULE>
<CMS_ INPUT RADIOBUTTON name="align" useLanguages="no">
<ENTRIES>
<ENTRY value="">
<LANGINFOS>
<LANGINFO lang="*" label="Left"/>
</LANGINFOS>
</ENTRY>
<ENTRY value="right">
<LANGINFOS>
<LANGINFO lang="*" label="Right"/>
</LANGINFOS>
</ENTRY>
<ENTRY value="center">
<LANGINFOS>
<LANGINFO lang="*" label="Center"/>
</LANGINFOS>
</ENTRY>
<ENTRY value="block">
<LANGINFOS>
<LANGINFO lang="*" label="Block"/>
</LANGINFOS>
</ENTRY>
</ENTRIES>
<LANGINFOS>
<LANGINFO lang="*" label="Align:"/>
</LANGINFOS>
</CMS_INPUT_RADIOBUTTON>

</CMS MODULE>

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

79

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

Selecting a text alignment using an input component

Align: [# |
Left Right
« Center Block

Figure 2-55: Input component for selecting text alignment

For outputting the value in the style template's presentation channel, see Chapter 2.8.5, page 75.

2.9 Table format templates

Table format templates are required for creating what are known as inline tables (see Chapter
2.8.1, page 69). A table format template has to be created in the "Format templates" area for
each desired table layout.

Select New — Create table format template in the context menu to do this. A reference name
for the table format template has to be specified in the window that opens. Specifying a display
name is optional.

A detailed description of reference and display names can be found in Chapter 2.2.1, page 23.

F N
H Create table format template [&J

Display name
German (DE) 'Standard
English (EM)

Reference name | standard

Ok Cancel

L

Figure 2-56: New — Create table format template

The "Properties" tab opens once - °“ ' has been clicked. The size of the table can be defined

and the style templates created in Chapter 2.8.2 can be assigned here.

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

80

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

Preview Properties

= Templates 3 Format templates 3 Inline Table Standard
Mumber of rows Minimum |1 Maximum |G

Mumber of columns Minimum |1 Maximum |G
Standard style template default =1 B3
Display rules

Fule type |Use for Template Editable |Deletable |Appearance in editor

Figure 2-57: Table format template

Number of rows/columns: The Minimum and Maximum fields are used to define how many
rows and columns the table can have at least and at most.

n The minimum of rows and columns is by default 2.

If the editor inserts an inline table with this table format template into the DOM editor later on, the
table is automatically created with the minimum number of rows and columns specified here. The
editor cannot exceed or go below the default values when editing a table. The corresponding
buttons are disabled in this case. For instance, if a minimum row count of four rows is defined,
the "Delete row" button is disabled in the DOM editor as soon as the table only contains four
rows.

Standard style template: The desired style template used as the basis for the table can be

selected in this field by clicking the =4 icon. All of the available style templates are displayed in
the window that opens.

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

81

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit

B} standard style template -

S

Standard style template

- @ Format templates
p B8 Common format templates
+ W@ Inline Table
Inline Table Style
@ Even Row

L] 11

OK

»

» BB Withras Energy format templates -

Cancel

Mo preview available

b

Figure 2-58: Table format template — Standard style template

The desired style template can be selected from the tree structure and the selection can be

confirmed with = ¢

29.1 Creating and editing display rules

The default style template defined in the table format template applies as the basis for a table's
layout (see Figure 2-58). Furthermore, additional layout options for formatting rows, columns and
individual cells that overwrite the default style template are available to the editor in the Display
rules area. These layout options are based on the previously created style templates (see

Chapter 2.8.2, page 70).

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

™

82

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit

New display rules are created using the & icon. The following window opens after the icon is
clicked:

B Add display rule

S

Template to be used
Rowis)
Column(s)

Lse for

LUser-defined

=2

Cancel

b

Figure 2-59: Table format template — Display rule

The desired style template to be applied for the display rule can be selected by clicking the =4
icon. All of the available style templates are displayed in the window that opens.

H Template to be used —

- ===

Template to be used

- @ Format templates
p B8 Common format templates
+ W@ Inline Table
Inline Table Style
@ Even Row

p BB Mithras Energy format templates =

=y =

Ok Cancel

Mo preview available

Figure 2-60: Table format template — Style template

The desired style template can be selected from the tree structure and the selection can be

confirmed with

OK

Conditions for applying the rule, and thus applying the selected style template, are defined using

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

™

83

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

the Row(s) and Column(s) comboboxes. Both conditions have to be met to apply the rule.

ALL: The display rule applies to all rows or columns without restriction. If the "ALL columns"
option were selected, the display rule would only take the restriction defined under the "Rows"
option into account and vice versa.

n Defining a display rule that affects ALL columns and ALL rows is not possible. A
rule of that type would correspond to the default style template.

Even: The display rule applies to even rows or columns (starting with the second row/column).
Odd: The display rule applies to odd rows or columns (starting with the first row/column).
First: The display rule applies to the first row or column.

Last: The display rule applies to the last row or column.

User-defined: The display rule applies to a specific row or column. The number for the specific
row/column has to be entered in the field to the right next to the combobox if this option is
enabled.

The "Applies to" field continues to show which row(s) and column(s) the selected style template
applies to.

Examples:

B Add display rule [
Template to be used default =4
Row(s) First -

Column(s) ALL 7
Lse for First row
QK Cancel

Figure 2-61: Display rules — Example 1

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 84

™

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

In this example, the "header" style template is applied to the First row in ALL columns, i.e. to all
of the cells in the first row.

rE: Add display rule [ﬁ
Template to be used Even Row =3
Row(s) Even -

Columnis) Odd -
Use for All even rows, All odd columns
Ok Cancel

Figure 2-62: Display rules — Example 2

In this example, the "checker" style template is applied to Even rows in Odd columns, i.e. to all
of the cells where both conditions apply.

. . .. oK .
The settings for the new display rule are saved by clicking . The display rule then appears
in the following list:
[E2 Standard x
Preview Properties
[F Templates (3 Format templates 3 Inline Table Standard
Number of rows Minimum 1 Maximum |G
MNumber of columns Minimum |1 Maximum |6
Standard style template default =1 Ed
Display rules
1| Rule type |Use for Template |Editable Deletable |Appearance in editor
Row First row default ¥ ™% abc
Cell All even rows, All odd columns Even Row ¥ abc

Figure 2-63: List of display rules

Rule type: Specifies whether the rule applies to rows, columns or cells.

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 85

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

Applies to: Specifies which areas of the table the rule applies to.
Template: Specifies which style template is applied.

Editable: This checkbox is checked by default. As a result, the editor can modify the properties
of the cell(s) that the display rule applies to. The editor cannot change the properties for the
associated cell(s) if this checkbox is unchecked.

Deletable: This checkbox is checked by default if the rule is for rows or columns. The editor can
delete the row(s) or column(s) that this display rule applies to. The editor cannot delete the
associated row(s) or column(s) if the checkbox is unchecked. The checkbox is checked if the rule
applies to a cell. It cannot be unchecked since individual cells cannot be deleted from tables.

Display in the editor: This column shows the background color and the text alignment of the
row/column/cell if the corresponding values are defined.

2 Edit: Clicking this icon (or double-clicking the display rule) opens an already existing display
rule for editing.

=8 Up one position: If multiple display rules are present, they can be moved up in the list by one
position using this icon.

B4 Down one position: If multiple display rules are present, they can be moved down in the list
by one position using this icon.

EZE Delete: Clicking this icon deletes the highlighted display rule.

The width of columns in this list can be changed as needed by clicking on the column line and
dragging with the mouse button held down.

n If multiple rules are present in the list, they are evaluated from top to bottom.

2.9.2 Evaluation order

The table format templates, style templates and display rules created in chapters 2.8.2 to 2.9.1
contain formatting specifications. These are evaluated as follows:

1. First, the display rules in the list (see
2. Figure 2-63: List of display rules) are evaluated top-down.

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

3. The standard style template is used in cells where a display rule does not apply.

29.3 Inserting an inline table in the DOM editor

In order to make inline tables available to the editor in the DOM editor, this input component type
has to be inserted in the desired section template. To accomplish this, the parameter
table="yes" has to be added to the input component CMS_INPUT_DOM.

Example:

<CMS_INPUT DOM name="st inlinetable" table="yes">
<LANGINFOS>
<LANGINFO lang="*" label="Table"/>
</LANGINFOS>

</CMS_INPUT DOM>

The input component can appear as follows:
Text | wE|

)~ (¥~ Standard +| B/ wwx i= =

B ARRRREREFF R E

[

Figure 2-64: DOM editor with inline table

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

2.10 Link templates

[E Templates &
b |22 Page Templates
b = Section Templates
b B Format Templates
~ (& [Link Templates |
= Download center link (external)

Download center link {internal)
Global link (internal)
Glossary link
Product link
Search result {internal
Tag-Cloud link (external)
Tag-Cloud link {internal)
Teut link {external)
Teut link {internal)

b W= Textlink (internal)
b [mE Scripts
b k&l Database Schemata
bl Workflows

il m il F

Bl 63 & 6D G

Figure 2-65: Template store tree view — Link templates

Template developers can specify the layout of links within a FirstSpirit project in detail using link
templates. Editors input all of the necessary content using an input screen. Which fields can be
filled out in the input screen depends on the configuration of link templates. Previously static link
editors have been completely converted for generic links in FirstSpirit Version 5.0. As many
instances of these links as is necessary can be created below the "Link templates" node. Each
instance has to have a unique name.

Different link templates can be defined for different input components in the form area of a page
or section template thanks to the option to define multiple instances (link templates). This way,
internal links input in the DOM editor input component by the editor are configured and displayed
differently than links such as those maintained in the FS_LIST input component.

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

88

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

n For more detailed information on link templates see "FirstSpirit Online
Documentation”.

n If you change link templates afterwards, this can result in the fact that the preview of
content which has been already entered in the related input masks is not up-to-date. This
can be resolved by repeated saving the input masks.

2.10.1 Standard link types

Selecting a link type is no longer necessary since static links are no longer supported in
FirstSpirit Version 5.0 and thus only generic links still exist. The corresponding selection in the
New dialog has been removed for this reason.

More detailed information on this topic can be found in the release notes for FirstSpirit 5.0.

2.10.2 Generic link editors

The configuration options of link templates have been expanded by the implementation of
"generic link editors". Just like with page and section templates, now the configuration is created
with the help of input components in the form area. All input options for maintaining links can be
mapped using FirstSpirit's regular form syntax in the process.

The addition of input components on the "Form" tab has been simplified by code completion (see
Chapter 7, page 240).

As part of implementing generic link editors, link templates can now be structured in folders as
well.

The conventional input options for links (in static link editors) can certainly be generated using
the new, generic editors as well. Some new input components have been introduced to map all
of the functions of previous static link editors to the new generic editors. For instance, making a
selection using the "mediaref" field in static link editors was not able to be mapped to previously
existing input components. The input components CMS_INPUT_PICTURE and
CMS_INPUT _FILE each only support selecting the respective reference type, i.e. either images
or files but not both. Therefore, FS_REFERENCE input components were introduced, which

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

89

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

support any number of reference types.

In the same vein, expansions to CMS_INPUT_ OBJECTCHOOSER input components for
selecting data records from one specific database table and the new FS _DATASET input
component for selecting data records from any number of database tables were introduced for
mapping links to database content.

The distinction between definition (form) and output was removed for generic link editors. Now a
new template just has to be created under the "Link templates" root node or under a folder.

The "Properties” tab can appear as follows:

Froperies Farrm Fules Shippet Internet (HTML) Frint (FOF - FOFY » | =
|_ Templates 3 Link Templates Fo I Text link (internal)
LInigque name textlinkinternal Hide in selection list
Form Defaultvalues

Form wariables assignment

Link text text A
Link image =not assioned= -
External LUEL =not assigned= - Category | url -

Figure 2-66: Generic link — "Properties" tab

Each input component can be used on the "Form" tab.

For more detailed information on generic link editors see "FirstSpirit Online Documentation” —
“Link templates” / "Generic link editors" chapter.

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 90

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

2.11 Scripts

[E Template store &

» |2 Page templates

b = Section templates

b |E Formattemplates

b & Linktemplates

~ @@ Scripts
p I8 Developer Scripts (public)
» B [Others |
+ Il Workflow

Complete release

Figure 2-67: Template store tree view — Scripts

Different types of operating workflows can be automated in FirstSpirit using scripts. In this
process, a script is used for describing the sequence to be carried out and can make changes to
FirstSpirit data structures as needed. Scripts allow functions that are not yet present in FirstSpirit
to be implemented quickly. Additional implementation areas include complex migration scenarios
and connecting external systems.

BeanShell* is the supported scripting language in FirstSpirit. BeanShell syntax is heavily based
on JAVA but offers multiple simplifications, such as dynamic typing for variables and functions
instead of static typing, as well as (limited) reflexive access to the program itself and substantial
additional functionality.

Scripting with BeanShell provides a high degree of flexibility for template developers. Working
with scripts is not a trivial matter, however. Therefore, carefully check whether a corresponding
function is already available in FirstSpirit before implementing a script.

For more detailed information on developing scripts in BeanShell see "FirstSpirit Online
Documentation" — "Scripting" chapter.

4 Additional information on this scripting language can be found at www.beanshell.org, which also provides a detailed manual (in
English).

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

91

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

Examples of using scripts in workflows (see Chapter 4.8, page 180).

2.11.1 Properties tab

@ BeansShell console =

Properties Form | Rules | Internet (HTML) | Print (PDF - FOP) | RSSfeeds » | v
[F° Templates D Scripts [0 Developer Scripts (public)) BeanShell console
Unigque name beanshellconsole
Comment - get3envice() : opens the guito choose a service which could be referenced by variable 'service” =~
- editor(). opens an editor to edit whole script code blocks
- cls() : clears the console -
Script type - Use on home page

Keyboard shortcut

Form Default values

rview Logic (only for menu/context menu)

Always active

Figure 2-68: Scripts — "Properties" tab

Unique name: Script reference name.
Comment: An optional comment that describes the script in more detail can be entered here.

Script type: The context where the script is to be run can be configured here.

= Template: The script can be «called and run in a template using
$CMS_RENDER (script:..)$, e.g. for rendering specific content for the PDF presentation
channel:

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

™

92

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

<fo:table table-layout="fixed" width="170mm">
SCMS_RENDER(script:"fotablecolumns",colWidth:set_cw,colNumbers:set_cn)$
<fo:table-body>

SCMS _VALUE (#content) $
</fo:table-body>

</fo:table>

= Menu: The script can be run using the "Tools" — "Execute script" menu.

n Scripts of "Menu" type are displayed in the "Actions” WebEdit menu.

= Context menu: The script can be called and run on a specific element in FirstSpirit
JavaClient's tree view using the context menu.

= Uninterpreted: The script is not checked against BeanShell syntax when saved. This allows
HTML syntax to be saved (such as for displaying list elements). These scripts should no
longer be used.

The corresponding templates are to be converted to format templates in projects that use
uninterpreted scripts. For this reason, it will no longer be possible to save scripts of this type until
the scripts have been converted to another script type. This type is no longer available for newly
created scripts.

Use on entry page: This option can be enabled for scripts of "Menu" type. Then, depending on
the settings in the "Display logic" area (see below), this script is displayed on the project entry
page in the "My actions" area and can be run directly when clicked.

Keyboard shortcut: A unique keyboard shortcut can be defined for a script in this field. In this
case, the script does not have to be run using the context menu or the "Tools" menu, instead it
can be called directly using the defined keyboard shortcut. The cursor has to be inside this field
to define a new keyboard shortcut. Then entering the desired key combination using the
keyboard is all that is needed. The input is then applied in the input field. Text input is not
possible. To change the keyboard shortcut, reposition the cursor in the field and then select the

new key combination. Press the & icon to delete the defined keyboard shortcut for the script.

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

93

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

n Keyboard shortcuts can only be used for scripts of "Context menu" or "Menu" type.

Display logic (only for menus/context menus): Scripts can be displayed or hidden depending
on specific properties using display logic (the same as for workflow display logic, see Chapter
4.5.2, page 151). For instance, a script of "Context menu" script type can only be displayed if the
context menu is called on a page reference in the site store:

//!Beanshell
import de.espirit.firstspirit.access.store.sitestore.PageRef;

e = context.getStoreElement () ;

return (e instanceof PageRef) ;

Always active: The "Always active" checkbox can be unchecked if the display logic is to be
disabled. In this case, the script is always displayed, regardless of the display logic. The stored
display logic is no longer evaluated, but it remains stored and can be reenabled by unchecking
the checkbox.

2.11.2 Formtab

As with page and section templates, individual input components that can be called during a
script's runtime can be defined on the "Form" tab. The values of the input components can be
returned to the script for processing (the same as for form support in workflows, see Chapter 4.4,
page 147).

The addition of input components on the "Form" tab has been simplified by code completion (see
Chapter 7, page 240).

With FirstSpiritVersion 5.0, line numbers are indicated at many places in the Template Store as a
reading aid. They can be shown or hidden in JavaClient using the keyboard shortcut Ctrl + L.

A listing of all of the available input elements can be found in the "FirstSpirit Online
Documentation”. The input elements are explained with all of their attributes and a schematic
example under the menu item Template development — Forms.

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

94

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

2.11.3 Template sets tab

Properties Form Rules Internet (HTKL) Print (PDF - FOP RSS5 feeds (XML

r Templates [0 Scripts (3 Developer Scripts (public) i} BeanShell console

J/{'Beanshell

&

J/Version: $Revision: 16246 § $Date: 2007-09-27 11:31:29 +0200 (Do, 27 Sep 2007) $§

5 import bsh.util.JConsole;
import de.espirit.firstspirit.client.common.icons.Iconlibrary:;

& title = "Beanshell Console for node '™

+ context.getProperty{"nodeName")

10 + ™' [ID=" + context.getProperty("nodeId") + ™] / "
11 + context.getProperty("storeName");

13 frame = new JFrame (title):

14 console = new JConsole():

15 frame.getContentPane () .add(console, "Center™):
16 frame.pack():

17 frame.setBounds (100,100, 600,400);

Figure 2-69: "Scripts" presentation channels

The BeanShell source code is defined in the presentation channels where the script is to be run.
Specifying the character string //! Beanshell in the first line of a script causes the system to
interpret the following source text as BeanShell script.

For examples of script development in workflows see Chapter 4.8, page 180.

For general information on script development in FirstSpirit, see "FirstSpirit Online
Documentation”.

With FirstSpiritVersion 5.0, line numbers are indicated at many places in the Template Store as a
reading aid. They can be shown or hidden in JavaClient using the keyboard shortcut Ctrl + L.

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

95

™

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

2.12 Database schemata

E Template store &

2 FPage templates
3 E Section templates
4 @ Format templates
[2 E Link templates
2 ﬁ Scripts
v Database schemata

~ B company-Database
Contacts
Press releases
Press releases (overnview)
Product categories
Froducts
Press archive
Product (overview)
Product properties
Product categories

mmmmBaasammm

Related products
] E Workflows

Figure 2-70: Template store tree view — Database schemata

FirstSpirit has high-performance mechanisms for connecting databases (see Chapter 3, page
119).

A graphical schema editor in the template store can be used to create and modify database
tables (see Chapter 2.12.1, page 97), define templates for maintaining and displaying data
records (see Chapter 2.12.4.1, page 111) and formulate queries for filtering data records (see
Chapter 2.12.5.1, page 114). To accomplish this, a database abstraction layer that maps the
universal FirstSpirit content type system to the specific database system to be used has been
implemented by FirstSpirit (see Chapter 3, page 119).

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 96

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

2.12.1 New: Create schema

i3 Create new schema Ctrl+nM

Which data are saved in which form and how these data relate to each other is defined in a
database schema. The graphical editor in FirstSpirit JavaClient can be used to model database
tables with the associated columns and relationships between individual tables (see Chapter
2.12.1, page 97).

Creating a new schema in JavaClient generates — in addition to adding a schema node below the
"Database schemata" root node — a new database (see Figure 2-71 "Database_1") or a new
database schema (see Figure 2-71 "Schema") in the database configured for the associated
project. If the project administrator configures the default database for the project, a new
database would be created in the default database (Derby) using the "New — Create schema"
context menu. (The behavior depends on the configuration of the database layer — see
"FirstSpirit Manual for Administrators" for setting "No schema sync".) The editor receives access
to the database via the respective tables in FirstSpirit's content store and can import content that
is written to the database into the associated tables (if the database was not defined as "write-
protected" by the project administrator) (see Chapter 3, page 119).

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

97

FirstSpirit™ Manual for Developers (Basics) F i IS t SpiritTM

Database_1

Database Layer

DBMS Derby (internal)'

New database or new database schema (_

new layer exiting layer

B& Create new schema lﬂ
Unigue name |test1
Database layer -
Internal database (Derby):
Mew DBA layer
BR Create new schema lﬂ
E Templates &

Page Templat ——empETEs Unique name |test2
E Section Templates Database layer | derby_projectG219200_0 -

B » B FormatTemplates test2 DBA layer:
E derby_project6219200_0

E Link Templates

3 ﬁ Scripts
- Database Schemata OK Cancel

ﬂ test1 " h

@ [test2] ’ ’7
tb_n2
v B workows th_03List tb_03]

FirstSpirit JavaClient »

Figure 2-71: Creating a new schema

If a new schema is created for a content source in FirstSprit, the database where it is to be
stored for productive operation and the rights for the DBMS account used by FirstSpirit in
productive operation should be decided in advance. Converting the layer types is not readily
possible later on (see "FirstSpirit Manual for Administrators"). In case of doubt, a separate
standard layer should be created for each FirstSpirit schema (see Chapter 3.2, page 121).

..n We generally recommend carrying out development in an environment matching
production operation. In particular, the Derby DBMS contained in FirstSpirit is not suited
for production operation and, therefore, should only be used for tests.

A database layer has to be selected in addition to the (language-dependent) display and
reference name to generate a new schema.

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 98

™

FirstSpirit™ Manual for Developers (Basics) F i IS t Spirit
BR Create new schema lﬁ

Lnigque name

Database layer | derby_project310557_0 -

CBA layer:
derby_project310557_0

b

Figure 2-72: Creating a schema

A detailed description for reference and display names can be found in Chapter 2.2.1 on page
23.

n The reference name defined for a schema in a FirstSpirit project does not
correspond to the physical name of the schema in the database. The physical name is
specified automatically based on the database — for instance, according to the following
pattern for the default database (Derby): derby projectlD_schemalD

Database layer: An existing database layer for a database, where the individual database tables
for this schema are to be saved, has to be selected in the "Database layer" field. What are known
as "DBA layers" and (optional) "Standard layers" are available for selection in the process:

= Standard layer: A standard layer has to be selected when working directly on an existing
database schema (see Figure 2-75). This layer can be used in multiple FirstSpirit projects
that all write to the same database or read content from the same database. Only one of the
respective participating projects should have write permission for the database so that
overlap does not occur when using a standard layer (see Chapter 3.2, page 121).

= DBA layer: If a DBA layer is selected, a separate schema or database is created for each
respective project upon creation (during the first sync). It is impossible to overlap when
writing content in this case (see Chapter 3.3, page 122).

n Please contact the project or system administrator if you have questions regarding
the database.

If there are no database layers available, a new one can be created directly using the "Create
schema" dialog. The entry "New DBA layer" is then shown instead of a database layer in the

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 99

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

"Database layer" drop-down list (see Figure 2-72). The new layer is generated in addition to the
schema or database upon confirming the dialog (see Figure 2-71).

P -
BR Create new schema l&

Unique name

Database layer | MNew DBA layer -

Cancel

Figure 2-73: Creating a schema — When a layer is not available

Clicking this button connects the new, empty schema in the tree view and a schema or a
database is generated in the configured DBMS. The schema can be edited further using the
graphical editor.

Cancel | Glicking this button cancels the operation. A new schema is not created.

A new schema can also be created via importing an export file from another FirstSpirit project
(see Chapter 2.3.3.2, page 41).

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 100

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

2.12.2 New: Creating a schema from a database

i3 Create schema from database

An already existing schema can be taken over in the new schema node from a(n external)
database using this function.

Instead of generating an empty schema node (see Chapter 2.12.1), a new schema node is
created in the FirstSpirit project based on the pre-existing tables and relationships of a database.
The new schema is created from a database using the "Generate schema from database"
context menu entry.

n The structure and contents of an external database may not be changed. In contrast
to internal databases, only read access is possible for external databases, not write
access. The restrictions "No schema sync" and "Write-protected” have to be enabled by
the project administrator for this. In this case, content can be read out of an external
schema and generated as a new schema node in FirstSpirit JavaClient. The contents can
then be displayed (but not modified) in the content store using table templates.

For more information see "FirstSpirit Manual for Administrators”.

Generating a new schema from an existing database in JavaClient inserts a new schema node
underneath the "Database schemata" root node. In the process, an attempt is automatically
made to transfer the existing tables and content from an existing database or from an existing
database schema to the graphical schema editor (for "Restrictions” see "FirstSpirit Manual for
Administrators”). If the project administrator configures an external Oracle database for the
project, a schema based on the external database is generated using the "New — Generate
schema from database" context menu. The associated tables are also taken over. Depending on
the database configuration, the editor receives read access to the database via the content store
and can read out and generate content from the respective tables.

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 101

FirstSpirit™ Manual for Developers (Basics) F i ISt SpifitTM

DBMS Oracle (external)

existing data
base or
schema

physical name of
the data base or the
schema

|i Content schema

mplate store

Diata sources &

Media & i externalDB
o Stucture & i

Templates &
Page templates &
g Section templates |
LE Format templates
g Link termplates
@ Scripts

Database schemes

W test Mame ofthe database schema exernalDB |

@ externais i Database layer derby_praject33055_0 _

ﬂ Glossary ———
ayer.

derby_project11296_0

O e WO O -~
S

- w5) 55 1 7 3
|

Create schema from db

- B Products

FirstSpirit JavaClient

Figure 2-74: Generating a schema from an external database

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 102

™

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

The following inputs are required to create a new schema:

H Create schema from database Iél
Mame of the database schema externalDB
Database layer derby_project114320_0 -
DBA-Layer:

derby_project11296_0
derby_project114320_0

Standard-Layer:

OK Cancel

L

Figure 2-75: Generating a schema from a database

Name of the database schema: The name for the database schema has to be specified in this
field. In contrast to creating a new, empty schema, the name is not freely selectable. Instead, it
has to correspond exactly to the physical name of the database schema (or the database).

n If a name is selected that is not available in the respective database, then an empty
schema node is created. In this case, no content (e.g. tables) can be taken over from the
selected database.

Database layer: An existing database layer has to be selected in the "Database layer" field (see
Chapter 2.12.1, page 97).

n The option to select an external database is only available if the project
administrator configured access to an external database for the project in the project
properties.
Please contact the project or system administrator if you have questions regarding the
database.

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 103

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

Clicking this button connects the new schema and the associated tables in the tree view
and it can be edited further using the graphical editor.

Cancel | Glicking this button cancels the operation. A schema is not created.

2.12.3 The FirstSpirit schema editor

A graphical editor for editing a schema in FirstSpirit JavaClient is available on the right side of the
window. The editor can be used to create the desired database schema. Depending on the
configuration, a schema can access existing database structures or create new table structures
in an existing database.

The editor is operated either using the editor's tool bar or using a context menu which can be
called up at any position in the editor by right-clicking.

@l Company-Database x

Content schema
|— Templates [0 Database schemata <% Company-Database

Products

B Rl i il 1N 6 | B2 =3 | Y| Y kY | i1 | v Show only usable attributes

i — - ————————p % 5 5 © Product_Properties_Type

. - e | P
roduct_Prope '9.5 ———————————— . Mame_DE: xs:string [1024]
\alue_DE: xs:string [1024] - | Mame_EN: xs:string [1024]
‘alue_EN: xs:string [1024] [Es——=3{ Order_Index: xsinteger
product_Properties_Type[Product_Properties_Type] |- - - - Unit_DE: xs:string [1024]
productsbist{Products]) [Unit_EN: xs:string [1024]

.............. product_Properties_Type_Sort [Product_Properties_Type_Sort]
product_PropertiesList [Produst_Properties]

- | Product_Categories

Deseription_DOE: xml o
Deserption_EWN:xml |0 0 0 Moo 0 0000 I
Mame_DE: xs:string [I024] |- - - % - - o oo \i}
Name_EN: xs:string [1024] ° s o
Pageref: xml

Piture: xrml

products List[Products]

Product_Properties_Type_Sort

product_Properties_Typelist [Product_Properties_Type]

.................. Products

Description_DE: <l |
Description_EM: xel | . . . L Contacts

Name_I:IEE xsistr!ng [10:4] © | Firstname: xs:string [1024]
Mame_EN: xs:string [1024] Lastname: xs string [1024]
Picture: el 07 i+ PP,

Picture Description_DE: xs :string [1024] o I :::n:s::nﬁngngn[;:lq
FictureD.escri.p‘tion_EN: x5 :5tring .[1024] SaILrtat.ion.DE: xs:string [1024]
O WAL TR || e e e Salutation_EN: xs:string [1024]
contact.s [C_ontacts] P products List [Products]
PropertiesList[Product_Properties] |~~~ = ——— ———r————" "
Related_Product_List[Products] |
Related_Product_List2[Products] |o

Figure 2-76: Database schema editor

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

Figure 2-76 shows the database schema of the product database of the "Mithras Energy" test
project as an example. Among other aspects, the tables for products (Products), product
categories (Product_Categories), product properties (Product_Properties) and
contacts(Contacts) can be seen. In this instance, products and contacts, for example, are linked
via a 1:N relationship, and products and product categories via an M:N relationship.

=4 Create table: with this button, a new table can be inserted in the database schema. The
following window opens:

. -
Create table... I&

Table name

O Cancel

L

Figure 2-77: Creating a table

Table name: A unique name has to be entered for the database table in this field.

E Create column: with this button, a new column is added to the activated table. The following
window opens:

¥ B’
Create column... I&

MName

Data type Boolean -
Cptions
Generate for all languages

[¥ Allow Empty value

Cancel

b

Figure 2-78: Creating a column

Name: The column name has to be entered in this field. As long as this field is empty, Name is

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 105

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

shown in red and the new column cannot be saved.
Data type: The desired data type can be selected for the new table column using this combobox.

Boolean: This data type allows two values: true or false. In the schema editor, this data type
receives a xs: boolean.

Date: This data type is used for date values. In the schema editor, this data type receives a xs:
date.

Double: This data type enables entry of floating-point numbers. In the schema editor, this data
type receives a xs: decimal.

FirstSpirit editor: This data type enables the use of DOM editors. The maximum character
length is 65535. In the schema editor, this data type receives a xm1.

Integer: This data type is used for whole numbers. In the schema editor, this data type receives

axs: integer.

Long: This data type is also used for whole numbers, but the value range is larger than the
range for the Integer data type. In the schema editor, this data type receives a xs:1ong.

String: This data type is used for character strings. In the schema editor, this data type receives
a xs: string. The number of maximum characters allowed can be specified for this data type.

Options: The maximum character length for the String column type has to be specified in this
field. The respective value is shown in square brackets after xs: string.

Generate for all languages: This option enables language-dependent input of the values by the
editor. If the checkbox is checked, a single column is generated for each attribute in every
language. This makes sense if the attribute terms differ based on language. The columns receive
a corresponding language code for each language in the process.

Allow empty values: By activating this option, the editor is allowed to create a new data record
without putting a value in this column. If empty values are not allowed (i.e. input is mandatory),
the column name is shown written in red in the database schema model.

K= Remove column: The individual columns of a table of the database schema are removed
using this function. The desired column can be selected from the combobox in the following
dialog:

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

106

™

FirstSpirit™ Manual for Developers (Basics) F i IS t Spirit
Remove column... I&

Column to remove Description_DE -
oK ||Pescription_EM

Mame_DE

Mame_EM

Picture

PictureDescription_DE

PictureDescription_EMN

Figure 2-79: Removing a column

Create foreign key relationships: A relationship can be created between the activated table
and another table using this button.

Creating a relationship should be done according to the example in the product database shown
in Figure 2-76. We want to create the relationship between the tables named Products and
Contacts: A contact person can assign multiple products, they are in other words in a 1:N
relationship.

Initially, the Contacts table and (while pressing the shift key) the Products table have to be
activated (activated tables change their frame color). If the button Create relationships is now
selected, the first step of the procedure appears, in which the type of relationship has to be
established. The two tables should be in a 1:N relationship.

H Create relation... (Step 1 of 2) l&

Type of relationship

1:1 (one-to-one)
(= 1:M (one-to-many)

M:M (many-to-many)

Cancel Continue

Figure 2-80: Create relationship— Step 1

The second window of the relationship appears as follows (however, the appearance can vary
depending on the selection in the first window):

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 107

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

B Create relation... (Step 2 of 2) &J
Direction of connection
Source table Contacts it
Targettable |Products -

1 element from "“Contacts’ is connected to
M elements from "Products”.

Swap source and target
Mame of connections in object model
From 'Contacts’to ‘Products’via attribute: | productsList
From ‘Products’ to "Contacts’ via aftribute: 'contacts
Cptions

Aggregation (dependent Delete/Release)

Back Ok Cancel

Figure 2-81: Create relationship— Step 2

The direction of a connection is assigned based on the order the tables are activated. As a result,
1 element from the Contacts table is connected to N elements from the Products table. If the
tables are accidentally activated in the wrong order, it can be reversed with the buttons
Exchange source and target. The additional information in this window can usually be taken over
the same way the system suggests. The names that are specified in the "Names of connections
in object model" area are used during later use to trace data inventories based on their
relationships.

m Delete elements: The activated table can be deleted from the database schema with this
button. It is deleted directly, without a confirmation prompt; unsaved files are lost in the process
and cannot be restored.

E Properties: The name of the activated table can be shown using this button.

Assign automatically: The tables shown are automatically assigned in the editor by activating
this button.

[]
Load saved assignments: Changes to the assignment of the tables in the schema can be

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

108

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

undone using this button. The last saved assignment is again shown.
R Enlarge view: With this button, the elements of the database schema are shown enlarged.
Q Shrink view: With this button, the elements from the database schema are shown smaller.

m Normal view: With this button, the elements of the database schema are once again shown
at their original size.

=l Print: With this button, the database schema can be printed. Next, the following print preview
window opens:

B} orint preview I,iE-J

Wiew 10 % = Scale 100% - Printer setup Page setup

Print Cancel

L

Figure 2-82: Print preview

View: This combobox can be used to affect the preview size of the database schema. Possible
zoom levels are 10%, 25%, 50% and 100%.

Scaling: The database schema is printed smaller as needed. Scaling levels 10%, 25%, 50% and
100% are possible.

Set up printer: Opens the dialog for the printer settings.

Set up page: Opens the dialog for the page settings.

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 109

™

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

Print

The print job is started with the current settings using the button.

il Stow only usable afiributes Only show usable attributes: If this is checked, then all of the

attributes of a table that the editor can fill with content are hidden.
In addition to functions of the icons, additional functions can be called up using the context menu:

Rename table/column: A new name can be specified for an existing table or for an existing
column of a table using this function. A window appears where the desired table or column can
be selected and a new name can be specified. When renaming it is important to note that table
templates and queries based on this table or column have to be adapted.

ER Rename table... I&l

Attention: ¥You must manually adjust the table templates
and queries manually to modifications of this schema.

Table Products -

Mew Mame

Ok Cancel

Figure 2-83: Renaming a table

i B |
B8 Rename column... I&

Attention: You must manually adjust the table templates
and queries manually to modifications of this schema.

Table Products -

Calumn contacts -

Mew Mame

Ok Cancel

Figure 2-84: Renaming a column

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 110

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

2.12.4 Table templates

A table template has to be created under the schema for each input table in the database model.
Which input components the editor can use to import data into the correspond tables is defined in
this table template.

2.12.4.1 Table templates — Preview, properties and form tabs

The preview, properties and form tabs for table templates are identical to the tabs for page
templates with the same names and can be edited in the same way.

You can find information on the tabs in Chapter 2.5.1 (page 56) to Chapter 2.5.3 (page 59).

n The option "Hide template in selection list" (see Chapter 2.5.2) is not available for
table templates.

Important for using table templates in WebClient

If a table template is to be able to be used in WebClient, the checkbox "Usable in WebEdit* must
be activated on the "Properties® tab. Moreover, an adequate preview page must be set in the tab
"Properties" (cf. Chapter 2.5.2) for a correct display of the data records in WebClient.

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

111

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

2.12.4.2 Table templates — Mapping tab

This area defines which input components are used to insert data records into the database
tables. Each input component (defined on the Form tab) is assigned a table column in the
process.

Preview Properties Form Rules Snippet Mapping Internet (HTML Print (FOF-Fi » | »
l_ Templates [0 Database schemata «% Company-Database FE Preducts
Connected to table Cell height (in rows)
D|sp|_ay|n Variable Type Language dependent |Column width DE EN
overview
v Cs_name TEXT v 100 Name_DE Mame_EM
" cs_description DOoM " 200 Description_DE Description_EN
v Cs_picture FS_REFEREMCE 120 Picture Picture
v cs_picture_description TEXT o 120 PictureDescription_DE PictureDescription_EN
» cs_categories FS_LIST 120 Categories_List Categories_List
v cs_properties FS_LIST 120 PropertiesList PropertiesList
" cs_related_products F3_LIST 120 Related_Product_List Related_Product_List
v cs_contact FS_DATASET 50 contacts contacts

Figure 2-85: Table template — "Mapping" tab

Connected to table: The table that the mapping settings apply to is displayed in this field.

Cell height (in rows): Data records can be displayed over multiple rows in the content source
later on (see FirstSpirit Manual for Editors, Chapter 5). This combobox can be used to configure
how many rows a cell or data record is to have in the data overview (maximum of 10). This could
allow image thumbnails to be displayed in the overview, for instance.

Allow data record copying: If this checkbox is checked (default setting), existing data records
can be copied by the editor in the associated data source. If the checkbox is unchecked, only

"blank" new data records can be created; the == icon is disabled.

&= B Each row of the list corresponds to a column in the data overview of the associated
content source. Clicking the icons moves a highlighted row up or down or the associated column
in the data overview left or right by one position. This can be used to move more important
columns farther to the left. The order can be changed manually by the editor; upon updating the
view, however, the order reverts back to the setting on this tab. In contrast, the order selected
here has no effect in data entry.

Display in overview: This column can be used to hide table columns from the data overview in

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

112

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

the respective content source by unchecking the checkboxes, e.g. to improve the overview if
there are too many columns. In contrast, hiding has no effect in data entry.

Variable: This column contains the name of the variable as it was defined in the table template's
form (Chapter 2.12.4.1, page 111).

Type: The type of the input component for the respective variable is specified in this column.

Language-dependent: If the input component on the Form tab is defined as being multi-lingual,
the this is shown by a check in this column.

Column width: In this field, the width of the column is specified in pixels as it will be displayed in
the content store later.

Language (DE/EN): The table column where the content of the input element is to be transferred
to is selected in this field. There is a separate column for each project language. The same table
column has to be selected for each language if a language-independent input component is
involved. A separate table column where the value is transferred to has to exist for each
language for language-dependent input components.

2.12.4.3 Table templates — Template sets tab

The appearance that individual data records are intended to assume later on the website or in
other presentation channels imported using this table template is determined using this tab.

The tab for table templates is identical to the tab of the same name for page templates and can
be edited in the same way.

For information on the "Template sets" tab see Chapter 2.5.4, page 60.

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

113

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

2.12.5 Queries

Multiple queries can be created for each database schema to limit the number of data records for
later output. The conditions a data record has to fulfill to be recorded in the result list is
determined in these queries.

2.12.5.1 Query — Conditions tab

The desired filter criteria for a query can be defined on the "Conditions" tab using a graphical
editor in what is known as Wizard mode. Multiple rules can be set in the process, which then
affect the display of suitable data records on the "Result" tab.

Products x

Conditions Parameters Result Result (release st...
|— Templates [0 Database schemata «% Company-Database Products
Result table:

5 U Lolumns Uk, rows A

Categories_Listfs_id [Integer] |

I= || null -

| or

- -

| or

- -

| or

- -

| or

- -

| ar

- -

Figure 2-86: Query — "Conditions" tab (Wizard mode) (new Look&Feel)

Wizard mode: If this option is disabled, the source code for the selected query is displayed in an
editor and can still be modified as needed. A query can also be programmed directly using this
editor.

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

114

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

n Tags and parameters that can be used for directly programming queries can be
looked up in the FirstSpirit Online Documentation: Section "Query portion (QUERY)" in
Chapter "contentSelect function" ("Template development" / "Template syntax" /
"Functions"/ "In header" / "contentSelect”).

Products
Conditions Parameters Result Result (release st
l_ Templates [0 Database schemata =% Company-Database Products

Wizard mode

1 «QUERY entityType="Products">

2 <FILTERPARAM parameter="category" datatype="java.lang.Integer™ wvalue="100"/>
<NEQ attribute="Categories List.fs id" parameter="category"/>

4 <ORDERCRITERIA attribute="Name DE"/>

5 </QUERY>

Figure 2-87: "Conditions" tab (no Wizard mode)

If changes that cannot be mapped in Wizard mode are made to the query, then the query is
adjusted automatically (in the editor) as soon as Wizard mode is activated again.

Result table: A table from the FirstSpirit schema for restrictions to be made during output can be
selected here. This field is deactivated once a selection has been made. The selection can only
be removed by "resetting" the entire query (see below).

Add restriction: Activating this button adds a new condition. A window opens where a specific
column of the selected result table can be selected as a new reference. The limiting condition
can then only be set for this reference. The specific values that have to be met can be specified
in the condition column in the lower window area. The desired comparison operator for the
condition for this is selected in the field on the left. In the field on the right, either a specific
comparison value can be entered or a parameter identifier for the comparison value can be
specified. This parameter is then requested each time the query is run; as a result, the specific
comparison value only has to be specified when the query is run.

Reset: All of the conditions and query results defined up to this point are deleted. A result table
can be selected again. A confirmation prompt appears before changes are undone so that data is
not deleted accidentally.

Columns AND, rows OR: If this option is selected, then the intersection of all column results is
always output. The individual rows of a column condition are connected by an OR link in this

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

115

™

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

case.

Columns OR, rows AND: If this option is selected, then all of the combined results from all
columns are output; duplicate data records are skipped in the process. The individual rows of a
column condition are connected by an AND link in this case.

2.12.5.2 Query — Parameter tab

Products

Conditions Parameters Result Result (release st...
|_ Templates [0 Database schemata <% Company-Database [Products
Parameters Yalue
category

’
B8 set parameters : ﬁ

category : Test

O Cancel

Figure 2-88: Query — "Parameter" tab (new Look&Feel)

All of the parameters that can be used in this query are listed in this area. The parameter can be
set as needed even at this point in the Value column. This means the corresponding query
parameters are assigned values. These values are then used for the query each time it is run.

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 116

™

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

2.12.5.3 Query — Result tab

The result data records that result from the conditions in the query and query parameter value
assignment are output in this area.

Froducts =

Conditions | Parameters Result Result (release st..
|_ Templates [J Database schemata <% Company-Database Products
Display 500 data sets | -
Row Mame_EW Mame_DE |PictureDescription_DE PictureDescription_EN Picture

0 Accum 1,0... Accum 1.0... Accum 1.000 L Accum 1,000 L {...)
1 Accum 150 L Accum 150 L Accum 150 L Accum 150 L {..)
2 Accum 300 L Accum 300 L Accum 300 L Accum 300 L {..)
3 Accum 600 L Accum 600 L Accurm 600 L Accum 600 L {..)

Figure 2-89: Query — Result tab

2.12.5.4 Query — Result (release) tab

The result data records that result from the conditions and query parameters in the query and are
in the release state are output in this area Thus the result quantity can differ from the list from

the Result tab.

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 117

™

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

2.13 Workflows

E Template store &

[3 Page templates

3 E Section templates

3 @ Format templates

3 E Link templates

[2 ﬁ Scripts

b Database schemata

b E Workflows
ﬂ Task
ﬂ Release data record
ﬂ Release request

Figure 2-90: Template store tree view — Workflows

A workflow is a sequence of tasks that are completed in a fixed, predefined structure. Due date
deadlines and groups of authorized persons can be defined for the respective tasks. Issuing a
task and requesting release are workflows integrated into FirstSpirit.

For modeling, configuring and running workflows, see Chapter 4, page 126 ff.

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 118

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

3 Content sources in FirstSpirit

FirstSpirit has efficient mechanisms for connecting databases. The connected databases are
identified as content sources in the editing environment. The data records managed in the
content sources can be integrated into websites and edited seamlessly in FirstSpirit without
leaving the editing environment (see Chapter 3.4, page 124).

A database connection is available for a majority of databases and is run using the JDBC driver
provided by the database suppliers. Each database supplier implements a separate internal
structure for managing data saved in the database server (DBMS). These internal structures, in
conjunction with security and maintenance specifications, have implications on the form and
configuration for connecting databases to FirstSpirit.

n For more detailed information on connecting databases to FirstSpirit and configuring
them, see "FirstSpirit Manual for Administrators", Chapter 4.8 "Database connection".

The following chapter is intended to support template developers with selecting the correct
connection and to explain concepts for working with content sources in FirstSpirit JavaClient:

Chapter 3.1 defines the terms in use since, in relation to databases, the terms can have different
meanings depending on the context being used.

Chapter 3.2 and 3.3 cover the layer types used in FirstSpirit for connecting databases. The layer
type selection has various effects on later operation and requires substantial effort to change and
should be considered carefully for these reasons.

The concept of content sources in FirstSpirit JavaClient is described in Chapter 3.4.

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 119

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

3.1 Terms

Many misunderstandings occur when dealing with connecting content sources to FirstSpirit due
to the vast assortment of terms, some of which may have multiple meanings. The suppliers of
databases to be connected often maintain their own terminology, which can overlap with
FirstSpirit's. Therefore, terms used in this document will first be clarified here:

Layer: This term represents a connection configuration to a database management system
(DBMS) in FirstSpirit. A layer can be assigned to multiple FirstSpirit schemata (see below) in
FirstSpirit.

= Standard layer: This layer type includes an explicit definition of the used DB schema in the
layer definition. In this case, all of the tables of FirstSpirit schemata that use this layer are
saved in the specified DB schema. A FirstSpirit user cannot create any additional new
schemata in a FirstSpirit project only assigned standard layers. Only a FirstSpirit
administrator can add additional standard layers to a project. A standard layer should always
be assigned to precisely one FirstSpirit schema. (see: Chapter 3.2, page 121)

= DBA layer: This layer type does not include any explicit definitions of the DB schema to be
used. FirstSpirit automatically creates a separate DB schema for each FirstSpirit schema.
This allows additional schemata to be created by FirstSpirit users as well. However, to do so,
comprehensive DBA permissions (DBA = database administrator) are required for most
DBMSs. (see: Chapter 3.3, page 122)

FirstSpirit schema: This term describes the structures and templates of content sources
described in FirstSpirit. Thus, FirstSpirit schemata contain both tables and their foreign key
relationships as well as templates for generation. The table structure and data records of
FirstSpirit schemata are stored in a DBMS within a DB schema (see below). Each FirstSpirit
schema is always assigned to precisely just one layer (see Chapter 3.2, page 121 and Chapter
3.3, page 122).

DB schema: This term describes the logical area within a database where tables can be stored
(tablespace). Each table in this area has to have a unique name. In DBMS, the term "database"
is also frequently used as a technical term. In the layer configuration, FirstSpirit simply calls this a
"schema".

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 120

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

3.2 Standard layer

The standard layer (see also: Chapter 3.1, page 120) was used in earlier versions of FirstSpirit
under the term "MultiProjectLayer". The mechanism for avoiding conflicts between identical table
names in different FirstSpirit schemata is no longer present in the standard layer, however. The
DBA layer was introduced as a replacement for the flexible assignment of FirstSpirit schemata to
DB schemata (see Chapter 3.3).

n If the standard layer is assigned to multiple FirstSpirit schemata, a conflict occurs in
the FirstSpirit schemata if table names are identical since they are assigned the same
table in the DB schema (see Figure 3-1).

Layer x
Table ,category“

Schema 1 - DB-Schema a
Table ,transaction_counter” — — —
— —a| Table
Project ™~ | — »
N B category
Table ,category“ —~ ~~
I~ -
Schema 2 —a| Table
Table ,transaction_counter =-— — — — —— __§ ___ __ .
P transaction
_counter

FirstSpirit Server

Figure 3-1: Problematic use of a standard layer

The "transaction_counter" system table is a special case in this context; a hidden version of it
can be created for each FirstSpirit schema. FirstSpirit tries to resolve the conflict mentioned
above by converting the tables into one table.

n In any case, mixing two FirstSpirit schemata in one DB schema is not
recommended. Standard layers should always be assigned to just one FirstSpirit schema.

Figure 3-2 shows the correct use of standard layers. A separate standard layer is created for

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 121

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

each FirstSpirit schema and thus a separate DB schema where the associated tables are stored.

Layer 1

DB-Schema 1

Table Table

category | | transaction
— _counter

Table ,category* —

Schema 1 vl —

Table ,transaction_counter”

Project

Table ,category“ DB-Schema 2

Schema 2
Table Table

Table ,transaction_counter”

category transaction
_counter

FirstSpirit Server

Figure 3-2: Correct use of separated standard layers

3.3 DBA layer

The DBA layer was used in earlier versions of FirstSpirit under the name "SingleProjectLayer". It
was introduced for being able to create FirstSpirit schemata in a project even without intervention
by a database administrator.

In contrast to the standard layer, no explicit DB schema for saving tables is specified in the layer
definition for a DBA layer. FirstSpirit independently creates the DB schemata belonging to the
FirstSpirit schemata in the DBMS. The name of the DB schemata is composed of the schema
and project ID in the process (see Chapter 2.12.1, page 97).

The user specified in the layer has to have the permissions to create DB schemata in the DBMS
to use a DBA layer. In many DBMSs, this is only possible with permissions similar to a database
administrator's.

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 122

FirstSpirit™ Manual for Developers (Basics) F i IS t SpiritTM

Layer

DB-Schema 1
(automatic)

Table

Table

category | —p~| transaction
N _counter

Table ,category“ ' B
Schema 1 — =

—

Table ,transaction_counter* '

—

Table ,category“
Schema 2 g = P
Table ,transaction_counter '_ — — — — h

" ——
—

E—

Figure 3-3: DBA layer

DB-Schema 2
(automatic)

Table

Project

Table

» transaction

_counter

category’

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 123

FirstSpirit™ Manual for Developers (Basics) F i ISt SpifitTM

3.4 Content sources in FirstSpirit JavaClient
|
ot :
' maps the structure
from an existing data

base schema

DBMS Derby (internal)

creates a new data base schema
basing on the structure of the
FirstSpirit schema

MAPPING:defines where
the contents from the
database are stored

MAPPING:defines where
the contents from the
database are stored

FORM: defines the
input components
reading and/or writing
database access

FORM: defines the
input components
reading and/or writing
database access

FirstSpirit JavaClient

Figure 3-4: Concept — Schemata, table templates, database views

FirstSpirit schema: Either a new, blank database schema (see Chapter 2.12.1, page 97) or a
database schema from an existing database (see Chapter 2.12.2, page 101) can be created
using FirstSpirit JavaClient.

After a new schema has been created, the required tables can be created in the selected
database and their relationships can be set using the graphical editor in FirstSpirit JavaClient
(see Chapter 2.12.1, page 97). The columns that are intended to be imported by the editor later
on have to be specified for each table. A column with the necessary primary key is generated
automatically when the table is created.

Instead of generating a blank schema node (see Chapter 2.12.1, page 97), a new schema node
can also be created based on the existing tables and relationships of a FirstSpirit project (see

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 124

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

Chapter 2.12.2, page 101).

Depending on the project administrator's settings for the configured database, the changes to a
schema in JavaClient, such as adding a table to the physical database, can be applied ("Sync")
or prevented ("No sync").

Table template: A table template can be created (below the schema node) for each table
modeled in the schema. Which input elements the editor can use later to import data into
corresponding tables and which input elements the editor can use to take over data from a
reference table is determined in these table templates (see Chapter 2.12.4.1, page 111). In
addition, the assignment of contents maintained via an input component to a database table in
the physical database can be established using the "Mapping" tab (see Chapter 2.12.4.2, page
112). Thus mapping defines the save location of the contents in the database. The appearance
of the data records for generation in the individual presentation channels can be set using the
Template sets tab (see Chapter 2.12.4.3, page 113).

Queries: In addition, queries can be created for each database schema (see Chapter 2.12.5.1,
page 114). Restrictions are made in the queries which are used to evaluate the result table. The
restrictions made are then taken into account when outputting a table's data records.

View of a database: The editors work from a database's "view" in FirstSpirit's content store. A
table with a link to the database table is created for this. The data is displayed in tabular form in
this table. Depending on the project administrator's settings for the configured database, editors
can either access database content with read-only access and for a task, such as outputting it
sorted on a page as the result of a query ("content projection"), or they can also have write
access and thus add new content to the database. New data records can be added or existing
data records can be modified if write access is granted. The input elements defined in the table
template are available to the editor for this (see Chapter 2.12.4.1, page 111).

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

125

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

4 Workflows

A workflow is a sequence of tasks that are completed in a fixed, predefined structure. Due date
deadlines and groups of authorized persons can be defined for the respective tasks. Workflows
are integrated into FirstSpirit for issuing a task and requesting release.

Project-specific workflows can be created in the template store using a graphical workflow editor
(see Chapter 4.2, page 133).

Instances of these workflows can then be started on each element in a FirstSpirit project linked to
a specific context or without context using the FirstSpirit menu bar. Each instance of a workflow
has to run according to the rules set in the workflow.

An overview of all open or already closed workflows (instances) in a project is located at the
"Workflows" root node in the template store (see Chapter 4.1, page 127). The overview also
makes it possible to have a filtered view dependent on different search criteria (see Chapter
4.1.1, page 129). Tasks can be edited (see Chapter 4.1.2, page 131) and closed again (see
Chapter 4.1.3, page 132) in the overview.

n For additional information on starting and advancing workflows, see "FirstSpirit
Manual for Editors", Chapter 12 "Workflows in FirstSpirit JavaClient" and "FirstSpirit
Manual for Editors (WebClient)".

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

126

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

41 Overview

An overview of all open or already closed workflows (instances) in a project is shown at the
"Workflows" root node in the template store.

Ed worklows x

Workflows

[F Templates [Workflows

Workflows
=yl LAY
Workflow Status Priority Initiator Start time Context 1D Deadline
Release re... released medium Admin 28.05.2012... Other pages 310933 -
CounterDe... Start medium Admin 20.05.2012... Mithras Ho... 311096
CounterDe... Start medium Admin 29.05.2012... Product ma... 310928
CounterDe... Start medium Admin 20.05.2012... Pressrele.. 311249
MessageD... Start medium Admin 28.05.2012... Jobs 311682
CounterDe... Start medium Admin 28.05.2012... Company 311679
CounterDe... Ende medium Admin 28.05.2012... Operating fi... 311681
RecursiveR... Ende medium Admin 29.05.2012... Aboutus 311678
RecursiveR... Ende medium Admin 29.05.2012... Aboutus 311678 -

Figure 4-1: Workflows overview

2 Clicking this icon opens the task list for editing a task (see Chapter 4.1.2, page 131).
Ead' Clicking this icon closes the highlighted task (see Chapter 4.1.3, page 132).

=2 Clicking this icon opens the "Task search" dialog for defining a task search filter (see Chapter
4.1.1, page 129).

L&l Clicking this icon removes the filtered display and instead displays the complete view of all
workflows that are still open (see Chapter 4.1.1, page 129).

The (filtered or unfiltered) workflows are listed in the table. The following information is available
for each task here:

Workflow: Name of the workflow that has been started.
State: State that the current instance of the workflow is in.
Priority: The current priority that has been defined for editing the task.

Initiator: Login name of the editor that started the workflow.

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

127

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

Start time: Date and time when the workflow was started.

Context: If the workflow was started on an element, such as a page or media file, that element is
displayed. Double-clicking the line changes the context directly to the corresponding element in
the tree view.

ID: If the workflow was started on an element, such as a page or media file, the ID of the element
is shown. Double-clicking the line changes the context directly to the corresponding element in
the tree view.

Deadline: If a deadline is set for the current task it is shown here.

Double-clicking a (context-sensitive) schedule in the table switches the focus in JavaClient
directly to the element in the tree view where the schedule was started.

It is possible to select multiple items in the table at once by pressing the SHIFT or CTRL key at
the same time.

Sorting by column content: Clicking the respective column header changes the sorting of the
entries in the table. The first click on a column header sorts entries in ascending order; clicking

again puts them in descending order (based on column content). Sorting is indicated by a *_icon
after the column header:

Starttime
2005201212:31

29052012 12:28
29.05.2012 12:28
20062012 12:28
20052012 12:26
29.05.2012 12:25
29.05.201212:20
20082012 11:47
20052012 11:44

Figure 4-2: Sorting by column content (ascending order)

Clicking a third time removes the sorting.

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 128

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

411 Task search (filtered overview)

Workflows or tasks can be filtered according to filers such as workflow, element ID, editor, etc.

using the "Task search" dialog Clicking B3 opens the dialog:

H Search for tasks &J

Open tasks v

Closedtasks v

Mumber of results 25

Element ID

Woarkflow -
Initiatar -
Status -
Status initiator -
Start date from B | S |
Start date to B S |

Ok Cancel

L

Figure 4-3: "Task search" for filtering the view

Open tasks: All "open tasks" are displayed. Tasks that have not yet reached the end state (of
the workflow) are considered open.

Closed tasks: All "closed tasks" are displayed. Tasks that have reached the end state (of the
workflow) are considered closed.

Result number: The number of found tasks that match the entered filter criteria; can be limited
to a maximum number of results. If more results match the search criteria than the maximum
allowed, only the most current results are shown.

Element ID: Unique ID for the object where the workflow was started. An empty field is shown if
the workflow does not have context.

Workflow: Name of the workflow that has been started. Either the unique reference name or the
language-dependent display name for the workflow is displayed in the view depending on the

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

129

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

"Preferred display language".

Initiator: Login name of the editor that started the workflow. Searching by partial strings is
supported here. This means the search result does not have to match the search term exactly.
Instead, all of the results that include the search term are displayed.

State: State that the current instance of the workflow is in. Searching by partial strings is
supported here. This means the search result does not have to match the search term exactly.
Instead, all of the results that include the search term are displayed.

State initiator: Login name of the editor that switched the current instance of the workflow into
the current state. Searching by partial strings is supported here. This means the search result
does not have to match the search term exactly. Instead, all of the results that include the search
term are displayed.

FHE

Start time from / Start time to: The date selection component can be opened using the =
icon. A date for the start or end period of the search can be specified here. The deciding factor is
always the date when the workflow was started. All of the workflows from the currently selected
day are searched if only a start date is specified

Clicking this button filters the tasks by the entered criteria. Clicking the &3 jcon removes
the filtered display and instead displays the complete view of all workflows that are still open.

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

130

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

41.2 Editing tasks

The task list can be opened by clicking the =4 icon in the "Overview of workflows" dialog (see
Figure 4-1). The task selected in the overview is highlighted in the task list. If the user has the
permissions required for switching the workflow, the transitions are shown directly in the lower
area of the task list.

r 1
B Task list (User: Admin) = | B i
Show object Refresh list Close task

Open tasks tasks
Workflow Status Priority Initiator Starttime |Context |n] Deadline
DeleteCo... Start medium Admin 06.06.201...
Actions
P DoDelete
?

Figure 4-4: Task list

Initially, only 25 tasks are displayed in the task list on the "Open tasks" and "Initiated tasks" tabs
for performance reasons. If there are more tasks, they can be displayed using the Show older
tasks button.

Colored highlighting around a task specifies criteria such as whether the logged-in user is
selected as an editor directly or due to his or her group affiliation (red text), whether the logged-in
user is not selected as an editor (black text) or whether there is an invalid task (red background).

Invalid tasks can occur due to an object with an active workflow being deleted. These cannot be
advanced; instead they can only be closed using the "Close task" button. If the task can be
repaired, such as when a deleted object whose workflow still exists is restored, the "Repair task"
button is shown in the Actions area. Carrying out this action resets the task, the state color and
write protection.

Multiple selections can be made by simultaneously pressing the SHIFT or CTRL key (all of the
tasks can be selected using the key combination CTRL + A). If multiple tasks are highlighted in a
list, they can be advanced in one processing step (see Chapter 4.11.3, page 209).

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

131

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

The task list can also be opened using the "Tasks" menu or by clicking the icon on the
FirstSpirit tool bar.)

n For additional information on the task list see "FirstSpirit Manual for Editors".

41.3 Closing tasks

Under certain condition it may be necessary to close an open task even though the end state has

not yet been reached. A task can be closed by clicking the &£ icon in the "Overview of
workflows" dialog (see Figure 4-1).

This function corresponds to the "Close task" button available in the task list.

Multiple selections can be made by simultaneously pressing the SHIFT or CTRL key (all of the
tasks can be selected using the key combination CTRL + A). If multiple tasks are highlighted in a
list, they can be deleted in one processing step.

A confirmation prompt appears before the tasks are deleted.

n Closed tasks cannot be restored.

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 132

FirstSpirit™ Manual for Developers (Basics) F i IS t SpiritTM

4.2 Modeling workflows

421 Creating a workflow

New, project-specific workflows are created using the context menu at the "Workflows" root node
in the template store or at a folder in that node. Clicking the "Create workflow" entry creates a
new workflow in the tree display.

I_ 0 Crestenewworon g

8 Create folder Strg+Umschali+MN

Figure 4-5: Creating using the context menu

A graphical editor for modeling a new workflow opens in the edit window on the right. A start
state with a transition to the first workflow activity and an end state are displayed there by default.

Workflow: test
test_2 Form Froperties
(— O = Cad| CH) Il myws =
- o M
test 2
Start

Figure 4-6: Initial state after creating a new workflow

The workflow can now be modeled in the editor by adding additional states, activities and
transitions (see Chapter 4.2.3 ff.).

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

133

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

In the process, each workflow has to begin with a start state and end with an end state.

The editor is operated either using the tool bar (see Chapter 4.2.2, page 134) or using a context
menu that can be activated at any position in the editor.

4.2.2 Workflow editor tool bar

el B WS |+ | el =

Figure 4-7: Workflow editor tool bar

([creates new aciity ()] reate new activity: A new activity is created in the editor by clicking
this icon (or using the keyboard shortcut A) (see Chapter 4.2.3.2, page 136).

n |Creates new status ':S}| Create new state: A new state is created by clicking this icon (or using
the keyboard shortcut S) (see Chapter 4.2.3.1, page 135).

|Creates new transition [T}| A new transition is created in the editor by clicking this icon (or
using the keyboard shortcut T) (see Chapter 4.2.3.3, page 137).

E |Pmpemes WHEMEFH Modify properties: Clicking this icon opens the Properties window for the

activated workflow element.

EE Cut element: Clicking this icon cuts out all of the highlighted workflow editor

elements and copies them to the clipboard. (Multiple elements can be highlighted by dragging a
box around them with the mouse.)

m Copy element: Clicking this icon copies all of the highlighted workflow editor
elements to the clipboard.

Paste element: Clicking this icon pastes the elements copied to the clipboard
into the workflow editor.

m Delete: An element can be removed from the workflow process using this icon.

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

134

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

& — ,
— |Standam size 11 (Number SIEIHI}|Zoom 1:1: Workflow editor elements can be displayed back at
their original size using this icon.

~
K mZoom in: Workflow editor elements can be shown enlarged using this icon.

S, | |Ennm out [Minus}|

Zoom out: Workflow editor elements can be shown shrunken using this
icon.

= Print: It is possible to print a graphic of the workflow using this icon (or using
the keyboard shortcut Ctrl + P). A window for print settings opens (see Chapter 4.2.8, page 140).

4.2.3 Elements of the graphical workflow editor

Three different object types are available in the editor. They can be used to model and configure
new workflows:

= States or statuses (see Chapter 4.2.3.1, page135)
= Activities (see Chapter 4.2.3.2, page 136)
= Transitions (see Chapter 4.2.3.3, page 137)

4231 State/status

Start Stgtus End
Figure 4-8: States (statuses) in the workflow editor

States, also called statuses, are represented by circles. A state is the result of an (automatic or
manual) activity. States specify the state a workflow can be in.

— |Creates new status ':S}| A new state is created in the editor by clicking this icon (or using the
keyboard shortcut S). Depending on the configuration, a state can be:

= A start state (only has outgoing transitions)
= An end state (only has incoming transitions)

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 135

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

= A normal state (has incoming or outgoing transitions)

The display of the different types is emphasized by a dark border (for start and end states) (see
Figure 4-8).

4.2.3.2 Activity

xmldump|

. |

B activity = angtriﬁEc
= =

Figure 4-9: Activities in the workflow editor

Activities are represented by rectangles. An activity consists of implementing a task (e.g.
"reviewing") and triggering an action (e.g. Clicking the "Approve release" button).

An activity can be run manually by a user or automatically by a script (see Chapter 4.5.4, page
156).

Manual activities are marked in the editor with an "M" in the top right corner (see Figure 4-9 — left
activity); automatic activities are marked in the editor with an "A" in the top right corner (see
Figure 4-9 — right activity).

(=l [Creates new activty (A)] A ey activity is created in the editor by clicking this icon (or using the
keyboard shortcut A). Depending on the configuration, an activity can be run:

= Manually (by an editor)
= Automatically (by a script)

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 136

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

4.2.3.3 Transition

|—Transitiun 1—»

Figure 4-10: Transition in the workflow editor

Transitions are represented by arrows. Transitions form the connection between an activity and a
state. The permissions for a workflow model are defined here. Canceling an action results in the
previous state (before switching to the transition) being retained. Canceling does not have to be
modeled separately in a workflow.

|Creates new transition [T}| A new transition is created in the editor by clicking this icon (or
using the keyboard shortcut T).

424 Keyboard shortcuts in the workflow editor

A Create a new activity.

T Create a new transition.

S Create a new state.

Ctrl+P Request a print preview of the workflow model

Open the Properties dialog box for a highlighted element

Alt + Enter in the workflow model.
Ctri+2Z Undo

Ctrl + Shift + Z Restore

Ctrl + X Cut

Ctri+C Copy

Ctrl+V Paste

Del Delete

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

137

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

42,5 Operating assistance for the editor

Clicking on an element once in the editor selects the element. This element can be moved to a
specific spot in the editor by holding down the left mouse button. Incoming and outgoing
transitions follow the moved element in the process.

You can use the mouse to draw a box around multiple elements. This allows you to move, cut or
copy multiple elements simultaneously.

If a state is selected in the workflow editor, then the Insert activity function causes a new activity
to be connected to this state automatically by a transition. In the same way, if an activity is
selected, the Insert state function creates a transition between the activity and the new state.

Transitions are always automatically straight connections from a source to a target. In particular,
support points can be inserted at a transition in order to make the representation of loops more
clear. The connection between two support points is straight as well, but as many support points
as needed can be added.

In order to add a support point, you have to right-click the transition at the desired spot. Right-
clicking on a support point removes that support point again.

A support point can be moved to a specific position in the editor by holding down the left mouse
button.

4.2.6 Rules of modeling

= Each workflow has precisely one start state.

= The start state can follow precisely one outgoing transition. Since nothing can be selected in
the start state, the first outgoing transition is always taken into account.

= Transitions represent a target-oriented connection between precisely one source and one
target element.

= A transition's source and target element can be states or activities but not other transitions.

= Transitions can only ever be between one state and one activity, never between two states or
two activities.

= States and activities can have as many incoming and outgoing transitions as desired
(exceptions: start state and end state).

= States and activities should always have names that are unique (to the workflow).

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

138

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

= Transitions may have a name; this name must then be unique in relation to the starting
element.

= Each workflow has a fixed, defined number of end states; at least one end state has to be
defined.

= An end state may not have any outgoing transitions.

4.2.7 Examples for modeling rules

¢ An activity always follows a state. A state and an activity are connected with "transitions"
and require a unique name. A name can be specified for transitions; the name has to be
unique in relation to the transition's starting element.

B m o}

= E—33 activity

= =
Status(1) Status(2)
Figure 4-11: State and activities modeling rule

¢ Multiple activities can result from one state. Likewise, multiple activities can lead to one

state.
L=l
ol M M)
activiy T m\m m
|
E m
[—
S
= o]
o] o & M|
= 1 o]
Status activity(1) @ B activity(1) @ Status
_—a _—a

Figure 4-12: One state, multiple activities modeling rule

¢ One activity can lead to multiple states. Likewise, multiple states can trigger one activity.

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 139

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

B activity
\ = [}
0]
=
Status(1)
&= -
=
=
Stﬂ
atus
activity
0] =
=
=
Status(1)

Figure 4-13: Multiple states, one activity model rule

e A script can only be attached to an (automatic) activity where the connecting line is

straight.
xmildump ‘
= ™ J A O] |
o] B—3 activity et
= =
Status Status(1)

Figure 4-14: Activities and scripts modeling rule

4.2.8 Print preview for workflow models

= Clicking the Print button (or using the keyboard shortcut Ctrl + P) requests a

print preview of the modeled workflow in the workflow editor (see Chapter 4.2.2, page 134). A
window for the print settings opens.

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 140

FirstSpirit™ Manual for Developers (Basics) F i IS t Spirit
rH Print preview @1

WView 50 % = Scale 100% - Printer setup Page setup

it bt o o et . |

Ot chuargmd |
- R ApgTrew
Lt |I-Hw.|_ 1
- . '{'
[HeT— e
- L o Pl b by P
m_ — h::.h ——
F imimAnioden Fagm I
-
Print Cancel

L

Figure 4-15: Print preview
View: The percentage size of the pages in the preview window can be configured using the

combobox.

Scaling: The percentage size of the workflow model can be selected on the print preview page
using the combobox. If the display is sized accordingly, multiple preview pages are displayed.

Printer selUb ' Gjicking this button opens a window where print settings can be changed.

Pageselub | Gjicking this button opens a window where some settings for the printed pages

can be changed.

Print " Clicking this button starts the print operation.

Cancel | Clicking this button cancels the print operation.

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 141

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

4.3 Error handling in workflows

4.31 General error handling

When starting: If an exception occurs when starting a workflow, because the user does not have
permission for switching a workflow's transition for instance, the workflow is not started for the
object.

When switching: The situation is different if the workflow has already been started and an error or
exception occurs while switching a transition. In this case, the state before switching the
transition, i.e. the last "error-free" state, is retained. If an error state is defined in the workflow
model, the element will be in the error state after the exception occurs (see Chapter 4.3.2, page
142).

4.3.2 Error state

There are many reasons for why an exception could occur when running a workflow, such as
improper configuration in the workflow's model or a script error in an attached script. In order to
reliably catch these errors and prevent an instance of the workflow from being in an inconsistent
state after switching a transition, an optional error state is available in the modeling for workflows

A normal state is simply added to the model for this. Then the "Error" type has to be activated in
the "Properties" dialog for the state:

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

142

FirstSpirit™ Manual for Developers (Basics)

.
E Properties

Comman

Color identifier
German | English
Display name Errar

Description

LInigue name Errar
Dwuration 0 h 0 m |0
Responsible
Write protection
Type
Mormal state
Start

End r

Errar

Comment

i)
I
[+1)
w
I

OK Cancel

L

Figure 4-16: Configuring the error state

The state is then shown with a red border in the model.

Errar

Figure 4-17: Error state in the model

FirstSpirit

The error state cannot be switched via a transition; i.e. it only has outgoing transitions just like
the start state. Error handling within the workflow is modeled using these outgoing transitions

(see Figure 4-19).

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

™

143

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

If an exception occurs at any spot in the workflow, the workflow instance arrives at the error state
directly.

The error state catches all exceptions that occur when running the workflow, even exceptions
that are not handled in the workflow. Examples of handled and unhandled exceptions are
described in Chapter 4.3.3.

After error handling, the workflow can be advanced to the subsequent state (according to the
workflow model).

The task list provides an overview of all instances of the workflow that had errors when being
run.

-

.
H Aufgabenliste (Benutzer: Admin) S S

Objekt anzeigen Liste aktualisieren Aufgabe schlieken

Offene Aufgaben | |nitiierte Aufgaben

Arbeitsabl... |Status Prioritat Initiator Startzeitpu... Kontext D Termin
ErrorTest Errort mittel Admin 31.07.201... Uberuns 675090

ErrorTest Error mittel Admin 31.07.201... Unterneh... 575041

ErrorTest Error mittel Admin 31.07.201... Umsetzun... 575691

Freigabe ... Freigabe ... mittel Admin 31.07.201... Leere Seite 576396

Freigabe ... Freigabe ... mittel Admin 31.07.201... Mithras H... 574442

Bearbeiter:

31, Juli 2012 - Admin, Manuell -

Status: Start

31, Juli 2012 - Admin, Manuell
Aktivitat: gotoMain
Status: Error

31, Juli 2012 - Admin, Automatisch
Aktivitat: Errort
Status: Error

31, Juli 2012 - Admin, Automatisch

Aktivitat: ShowError

Status: Error

Kommentar: de.espirit firstspirit. access script ExecutionException: Method Invocation context. doTre =
L] 3

Aktionen

P ShowError

Figure 4-18: Task list with tasks in the error state

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

144

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

Clicking the table "State" label sorts schedules by their current state.

Each workflow can have just one error state. If a state is defined as the error state even though
an error state already exists in the workflow model, the first state is automatically reset to the
"Normal" type.

4.3.3 Example: "Error" workflow

- = M Cl = o
gaoT olain MNoErrar

"
Start M ain

enonem2|

errorshow ,;l,

y Error2

- A
ShnwErro:}:
rtest
S B en?e_
M
= Error

o]

Figure 4-19: "Error" example workflow

The workflow consists of the "errortest" workflow and the associated scripts "errorshow",
"errortest1" and "errortest2". The workflow is made available as a compressed zip file for import
into the template store ("Workflows" node).

Script errortest1:

//!Beanshell

throw new IllegalArgumentException ("Error test 1");

The first script, "errortest1", throws an unhandled lllegalStateException. This exception is not
handled in the workflow, but results in the state going to "Error" instead of "End" regardless.

Script errortest2:

//!'Beanshell

context.gotoErrorState ("Error test 2",
new IllegalArgumentException ("Error test 2"));

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

145

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

The second script, "errortest2", shows error handling within a script. The instance of the workflow
is switched to the Error state directly when an exception occurs

usingcontext.gotoErrorState (...).

Script errorshow:

import de.espirit.firstspirit.common.gui.*;
import de.espirit.firstspirit.access.*;
import de.espirit.firstspirit.ui.operations.RequestOperation;

import de.espirit.firstspirit.agency.OperationAgent;

errorInfo = context.getTask().getErrorInfol()
if (errorInfo != null) {
text = new StringBuilder ("<html>Error information:
");

text.append ("") ;

text.append ("Benutzer: " + errorInfo.getUserLogin() + " (" +
errorInfo.getUserName() + ")");

text.append ("Kommentar: " + errorInfo.getComment ()):;
text.append ("Aktivitat: " + errorInfo.getErrorActivity()):
text.append ("Error: " + errorInfo.getThrowable())
text.append ("ErrorInfo: " + errorInfo.getErrorInfo());

text.append ("") ;
text = text.toString();

requestOperation =
context.requireSpecialist (OperationAgent.TYPE) .getOperation (RequestOperation
.TYPE) ;

requestOperation.setKind (RequestOperation.Kind.INFO) ;
requestOperation.addOk () ;

requestOperation.perform (text) ;

} else {

requestOperation =
context.requireSpecialist (OperationAgent.TYPE) .getOperation (RequestOperation
.TYPE) ;

requestOperation.setKind (RequestOperation.Kind.INFO) ;
requestOperation.perform("No error information available.");
}

context.doTransition ("->Main") ;

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

146

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

The "errorshow" script displays error information via an error dialog. The dialog is called
automatically via a workflow as part of error handling when an error occurs. The dialog contains
relevant information for resolving errors (e.g. the user that started the workflow, the activity that
resulted in the error, etc.):

-
H Error

[

Information:

& User: Admin (Admin)
& Comment: Errortest 2
& Activity: Error2

& Error: java.langlllegalArgumentException: Error test 2
& Errorinfo; java.lang.lllegalArgumentException: Error test 2

oK

Figure 4-20: Dialog with relevant error information

The instance of the workflow is automatically reset to the "Main" state after displaying the dialog.

4.4 Form support for workflows (form)

Forms for entering content can be used in workflows. The forms are defined on the "Form" tab in
a workflow:

WA s m

(L

guidemo

|— Templates [0 wWorkflows "o GuiDemo
<CMS_MODULE>

<CMS5_INFUT_TEXT name="name">
<LANGINFOS>
<LANGINFO lang="#*" label="Your
< /LANGINFOS>
«</CHS_INPUT TEXT>

<CMS_INPUT COMBOBOX name="fruits">
<ENTRIES>
<ENTRY value="Lpples"/>
<ENTRY wvalus="Fears"/>
<ENTRY value="Oranges"/>
<ENTRY value="Grapes"/>
</ENTRIES>
<LANGINFOS>

Form Rules Snippet

Properties

Name™/>

<LANGINFO lang="*" label="Please select your Fruits"/>

</LANGINFOS5>
</CM5_ INPUT COMBOBOX>

Figure 4-21: Form tab (workflow model)

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

147

™

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

While running a workflow, the editor can import values via input components that have been
defined in the form area.

r —_— ~
B Workflow Acticn (choose) @

D Mithras Homepage
Common | Form | History | Help
Your Name
Please select your Fruits -

Please select the Vegetables

Red Cabbage Cucumber

Carrots

last Selection

PEnd P hew Selection Cancel

Figure 4-22: Form while running

The saved values can be output in the workflow at a later time.

F N
H Information : @

m TestlUser selected Apples and Cucumber

OK

Figure 4-23: Information dialog with form content

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 148

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

441 Example: "GUI" workflow

In the example workflow, a script called "guitest" for displaying forms is run via the activity.

guitest ‘

select

= End

fal
Mew selection

Figure 4-24: "GUI" example workflow

Script "quitest":

//!Beanshell

import de.espirit.firstspirit.common.gui.*;

import de.espirit.firstspirit.access.editor.*;

import de.espirit.firstspirit.ui.operations.RequestOperation;

import de.espirit.firstspirit.agency.OperationAgent;

se = context.getStoreElement () ;
transition = context.showActionDialog(); data = context.getData(); if (transition !=
null) {

// display selected values
name = data.get ("name") .getEditor () .get (EditorValue.SOLE LANGUAGE) ;
obst = data.get ("obst") .getEditor () .get (EditorValue.SOLE LANGUAGE) ;

gemuese = data.get ("gemuese") .getEditor () .get (EditorValue.SOLE LANGUAGE) ;

// save selected values

lastSelection = data.get ("lastSelection") .getEditor () ;

lastSelection.set (EditorValue.SOLE LANGUAGE, name + ", " + obst + ", " + gemuese);
text = name + " hat " + obst + " und " + gemuese + " ausgewahlt";

requestOperation =
context.requireSpecialist (OperationAgent.TYPE) .getOperation (RequestOperation.TYPE) ;

requestOperation.setKind (RequestOperation.Kind.INFO) ;
requestOperation.addOk() ;

requestOperation.perform(text) ;

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

149

FirstSpirit™ Manual for Developers (Basics) F i IS t SpiritTM

// do transition

context.doTransition (transition);

} else {

requestOperation =
context.requireSpecialist (OperationAgent.TYPE) .getOperation (RequestOperation.TYPE) ;

requestOperation.setKind (RequestOperation.Kind.INFO) ;
requestOperation.perform("Sie haben keine Transition ausgewahlt.");

}

4.5 Properties of a workflow (configuration)

4.51 General properties

B viewscriptDemo x

viewscriptdemo | Form | Rules - Snippet Properties
|_ Templates 3 workflows o View ScriptDemo
Keyboard shortcut
Form Default values
Waorkflow available in WebEdit

Workflow executable without context

rDisplay logic
Waorkflow always active

1|//Beanshell

2 import de.espirit.firstspirit.access.*;

3 import de.espirit.firstspirit.access.project.*;

4

5 project = context.getGuiHost () .getProiect():

G mser = context.getGuiHost () .getUserService () .getUser () :
8 |for (Group group : project.getGroups (user)) {

9 if (group.getHame () .equals ("User™)) {

10 context.setProperty ("visible™, "17);
11 break;

|2 P

13 I3

Figure 4-25: Properties tab (workflow model)

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

150

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

Keyboard shortcut: A unique keyboard shortcut can be defined for each workflow in this field. In
this case, the workflow does not have to be started or switched using the context menu or the
"Tasks" menu, instead it can be called directly using the defined keyboard shortcut. The cursor
has to be inside this field to define a new keyboard shortcut. Then entering the desired key
combination using the keyboard is all that is needed. The input is then applied in the input field.
Text input is not possible. To change the keyboard shortcut, reposition the cursor in the field and
then select the new key combination. Press the "Esc" key to delete a defined keyboard shortcut
for a workflow.

n Keyboard shortcuts can only be used for context-related workflows.

Workflow can be run in in WEBedit: If this checkbox is checked, the workflow can be run in
WebClient in addition to JavaClient.

Workflow can be run without context: If this checkbox is checked, the workflow can be started
without context relating to one (or more) objects. The standard "task" workflow can be started
without any context, for instance.

Display logic: Display logic can be used to display or hide workflows depending on certain
properties (see Chapter 4.5.2, page 151).

4.5.2 Display logic for workflows

A workflow can be assigned display logic in the template store on a workflow's "Properties" tab.
Display logic can be used to display or hide workflows depending on certain properties. The
display logic only relates to starting the workflow (not to visibility in the template store). If the
display logic prevents a workflow from starting, such as at a certain time or for a certain group,
this workflow is no longer displayed via the context menu (for context-related workflows) or via
the "Tasks — Start workflow" menu function (for workflows without context).

Display logic is implemented specific to a project via a BeanShell script. Thus, specific display
options can be stored for each workflow.

Possible applications:

= Workflows may only be run during a specific time frame (e.g. only on Monday between 8:00
a.m.—9:00 p.m.)
= Workflows may only be run by a specific user or a specific group (see Figure 4-25 "Editors"

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

151

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

group). This can also be be implemented by configuring the permissions for running a
workflow, but that is only possible for context-related workflows. Displaying and hiding
workflows without context can be implemented using display logic.

= Workflows may only be displayed for specific elements, e.g. image media. The configuration
of permissions for individual elements for running a workflow would be accordingly extensive
depending on the number of image media. Therefore, this application is easier to implement
using a workflow's display logic.

¢ Workflow always active ¢ 1o display logic is to be deactivated, the "Workflow always active"

checkbox can be checked. In this case, the workflow is always displayed, regardless of the
display logic. The stored display logic is no longer evaluated, but it remains stored and can be
reenabled by unchecking the checkbox.

n If this is a context-related workflow, the permission to start the workflow on the
element is evaluated in addition to the display logic. If the user does not have permission
to start the workflow, the workflow is not displayed regardless of the display logic.

4.5.3 Properties of a state

- |Pmpemeg ['MHEMEFH If a state is highlighted in the workflow editor, the "Properties" window
can be retrieved by clicking on the icon, using the context menu, using the key combination Alt +
Enter or by double-clicking (see Chapter 4.2.2, page 134). Then settings for the selected element
can be made on the "General" and "Color coding" tabs.

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

152

FirstSpirit™ Manual for Developers (Basics)

4531 General tab

-
BR properties

Commaon Color identifier
German English
Display name [Status

Drescription

Inique name Status
Curation 0 h |0
Responsible
Write protection
Type
Mormal state
Start
End release

Errar

Comment

Ok Cancel

Figure 4-26: Properties of a state (general)

FirstSpirit

Unique name: A unique name has to be specified for the selected state in this field (character

limit: <= 40 characters).

Dwelling period: A time frame that a workflow can remain in the current state before a message
is sent to the responsible user or group can be specified here.

Responsible party: The responsible users or groups that are to be messaged in the event the

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

™

153

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

dwelling period is exceeded are listed in this field. Clicking the symbol opens an additional
window where the responsible parties can be selected from a list.

n For using the group or user selection see FirstSpirit Manual for Editors, Chapter
13.2.4 "Changing authorized groups/users".

Write protection: If this option is enabled, then edit mode is blocked for the corresponding
object while it is in this state (see Chapter 4.7, page 178).

State type: The current state can be defined as a start or end node here. Each workflow requires
precisely one start state and at least one end state (also see Chapter 4.2.3.1, page 135).

= Normal: By default, applies to all states that are not a start or end state.

= Start: Describes the state of an object where the workflow is started. The start state is used
to define the selection of authorized users that are allowed to switch to future states of a
running workflow instance (see Chapter 4.6, page 165)

o Manual editor (for each action)
(see Chapter 4.6.2.1, page 168)

o Automatic editor using permissions
(see Chapter 4.6.2.2, page 169)

= End: Describes a possible state where an object can be after completing the workflow.
Whether an object is to be released as soon as it reaches the end state can also be set.

Comment: An explanatory comment for the current state can be provided in this field. This
comment is shown as a tool tip in the workflow editor.

Additional language-dependent display names and descriptions can be added using the Display
name and Description fields. This refers to the editing languages (not the project languages).
The project administrator defines the editing languages for a project and the editor can then
switch between them using the "View — Preferred display language" menu. The display name is
used in various places such as workflow dialogs (e.g. labeling the buttons in the transition dialog,
on the Help tab and History tab), as entries in the context menu for starting/switching workflows,
the description as a tool tip and on the Help tab. The unique name is displayed if a display name
is not specified. If a description does not exist, the text from the Comment field is displayed.

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

154

FirstSpirit™ Manual for Developers (Basics) F i IS t SpiritTM

45.3.2 Color coding tab

B} properties Iﬁ
Cammaon Color identifier -
Recent:
L[]
|
a - [l Sample Text Sample Text
. . . Sample Text Sample Text
0K, Cancel |

Figure 4-27: Properties of a state (color coding)

The desired color coding for the current state can be selected using the color schema on this tab.
The object in the FirstSpirit client's tree structure (where the workflow was started) is highlighted
with this color once the instance of the workflow has reached the corresponding state.

In order to make subsequently finding a color that has already selected easier, all of the colors
that have already been selected once are listed on the right side of the window area

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 155

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit

4.5.4 Properties of an activity

E |F'rnperties WHEMEFH If an activity is highlighted in the workflow editor, the "Properties"
window can be retrieved by clicking on the icon, using the context menu, using the key
combination Alt + Enter or by double-clicking (see Chapter 4.2.2, page 134). Settings for the
selected element can subsequently be made on the "General" and "E-mail" tabs.

4541 General tab

.
H Properties

Commaon E-mail
German English

Display name | Activity

Drescription

Lnigue name | Activity

Script =none=
Execution * Manual
Comment

Automatic

Cancel

b

Figure 4-28: Properties of an activity (general)

Unique name: A unique name has to be specified for the selected activity in this field (character

limit: <= 40 characters).

Script: A script that is run as soon as the activity is called can be selected using the combobox.
If the required activity is to be run using a script, automatic execution has to be selected (see

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

156

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

"Execution").

Execution: Whether an activity is to take place manually via a user or automatically via the
system is determined at this point (see Chapter 4.2.3.2, page 136):

= Manual: The editor is shown a dialog box that can be used to advance a workflow
(instance) when running a manual activity.

= Automatic: Automatic activities do not wait for user interaction and are run as soon as one of
the states is reached upstream in the model (i.e. the action is triggered by the system and not
by the user). Thus, an automatic action (and a connected script along with it) is run directly
after reaching a state. The script can carry out the necessary check and advance the
workflow (instance) automatically.

Comment: An optional explanatory comment can be provided in this field.

Additional language-dependent display names and descriptions can be added using the Display
name and Description fields. This refers to the editing languages (not the project languages).
The project administrator defines the editing languages for a project and the editor can then
switch between them using the "View — Preferred display language" menu. The display name is
used in various places such as workflow dialogs (e.g. labeling the buttons in the transition dialog,
on the Help tab and History tab), as entries in the context menu for starting/switching workflows,
the description as a tool tip and on the Help tab. The unique name is displayed if a display name
is not specified. If a description does not exist, the text from the Comment field is displayed.

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

157

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

4542 E-mail tab

B} properties Lﬁj
Commaon E-mail
Send e-mail
Mailing list
|
Title
Text
L FIRSTspirtURL%: 1
0K Cancel

Figure 4-29: Properties of an activity (e-mail)

Send e-mail: If the checkbox is checked, an e-mail is sent to the selected recipients (see
"Distributor") as soon as the activity has been carried out.

Distributor: Which persons are to be sent an e-mail can be selected here.

= Authorized: Persons authorized to advance the workflow to the subsequent state. These
permissions are defined either directly in the workflow model using the permissions for
switching the transition (see Chapter 4.5.5.2, page 162) and/or using the permissions for
switching a transition on the object where the workflow's instance was started.

= Task creator: The user that started the instance of the workflow.

= Last editor: The user that switched the instance of the workflow to the current state.

= List: Clicking the symbol opens a window where the desired persons or groups can be

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 158

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

selected from a list.

n For using the group or user selection see FirstSpirit Manual for Editors, Chapter
13.2.4 "Changing authorized groups/users”.

= Editor: The current editor of the workflow.
Title The text for the e-mail subject line is entered in this field.

Text: The message that the recipient is to receive is entered in this field. Here, the following %
expressions can be used as placeholders that are replaced by the system automatically:

Placeholders for creating context-specific information:

$FIRSTspiritURLS = HTTP connection mode (default mode)
$FIRSTspiritSOCKETURLS = SOCKET connection mode

$PAGESTORE PREVIEW URL% = Preview URL for a page from the page store
$SITESTORE PREVIEW URL% = Preview URL for a page reference from the site store
swrF_NAME$ = Name of the workflow

$CREATOR% = Creator of the workflow (complete name)

$LAST USER% = Last editor

$LAST COMMENT$ = Last comment

sNEXT USER% = Next editor

$PRIORITY% = Priority

spATES = Due date (only if set)

sHISTORYS = History of the instance of the workflow

swEBeditURLS = WebEdit link to the preview of the page

If the $FIRSTspiritURL%, $FIRSTspiritRMIURLS OF $FIRSTspiritSOCKETURLS placeholders are
specified in the "Text" field, a link (that links to the corresponding node in the project) is created
in the sent e-mail, e.g. for $FIRSTspiritURLS:

http://myServer:9999/start/FIRSTspirit.jnlp?app=client&project=QS akt&name=vorlage 1&type=
Page&id=4394331&host=myServer&port=9999&mode=HTTP

or for $PAGESTORE_PREVIEW URL%:

http://myServer.espirit.com:9999/fs5preview/preview/4238727/page/DE/current/4238731/439433
1

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

™

159

http://myserver:9999/start/FIRSTspirit.jnlp?app=client&project=QS_akt&name=vorlage_1&type=Page&id=4394331&host=myServer&port=9999&mode=HTTP
http://myserver:9999/start/FIRSTspirit.jnlp?app=client&project=QS_akt&name=vorlage_1&type=Page&id=4394331&host=myServer&port=9999&mode=HTTP
http://myserver.espirit.com:9999/fs5preview/preview/4238727/page/DE/current/4238731/4394331
http://myserver.espirit.com:9999/fs5preview/preview/4238727/page/DE/current/4238731/4394331

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

Additional context-specific information for the respective instance of the workflow can be
generated using the other placeholders, e.g. sHISTORYS:

16. April 2012 - Admin, Manuell

Aktivitat: Freigabe anfordern

Status: Freigabe angefordert

Kommentar: UserB : Freigabe erteilen bitte

In addition to the JavaClient-URL (¢FIRrRSTspiritURL%), a link to a preview page in WebClient can
be transmitted in the text (sweBeditURL%), €.9.:

http://myServer:9999/fsbwebedit/?project=476656&store=pagestoreselement
=477196

If a placeholder cannot be resolved because information is not available in the selected context,
it is replaced by the appropriate information:

= German (DE): <in aktuellem Kontext nicht verfligbar>
= English (EN): <not available in current context>

n Placeholder replacement only works if the JNLP serviet is installed on the system.

n For more detailed information on the JNLP serviet see FirstSpirit Manual for
Administrators, Chapter 4.3.1.2 "Area: Server"

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 160

http://myserver:9999/fs5webedit/?project=476656&store=pagestore&element=477196
http://myserver:9999/fs5webedit/?project=476656&store=pagestore&element=477196

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

4.5.5 Properties of a transition

4551 General tab

H Properties [&J

Commaon Permissions E-mail

German English

Display name | Transition

Drescription

Lnigue name |Transition
Source Status

Target Activity

Comment

QK Cancel

b - -

Figure 4-30: Properties of a transition (general)

Unique name: A name for the selected transition can be specified in this field. This name name
has to be unique in relation to its source (character limit: <= 40 characters).

Source: The source that the transition starts from is displayed in this field automatically.
Target: The target that the transition points to is displayed in this field automatically.
Comment: An explanatory comment for the current transition can be provided in this field.

Additional language-dependent display names and descriptions can be added using the Display
name and Description fields. This refers to the editing languages (not the project languages).
The project administrator defines the editing languages for a project and the editor can then

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 161

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

switch between them using the "View — Preferred display language" menu. The display name is
used in various places such as workflow dialogs (e.g. labeling the buttons in the transition dialog,
on the Help tab and History tab), as entries in the context menu for starting/switching workflows,
the description as a tool tip and on the Help tab. The unique name is displayed if a display name
is not specified. If a description does not exist, the text from the Comment field is displayed.

4552 Permissions tab

H Properties I,i‘s-,l

Common Permissions E-mail

Fixed definition

v Permission defined by objectfrom Release -

From the instance via Creator -

Group exclusion

Ok Cancel

L

Figure 4-31: Properties of a transition (permissions)

Firmly defined: If this option is selected, the authorized users for this transition are firmly
defined. The responsible users and/or groups that are allowed to switch this transition are listed
in the field. Clicking the symbol after this field opens another field where the responsible parties
can be selected from a list of project groups or users.

From the object: If this option is selected, then authorized users are derived from the
permission definition in the FirstSpirit Client's tree structure. Which permission a user has to
have for the object being considered in order to be allowed to carry out this transition can be
selected in the field.

From the instance: If this option is selected, then authorized users are derived from the running
instance of the workflow. The creator of the instance or the last editor can be selected in the field.
The "Last editor of the target action" option is only available for outgoing transitions of a state
and can only be used if the workflow contains a loop so that an activity can be passed through
multiple times, e.g.:

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

162

FirstSpirit™ Manual for Developers (Basics)

B m

B editagain HE——edit—a]

e

request again

=
- M -

Request
Feiae request—a=

=}
Object changed Release requested

Figure 4-32: Standard workflow release

E——check—m check

2]
Obiject not released

no release

T

release

release

Object released

FirstSpirit

The "Review release" activity shown in Figure 4-32 would be a target action in this case, i.e. an
activity that a state points to. If the "Last editor of the target action" option were selected for the
"Review" transition, only a user that has already carried out this transition once before can carry

out the respective transition.

Group connection: Groups that are not to appear in the "Next editor" of a "Workflow action"

workflow dialog can be selected here.

H Workflow Acticn (Request release) -

==

=] Mithras Homepage

Common Farm History Help

Mext editor ‘Administrators, Chief Editor, Developer

Priority medium
Due date

Comment

Request Directrelease Cancel

|

Figure 4-33: "Next editor"” preselection

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

™

163

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

The groups selected using the "Group connection" function are in the dialog shown above

(Figure 4-33) but remain selectable using the icon regardless. In addition, the selection
under "Group connection" affects the transmission of e-mails.

4553 E-mail tab

F |
E Properties &J

Common Permissions E-mail

+ Send e-mail
Mailing list
v Beneficiary Task creator Last editar
List

v Editor

Title | Release Request
Text
S FIRSTspintURLY

Ok Cancel

%

Figure 4-34: Properties of a transition (e-mail)

Send e-mail: Activating this option sends an e-mail to selected recipients as soon as this
transition has been carried out.

Sending e-mail and placeholder replacement works the sames as the description of sending e-
mail in Chapter 4.5.4.2, page 158.

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 164

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

4.6 Permission configuration for workflows

Permissions for running workflows are a special type of editorial permissions that only relate to
workflows in a project.

The permission configuration can be defined context-dependent directly on an object where the
instance of a workflow is started or it can be defined to be generally applicable in the workflow
model in the template store:

= General permission configuration for starting and switching a workflow in the template store
(for all instances) (see Chapter 4.6.1, page 165)

= Context-dependent permission assignment for starting a workflow on individual obijects,
subtrees and stores (for individual instances — depending on the object where the workflow is
started) (see Chapter 4.6.3, page 169)

= Context-dependent permission assignment for switching individual transitions of a workflow
("special permissions") on objects, subtrees or stores (for individual instances — depending
on the object where the workflow is started) (see Chapter 4.6.4, page 172)

In addition to actual permission configuration, the authorized editors of a workflow (instance) can
be limited by the content editor (when editing an activity) if this has been configured by the
workflow's template developer (see Chapter 4.6.2, page 166).

The effects of permission definition in JavaClient are described in Chapter 4.6.5 (page 173 ff.)
using an example.

4.6.1 General permission configuration using the template store

Permissions for starting or switching a workflow are configured in the template store using
permission assignment to individual transitions. This ensures that each individual activity can
only be carried out by authorized users. The Properties dialog opens when double-clicking a
transition in a workflow's model. The permissions for switching a transition can be assigned on
the "Permissions" tab (see Chapter 4.5.5.2, page 162).

Overwriting transition permissions: The permissions defined in the workflow model are evaluated
for all instances of the workflow. Generally applicable permission configurations can be defined
for the workflow this way. These permissions, however, can be overwritten for (context-
dependent) workflows. It is possible to overwrite transition permissions for individual objects,
subtrees or stores using the "Permission assignment" dialog for the respective objects (see

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

165

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

Chapter 4.6.3, page 169 and Chapter 4.6.4, page 172).

Context-dependent transition permissions: In addition to the firmly defined permissions of a
group or user for switching a transition, transition permissions can also be assigned in the
template store based on context. In this case, "From the instance" transition permissions have to
be selected (see Chapter 4.5.5.2, page 162). If the "Last editor" is selected here, for instance,
then only the editor that switched the instance of the workflow into the current state automatically
receives permission for switching the transition.

Linking to editorial permissions: In addition to the option of determining permissions based on
context from the instance of the workflow (see above), the editorial rights can also be linked to
transition permissions (also based on context). In this case, the "From the object" transition
permissions have to be selected (see Chapter 4.5.5.2, page 162). If, for instance, the "Release"
editorial permission is selected here, then only the editor that has the "Release" permission for
the object where the instance of the workflow was started automatically receives permission for
switching the transition.

4.6.2 Changing or locking editor preselection

The preselection of authorized "Editors" is displayed in the activity dialog in the "Editors" field for
the content editor running the workflow. "Editors" are all of the groups or users that have
permission for switching the workflow's future transitions. Permissions that have been defined for
outgoing transitions of the future state are taken into account in the process (see Chapter 4.6.1,
page 165).

Example (workflow model):

Permissions on the transition
anna.administrat or

o o] - 5 l By O
Activity (1) }to Status(1a)pm m—to Activity(2a) -3 Activity(2a) E—ﬂnish(1)—):i©a

= e 5] e
Start Status(1a) End(1)
to Status(ib) 0 m ol - B m
3 E—to Activity(2b) D= Activity(2k) =—Tfinish(2)-pm E
= e e =
Status(1h) End(2)

Permissions on the transition
charlie.chef

Figure 4-35: Workflow model with permissions configuration (with gray background)

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 166

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

Example - Description (see Figure 4-35):

= The permissions for the transition "To activity (2a)" have been firmly defined for the user
"anna.administrator".

= The permissions for the transition "To activity (2b)" have been firmly defined for the user
"charlie.chef".

The content editor now starts the workflow. The "Activity(1)" activity dialog opens (see Figure
4-36). The editor can select between the two states "State(1a)" and "State(1b)". The future
editors of the workflow are listed in the "Editors" field automatically. After advancing the current
"Activity(1)", the workflow is in either "State(1a)" or "State(1b)". Therefore, future "editors" can
only be groups or editors that have permissions for the outgoing transitions of these two states.
Thus, in the example, "editors" that have permissions for switching "To activity(2a)" transitions
and for switching "To activity (2b)" transitions are shown.

= Workflow Action {Activity{1))

=) homepage

Common | Form o Histore | Help
Mext editar charlie.chef, anna.administrator
Priarity medium -

Cue date

Comment

to Status{1a) to Status(1 b Cancel

Figure 4-36: Example — "Activity(1)" workflow action

This preselection of potential future editors can be modified by the content editor. The
configuration dialog for the start state has to be opened by the template developer at the
workflow's start state in the template store for this (see Chapter 4.5.3.1, page 153).

A choice can be made between two options on the "General" tab.

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

167

™

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

& Start Automatic editor by permissions -
Automatic editor by permissions
Manual editor (per action)

Figure 4-37: Permissions configuration for the start state

= Manual editor (for each action)
(see Chapter 4.6.2.1, page 168)

= Automatic editor using permissions
(see Chapter 4.6.2.2, page 169)

4.6.2.1 Manual editor (for each action)

Permissions defined in the workflow (for outgoing transitions of the future states) are evaluated in
the "Editors" field. If the option "Manual editor (for each action)" is selected, these editors can be
modified by the content editor. The button for selecting groups or users in the "Workflow action"
dialog, which is displayed when starting or switching the workflow (instance), is then active.

Commaon Faorm History Help

Mext editor Administrators, Chief Editor, Developer

Figure 4-38: Workflow action — Manual editor using permissions

Clicking the button opens the dialog with all of the authorized editors for selecting groups
and users. This selection can then be limited to specific users by the editor.

n The content editor is only able to limit the editors. If the list of editors is to be
expanded, then permissions for the transitions of the workflow model have to be adjusted
by the template developer for this.

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 168

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

4.6.2.2 Automatic editor using permissions

Permissions defined in the workflow (for outgoing transitions of the future states) are evaluated in
the "Editors" field. If the option "Automatic editor using permissions" is selected, these editors
cannot be modified by the content editor. The button for selecting groups or users in the
"Workflow action" dialog, which is displayed when starting or switching the workflow (instance), is
then inactive.

Common Faorm History Help

Mext editor Administrators, Chief Editor, Developer

Figure 4-39: Workflow action — Automatic editor using permissions

4.6.3 Context-dependent permissions for starting a workflow

Permission is assigned based on context in FirstSpirit JavaClient. All areas of the project can be
assigned editorial permissions for specific groups or users here. Detailed permission assignment
for each object is possible while doing so, i.e. for a single page in the page store, for instance.
These permissions can be inherited hierarchically within individual stores.

The permissions for running workflows are assigned using the "Permission assignment" dialog,
the same way as for editorial permissions for groups and users. The "Permission assignment"
dialog is opened using the "Tools — Modify permissions" context menu on the desired object in
the JavaClient tree structure. There is a "Workflow permissions" tab in addition to general
"permission assignment" of editorial permissions:

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

169

FirstSpirit™ Manual for Developers (Basics)

-
E Permission assignment

Authorized Use release permission

Special permi... Transition

Request
Check

Mo release
Edit

Request again
Approve

Directrelease

Final

Permission assignment | Workflow permissions
= Inherit permissions Define permissions
Al Authorized

Mame
Task

Release request

Release data recaord

Authorized

Objekt verandert®Request release

automatische Freig.®Automatic Release

OK Cancel

Authaorized

Figure 4-40: Context-dependent workflow permissions

FirstSpirit

Inherit permissions: The "Inherit permissions" radio button is selected by default (exception:
root node) This setting causes the permissions from "Workflow permissions" to be inherited from

a higher level node.

Define permissions: If the "Define permissions" radio button is activated, permissions for
workflows can be defined on the node. The window for taking over inherited permissions opens

in the first step.

-
H Define permissions

S

Yes

Adopt inherited permissions?

Mo

L

Figure 4-41: Taking over inherited permissions?

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

™

170

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

If the permissions are taken over from a higher level node, then the inherited permissions are
taken over in the table of workflows. If, on the other hand, the dialog is confirmed with "No", the
workflow permissions are reset. The table view now active independent of the selection, this
means the user can define his or her own permissions.

All: If the checkbox "All" is checked, all workflows on the current node and all hierarchically
subordinate nodes of the tree structure can be started by the "authorized" user. The two tables
underneath cannot be edited in this case and the settings they contain are of no significance. If
the checkbox is not checked, the settings have to be set for each workflow individually.

Authorized: In this field, all users and/or groups that may call up a workflow on the current node

are listed. Upon clicking the icon, the "Select groups/users" window opens. All groups and
users of the project are listed. Authorized groups and individual users can be selected using the
window.

All of a project's workflows are listed in the top table (see Figure 4-40). If only selected workflows
are to be permitted for a subtree, then a list of workflows that can be started by selected users
can be created when defining permissions. A different user can be specified for each workflow in
the process.

The input options of this table are only active if the "All" checkbox is unchecked. In this case, the
permission for starting a workflow can be granted or prohibited for individual workflows.

Authorized Use release permission Mame Authorized
v Task
v v Release request
¥ v Release data record Administrators

Figure 4-42: Context-dependent permissions for starting individual workflows

Allowed: If the "Allowed" checkbox is checked, all of the authorized users (see "Authorized"
column) are allowed to start the workflow. The authorization is granted for the current node and
all hierarchically subordinate nodes of the tree structure.

Use release permissions: If the "Use release permissions" checkbox is checked, the release
permissions defined on the "Permission assignment" tab are evaluated for each user. Caution:
Inconsistencies can occur when defining permissions if this checkbox is not checked. A conflict
could result if, for instance, a user does not have permission for releasing for a specific object but
is placed in the "Request release" default workflow as an authorized user. Even in this sort of
case, the system would prohibit release, but the behavior (no release) is not obvious to the user
since the workflow can be run through as defined up until the "Grant release" status. If, however,
the "Use release permissions" checkbox is checked, then the user's release permissions are

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

171

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

evaluated for each of the workflow's transitions. If inconsistencies between editorial permissions
(no permission for releasing) and permissions in the workflow (e.g. granting release) are
determined, these transitions are hidden for the "unauthorized" user. In this case, the user can in
fact start "Request release", i.e. start the workflow, but the user can no longer advance to the
"Object released" state. The transition necessary to do so is hidden.

Name: The name of the workflow is in this column.

Authorized: All of the users and/or groups that are allowed to start a workflow on the current

node are listed in this field. Upon clicking the icon, the "Select groups/users" window opens.
All groups and users of the project are listed. Authorized groups and individual users can be
selected using the window.

n For more detailed information on editorial permissions see FirstSpirit Manual for
Editors, Chapter 13.

4.6.4 Context-dependent permissions for switching a workflow

The existing context-dependent permission assignments from Chapter 4.6.3 (page 169 ff.) only
refer to permission for starting a workflow. However, what are known as context-dependent
"special permissions" can be defined for the individual transitions.

If a specific activity is to be carried out by another user in an individual node, this can be defined
using context-dependent special permissions. First, the desired workflow has to be selected in
the upper table for this (see Figure 4-42). All of the transitions of the highlighted workflow are
then listed in the lower table for defining special permissions (see Figure 4-43). An authorized
user can then be specified for the desired workflow transition.

n If permissions for switching a transition have already been defined in the template
store using a workflow model (see Chapter 4.6.1, page 165), this definition (context-
dependent "special permissions”) overwrites the existing authorizations (from the workflow
model).

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

172

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

Special permi... Transition Authorized
Objekt verdndert®Request release Everyone

Request
Check

¥ Morelease
Edit
Request again
Approve

v Direct release -

Figure 4-43: Context-dependent special permissions for switching a transition

Special permissions: If the checkmark in this column is set, then the permissions assigned in
the workflow for this transition on this node are ignored. Instead, the permissions that were listed
on this location in the permissions column apply for this transition.

Transition: In this column, the names of the transitions are listed. If no name was assigned in the
workflow for a transition, the name of the source and the target of the transition appear here.

Authorized: In this field, all users and/or groups that may run this transition are listed. The
transition permissions listed here are taken over from the workflow model (see Chapter4.5.5.2,
page162), but upon activating the "Special permissions" checkbox, they are overwritten (default
setting: Group "Everyone").

Upon clicking the icon, the "Select groups/users" window opens. All groups and users of the
project are listed. Via the window, a selection of the authorized groups and users is made.
4.6.5 Effects on the permissions configuration

Transition permissions are either defined generally via the workflow model (see Chapter4.6.1,
page 165) or in context-dependent form for individual objects or partial trees (see Chapter 4.6.3,
page 169 and Chapter 4.6.4, page 172).

The effects are identical for both permissions definitions:

Transitions which lead to an activity authorize the user to call up and carry out these activities via
the context menu.

Transitions which lead to a state authorize the user to switch these states in the activity dialog.

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 173

FirstSpirit™ Manual for Developers (Basics) F i IS t SpiritTM

Example (workflow model):

- o] 5 5 m @y O
O—)ﬁ‘ Activity(1) to Status(1a)pm —to Activity(2a)-D= A ctivity (25) E—ﬂnish(1)~)ao
JE—— R

5}
Start Status(1a) End(1)
to Status(1h) B m o] o B m
—_—n B—to Activity(2b) = Activity(2k) =—Tinish(2)-= E
= _— =
Status(1k) End(2)

Figure 4-44: Example workflow model

Example permissions definition (defined via the workflow model):

Special permi... Transition Authorized
StartM-Activity(1)

to Status{1a)
to Activity(2a)
to Status{1)
to Activity(2h)
finizhi1)
finizhi2)

Figure 4-45 Example permissions definition via the model

Example: Effects of the transition permissions:

1. Starting the workflow via the context menu: The Editors group can open the
context menu and start the workflow:

ﬂ Wiiarkdlow Example
Figure 4-46: Starting the workflow via the context menu

2. The "Activities(1)" dialog provides the option to advance the workflow into "State(1a)" or
"State(1b)". The button to advance "State (1a)" is only shown to the "Editors" group (see
Figure 4-47); the button to advance to "State (1b)" is only shown to the "Administrators"
group (see Figure 4-48).

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

174

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

= Workflow Action {Activity{1))

=) homepage

COrmmon Form History Help

Mext editor BEveryone, Chief Editar

Priarity rmediurm -
Due date
Comment

to Status(1a) Cancel

Figure 4-47: Activity dialog to switch the transition "to state (1a)"

= Workflow Action {Activity{1))

=l hamepage

COrmmon Form History Help

Mext editor Everyone, Chief Editar
Priarity mediurm -
Due date

Comment

to Status{lh Cancel

Figure 4-48: Activity dialog to switch the transition "to state (1b)"

3. If the instance of the workflow is in the state (1a), every user may query the following
transition "to activity (2a) via the context menu. The "Activity (2a)" dialog is shown.

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 175

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

E W o Fk oy

Figure 4-49: Switching the workflow via the context menu

to Activity(Za)

FirstSpirit™

If the instance of the workflow is in State (1b), the "ChiefEditor" user can call up the
following transition "to activity (2b)". The "Activity (2b)" dialog is shown.

B wordow

Figure 4-50: Switching the workflow via the context menu

o Activite 240

The "Activity(2a)" dialog provides the option to end the workflow in state "End(1)". The

button to switch from "end(1)" appears for all users.

(The field with the future "editors" is in this case empty, because it involves the last

transition (see Chapter 4.6.2, page 166)).

=" Workflow Action (Activity(Za))

D homepange Rl RIS

Camrmon Faorm History Help

Mext editar
Priarity medium

Cue date [EH |

Comment

finishi1l Cancel

Figure 4-51: Activity dialog to switch the transition "End(1)"

The "Activity(2b)" dialog provides the option to end the workflow in state "End(2)". The

button to switch to "End(2)" only appears for the "ChiefEditor" user.

(The field with the future "editors" is in this case empty, because it involves the last

transition (see Chapter 4.6.2, page 166)).

176

FirstSpirit

FirstSpirit™ Manual for Developers (Basics)

= Workflow Action {Activity{Zb})

=] homepage
Comrman Farm History | Help

Mext editor
Priarity rmediurm

Due date

Comment

finish{2 Cancel

Figure 4-52: Activity dialog to switch the transition "End(2)"

n If a user or a group has permission to advance a transition that leads to an activity
dialog, this group and this user should also have permission to advance the transition into
at least one following state. Otherwise, the activity dialog only includes a button to cancel
the action. In this case, the permissions are to be checked and correspondingly redefined.

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 177

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

4.7 Write protection within workflows

471 General

When starting a (context-dependent) workflow, the element on which the workflow was started is
equipped with write protection (see Chapter 4.5.3.1, page 153). This write protection should
prevent an element from being changed by another editor while a workflow is running.

Write protection by means of running workflow instances:

p & FirstSpirit Contents Marketing About u

W Marketing [¥
- B} 1nformation : i

« @ Aboutus —

» & Company u The object with 1D *391656' is marked in the workflow as “read-only".

» BB Jobs Editing is therefore not possible!
p Wl Operating figures
b =) Aboutus L8
» &8 Pressreleases N T —————————————————————————

Figure 4-53: Write protection on subordinated objects

The write protection affects the current object and all subordinated objects of the running
instance of the workflow. In the example from Figure 4-53, on the "Marketing" folder, a running
workflow is set with write protection. If a user tries to block this folder from being edited, they will
get the information that this element cannot currently be edited. The same message also
appears if the user tries to block the "Company" folder or any object under the "Marketing" folder.

The write protection is set independently of whether a script is being used by the workflow and
which actions will be run on the affected element.

4.7.2 Write protection when creating and moving

Within the FirstSpirit JavaClient, some actions can be run without the object being in edit mode.
These changes to the edit concept should ensure that parallel work (with many users) functions
as smoothly as possible, even in large projects. In this way, for example, while processing an
element, the entire subtree for editing is no longer required, rather only the object that is currently
to be changed. Creating or moving an element is therefore likewise possible without requiring
previous write protection on the parent node (Editing mode).

Because during the workflows, however, potentially critical actions are involved (for example,
release of an object), write protection of a workflow also prevents the creation or movement

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 178

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

within the currently running instance of the workflow.

If, for example, an editor tries to add a section on which a workflow is currently started, the
following error message is shown:

H Information : [i‘s-,l

The object with D "391656" is marked in the workflow as “read-only™.
m Editing is therefare not possiblel

Ok

b

Figure 4-54: Write protection on a page (through a workflow)

4.7.3 Write protection within scripts

For some actions that are run via the FirstSpirit Access API, write-protection on the affected
element is necessary, such as:

= Recursive deletion of elements in the project
= (Recursive) release of elements in the project

A problem which presents itself in real life is setting write protection in a script (on an element or
subtree — API query setlLock (true, false) OF setLock (true)), if by starting the workflow. write
protection is already on the element (through the workflow — see Chapter 4.5.3.1). The write
protection of the workflow in this case prevents setting the "normal" write protection on the
element.

For simple delete or release actions within the workflow, setting the write protection is however
not necessary, because the affected element is already automatically blocked by the workflow
upon switching the transition.

It is different if the deletion or release is recursive; in other words, it is to be run on a subtree of
the project. In this case, a recursive write protection has to be set on the complete subtree and
this is only possible if the write protection of the workflow is turned off. In addition, the
(automatically set) write protection is temporarily removed via the state of the workflow and reset
upon ending the deletion and release option (via the script). The exact procedure is described
based on an example in Chapter 4.10.1.

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

179

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

4.8 Use of scripts in workflows

Scripts present a powerful aid in implementing customer-specific desires within the FirstSpirit
workflows. As already noted in the description of the workflow editor elements, scripts can be
bound exclusively within workflows to activities (see Chapter 4.5.4.1, page 156). An activity can
be run manually by a user or automatically by a script (see Chapter 4.2.3.2, page 136).

The result of an activity is always related to the instance of a workflow. It either involves a status
change into one of the following states accessible to the activity or the retention of the current
state (corresponds to the "Cancel" semantics in the activity dialog). This also applies to scripts
that are coupled to the activity. In other words, the script has to ensure on its own that a
transition is carried out in the following state.

Usually, the activities connected to the script can be defined in the workflow model either as
"manual” or as "automatic" — in both cases, it can make sense to use a script.

n If scripts are used within workflows, NO automatic evaluation of the editing
permissions (for example, during release) takes place. These permissions have to be
suitably linked to the transition permissions within the workflow (see Chapter 4.5.5.2, page
162).

4.8.1 Automatic activities and scripts

Automatic: Automatic activities do not wait for user interaction and are run as soon as one of the
states upstream in the model is reached (i.e. the action is triggered by the system and not by the
user). Thus, an automatic action (and a connected script along with it) is run directly after
reaching a state.

n Through the use of automatic actions, potentially endless loops can be built. This
situation is recognized by the FirstSpirit workflow interpreter; the execution of the
corresponding workflow instance ends and an error message appears.

4.8.2 Manual activities and scripts

In this case, the action is run by a user. If no script is available, then the user is shown the
standard form for workflows with all of the transitions allowed to them ("Activity dialog"). As soon

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

180

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

as the action is assigned a script, this dialog is no longer displayed automatically. If the activity
dialog is to be shown to the user, then this has to be run via the script (see Chapter 4.8.3, page
181 and Chapter 4.8.4, page 183).

4.8.3 Workflow context

The script context for workflow make the following methods available:

| Transition showActionDialog() ; |

Task: Display of the activity dialog (usually only relevant for "manual" actions). The transition
selected by the user is returned as a "Transition" object. Attention: the actual transition is NOT
carried out (for an example, see Chapter 4.8.4, page 183).

| void doTransition (firstspirit.workflow.model.Transition transition) |

Task: Execution of the specified transition. This can for example be selected by the user or
another transition available (and allowed) in this action. If a transition is selected that is not
allowed, then there will be an error message (for an example, see Chapter 4.8.4, page 183).

|void doTransition (String transitionName) |

Task: Execution of the transition indicated by name. If the transition in the model is not assigned
a name, then a name is automatically generated in the form "->"+"Name of the objective state",
which can be indicated here (for an example, see Chapter 4.8.5, page 185).

| Transition[] getTransitions () |

Task: Determines the quantity of all transitions that are available in their current state (for an
example, see Chapter 4.8.4, page 183).

| Data getData() ; |

Task: A workflow model can be assigned a form. This form is shown to the editor in the activity
dialog and they can enter or change data (see Chapter 4.4, page 147). Via this method, the
script has access to the content of the form, and changes can also be made (see Chapter 4.4.1,
page 149).

| Map getSession ()

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 181

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

Task: Each instance of a workflow is assigned (alongside the form) a special data structure
(Java map) which allows a script to save its own instance state and change it if necessary.
Because this state is part of a workflow instance, it is available to all scripts that are run during
the life cycle of the instance. In this way, it is possible with this method to exchange (instance-
related data) between scripts (for an example, see Chapter 4.8.5, page 185).

Examples:

Listing of all possible transitions with permissions starting from the current action:

//)firstspirit.scripting.BeanshellWrapper

transitions = context.getTransitions() ;
print ("Number of transitions:" + transitions.length);

for (i=0; i<transitions.length; i++) {
print ("Transition:" + transitions[i].getTarget()):
allowedUsers = transitions[i].getAllowedUsers() ;
for (j=0; j<allowedUsers.size(); j++) {
print ("Allowed User:" + allowedUsers.get(j));

}

State store in workflow instances (counter):

//'firstspirit.scripting.BeanshellWrapper

state=context.getSession () ;
v=state.get ("test");

if (v==null) v=0;

state.put ("test", ++v) ;

Generates an instance for every available workflow:

//'firstspirit.scripting.BeanshellWrapper

import firstspirit.access.store.templatestore.*;
u=context.getUserService () ;
ts=u.getTemplateStore () ;
wfs=ts.getWorkflows () .getAl1Childs (Workflow.class) ;

for (i=0; i<wfs.length; i++) {
print ("Workflow:" + wfs[i].getName())
try {
u.createTask(null, wfs[i], wfs[i].getName())
} catch (Exception e) { print ("Error!");}

Other methods can be taken from the FirstSpirit Access API.

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

182

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

4.8.4 Example: Output of messages in workflows

Within a workflow, messages can be output to the user running it. The output of messages is
realized via scripts within the workflow. A dialog via the script appears for the editor who is
running the corresponding action within a workflow. There, certain information from the context of
the workflow can be shown (see Chapter 4.8.3, page 181).

Example: Workflow "Message":

E m
5]
c] =
=
Status1 o
I
B
Status?
Transition2 /
Transition1

transitionmessage

O—)m Activity1

Start End
Figure 4-55: Example workflow "Message"

In this example workflow, before and after a transition is switched, an information dialog appears
with the output "Hello USER":

i 4
B} Information : &J

u Hallo Admin. Please select a Transition.

OK

b

Figure 4-56: First information dialog

After advancing the transition dialog, an additional informational dialog is shown with the output
"You have selected transition $STRANSITION. Thank you for the comment $KOMMENTAR"

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 183

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

© -
H Information : Iél

You selected Transitition Transition 2'. A good choice.
m Thank you for your comment ‘please advance’

Ok

Script "transitionMessage":

//!Beanshell
import de.espirit.firstspirit.common.gui.*;
import de.espirit.firstspirit.ui.operations.RequestOperation;

import de.espirit.firstspirit.agency.OperationAgent;

userName = context.getGuiHost () .getUserService () .getUser () .getLoginName () ;
text = "Hallo " + userName + ". Please select a Transition.";
requestOperation =

context.requireSpecialist (OperationAgent.TYPE) .getOperation (RequestOperation.TYPE) ;
requestOperation.setKind (RequestOperation.Kind.INFO) ;
requestOperation.addOk () ;

requestOperation.perform(text) ;

context.showActionDialog() ;

transition = context.getTransitionParameters() ;

if (transition.getTransition() != null) {

text="You selected transition '" + transition.getTransition() + "'. A good
choice.\nThank you for your comment '" + transition.getComment () + "'";
requestOperation =

context.requireSpecialist (OperationAgent.TYPE) .getOperation (RequestOperation.TYPE) ;
requestOperation.setKind (RequestOperation.Kind.INFO) ;

requestOperation.addOk() ;

requestOperation.perform(text) ;

context.doTransition (transition.getTransition()) ;

} else {

requestOperation =
context.requireSpecialist (OperationAgent.TYPE) .getOperation (RequestOperation.TYPE) ;

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

™

184

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

requestOperation.setKind (RequestOperation.Kind.INFO) ;
requestOperation.perform("You have not selected any transition.");

}

The information which is shown to the editor within the dialogs is retrieved in the script via the
workflow context (WorkflowScriptContext), for example, the transition parameters (see
example script):

‘ context.getTransitionParameters () ; |

4.8.5 Example: Persistent content within workflows

Within workflows, content can now be saved via the session and read out again after switching a
transition.

Example: Workflow "Counter":

counter
I'_L o O] -
m Activity o]

a
DoCounting

increase counter

. i

DoSelectCo |
E———m o 3

Start End
Figure 4-57: Example workflow "Counter"

Within the "DoSelectCounting" activity, a counter can be increased during every execution of the
workflow by a value of 1. The value of the counter is saved, and upon a restart of the workflow,
increased again by a value of 1. The value is shown to the user within an information dialog:

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 185

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

i -
B} Information : I&

u Counter: 1

OK

Figure 4-58: Value of the counter

"counter" script:

//!Beanshell
import de.espirit.firstspirit.common.gui.*;
import de.espirit.firstspirit.ui.operations.RequestOperation;

import de.espirit.firstspirit.agency.OperationAgent;

session = context.getSession();
counter = session.get ("counter");
if (counter == null) {

counter = new Integer(l);

}

text = "Counter: " + counter;

requestOperation =

context.requireSpecialist (OperationAgent.TYPE) .getOperation (RequestOperation
.TYPE) ;

requestOperation.setKind (RequestOperation.Kind.INFO) ;
requestOperation.addOk () ;

requestOperation.perform(text) ;

session.put ("counter", new Integer (counter + 1));

context.doTransition ("->Start") ;

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

™

186

™

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

4.9 Deleting via a workflow

To delete elements in the FirstSpirit JavaClient and in the FirstSpirit WebClient, a project-specific
workflow can be created and tied directly to the existing controls (buttons on the menu bar,
context menu entry) of elements. Instead of simply deleting an object, such as a page, a more
complex deletion function can be made available via the workflow, for example, the additional
deletion of dependent objects on a page (demo workflow, see Chapter 4.9.2).

n Deletion through a workflow is only available if the project was configured by the
project administrator.

Within the clients, the new workflow is then started via the familiar control elements. The
individual tasks of the workflow appear, as usual, in the task list (see Chapter 4.9.1, page 187).

If within a project, deletion via a workflow is configured, the permissions configuration for the
workflow has to be adapted. The conventional editing permissions for deletion that are defined
for a user or a group apply only if the permissions configuration is adapted correspondingly in the
workflow (see Chapter 4.9.3, page 190).

49.1 Deleting via a workflow in the JavaClient

If deletion of elements in the project was bound to a workflow, then the workflow can be started
and advanced in the JavaClient through the conventional control element. To do so, the following
control elements are available:

= Mark element and click the button.
= Mark element and run the context menu entry "Delete".

L oelete Entf

e -

= Mark element and click on the icon B in the icon bar

Similarly to multiple selection of workflows, deletion via a workflow can be run at the same time
on a number of objects (see Figure 4-59 and Chapter 4.11, page 207).

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 187

FirstSpirit™ Manual for Developers (Basics) F i IS t SpiritTM

E] The workflow can only be started if no workflow has been started on one of the
marked objects and the user has the corresponding permissions to run the workflow.
Otherwise, the corresponding control elements are deactivated.

+ I8 Warketing
» BB Aboutus [1% () [T
p BB Press rolascae -

» B8 Productm 2

» W8 Otherpag B\ Editon/off trg+E

B8 WEBEDIT 2 Resetchanges Strg+Umschalt+Z

» Bl mithras H g oyt Strg+X
B copy Strg+C
B Paste .
al Rename F

[Detete Entf

Figure 4-59: Multiple selection while deleting via a workflow

EJ The "Delete"” permission is also evaluated if elements are deleted via a workflow. If
a user has permission to switch the workflow but NOT permission to delete elements, the
workflow can be started (context menu entry "Delete"” is activated) but deletion of the
element is however not possible. The transition that deletes the element is not shown to
these users.

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 188

FirstSpirit™ Manual for Developers (Basics) F i IS t SpiritTM

49.2 Deleting via a workflow in the WebClient

If deleting elements in the project is bound to a workflow, then the workflow can be started in the
WebClient via the "Contents/Delete" menu or via the state menu. Likewise, in the state menu, a
workflow which was started for deletion of an element can be advanced.

Contents E Media P Actions
b

sum B RE
Create new page

Create Produkte dulcte |
Create Prezsemitteilungen
Create Stellenangebote
o
Create a copy of page 'Mithras-Homepage!' \
Edlit narviggation
Convert menu item to page

Edit Berechtigungen

lkomr

inenerdgie i

m Delete

Delete page "Mithras-Homepage"

Figure 4-60: Workflow to delete a page in the WebClient — Content menu

* = Contents P Actions

English 2 Stemap = Kontakt £Y Impressum & RE

delete

Startseite

¥ = Contents P Actions

#F Englizsh 2 Stemap = Kontakt £Y Impressum & RS

Figure 4-62: Advancing a workflow to delete an element

It is to be noted that a workflow in the WebClient is always run on a page reference, and this
represents the context for the workflow. If the corresponding page is also to be deleted, this has

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 189

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

to be controlled via the script used by the workflow. Here, the order of elements to be deleted is
fo be noted (see also Chapter 2.2.8.1, page 32).

n The workflow can only be started if no workflow has been started on one of the
marked objects and the user has the corresponding permissions to run the workflow.

49.3 Permissions configuration

The permissions are assigned in FirstSpirit JavaClient. Here, all areas of the project can be
assigned permissions for certain groups or users (see Chapter 4.6, page 165).

The permissions to delete elements (without workflow) are normally defined via the editing
permissions. Editing permissions are defined for a user or a group on the respective element. In
this way, permissions can be assigned for all editorial work. In addition, alongside "View" or
"Change", there are, for example, the permission to "Delete object" or the permission to "Delete
folder".

Permissions defined in this object

User Mo o Visible Read |Change Crgate Create Re.move Remaove Release Show Change Chan.gel
Group Permissions object folder object folder metadata \metadata permissions
Administrators v

Developer v v v v I v v I v
Everyone v

Figure 4-63: Editorial permissions "Delete object" and "Delete folder"

Additional information on editorial permissions is located in the FirstSpirit Manual for Editors,
Chapter 13.1.

n These editorial permissions are not automatically accessed if deletion is tied to a
workflow. If these permissions are evaluated, the permissions configuration in the
workflow has to be adapted first (see Figure 4-65).

If deleting in a project involves a workflow, the permissions configuration has to be relocated to
the workflow. The permissions for running workflows are assigned, as with editing permissions
for groups and users, in the "Permissions assignment" dialog within the administration area in the
FirstSpirit JavaClient.

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 190

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

B} permission assignment - &J
Permission assignment | Workflow permissions
Inherit permissions ®= Define permissions
All - Authorized
Authorized Llse release permission Mame Authorized
Task
Release request
v Release data record
CounterDema
Special permi... |Transition Authorized
Release -
Request again
v Edit
Mo release -
Ok Cancel

Figure 4-64: Permissions for running workflows

The permissions that are defined in the upper dialog area for running workflows ("Allowed") are
related exclusively to starting the respective workflow (see Chapter 4.6.3, page 169).

The permissions for running a transition (from one step of the workflow to the next) are either:

= determined via the template developer in the workflow (see Chapter 4.6.1, page 165)
= or via the assignment of "special permissions" for the individual steps of a workflow (see
Figure 4-64) (see Chapter 4.6.4, page 172)

Additional information on permissions for running workflows is located in the FirstSpirit Manual
for Editors, Chapter 13.2

If the conventional editorial permissions ("Delete folder", "Delete object") and the permissions to
run the workflow are to be suitably connected to one another, the permissions configuration has
to be adapted within the workflow. Permissions assignment to the individual transitions is done
within a workflow (see Chapter 4.5.5.2, page 162). This ensures that each individual activity can

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

191

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

only be carried out by authorized users. The permissions dialog opens when double-clicking the
transition in a workflow's model. The permissions for switching a transition can be assigned on
the "Permissions" tab:

BR Properties [&J

Commaon | Permissions | E-mail -

Fixed definition
v Permission defined by objectfrom Remove object -

From the instance via Creator -

Group exclusion

Ok Cancel

e - — Fi

Figure 4-65: Linking editorial permissions and transition permissions

If the option "From the object" is activated, then the authorized users are determined from the
editorial permissions, which were defined in the tree structure in JavaClient. In the field, you can
select which permissions the user has to have over the object in consideration in order to be able
to carry out this transition. If the permission "Delete object" or "Delete folder" is selected, then
during workflow startup, whether the user has permission to "Delete" the element is examined.
The permissions are then evaluated similarly to conventional deletion without a workflow.

Special case "Delete objects": When deleting an object through a workflow in combination with
the permissions configuration via the "From the object" option, a special case applies. If the
element is deleted, the permissions can no longer be determined from the object. In the example
from 4.9.4, the object and with it the permissions defined for the object on the last transition,
"End", is no longer available. In this case, the following applies: on a deleted object, "Everything
allowed" is always true. If you do not want this, the permissions configuration for the
corresponding transitions have to be changed (for example, on the "fixed, defined" groups or
users).

n If the "Special permissions” for the advancement of a workflow on an element are
defined (see Figure 4-64), the permissions that were defined for the template developer
will be overwritten.

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 192

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

49.4 Example: "Delete" workflow

The workflow to delete elements consists of the workflow and the corresponding scripts
"clientdelete" (to delete individual objects) and "serverdelete" (to delete subtrees).

If the "clientdelete" action is run, the element is blocked by the corresponding script and then
deleted. After deletion, the workflow is automatically advanced into the following state, "End".

If the action "server delete" is run, the element is blocked via the corresponding script
recursively. Via the "serverdelete" action, not only individual elements, but also subtrees can be
deleted. The deletion is done via a ServerHandle, which returns a results report and, in the case
of error, throws an exception.

After successful deletion, the workflow is advanced to the following status, "End". For both
actions, the following applies: In the event of an error, the workflow is advanced not into the end
state, but rather into an error state that was modeled in the workflow.

senverdelete

. . L

A

o &)E‘DQSer\rerDel
DeleteOnSewm fn|sh
Sele ctDeIete
M et nd
=
Start E""”'
clientdelete fmsh
- |L
DoClientDel
= B———3 of

= o]
DeleteOnClient

Figure 4-66: Example workflow "Delete"

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

193

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

Script "clientdelete":

//!Beanshell
import de.espirit.firstspirit.common.gui.*;
import de.espirit.firstspirit.ui.operations.RequestOperation;

import de.espirit.firstspirit.agency.OperationAgent;

se = context.getStoreElement () ;
try |

se.setLock (true) ;

se.delete () ;
context.doTransition ("->Ende") ;

} catch (Exception ex) {

text = "Error while deleting: " + ex;

requestOperation =

context.requireSpecialist (OperationAgent.TYPE) .getOperation (RequestOperation
.TYPE) ;

requestOperation.setKind (RequestOperation.Kind.INFO) ;
requestOperation.addOk () ;

requestOperation.perform(text) ;

context.getSession () .put ("error", ex.toString())

context.doTransition ("->Error") ;

}

Script "serverdelete":

//!Beanshell
import de.espirit.firstspirit.common.gui.*;
import de.espirit.firstspirit.ui.operations.RequestOperation;

import de.espirit.firstspirit.agency.OperationAgent;

se = context.getStoreElement () ;
parent = se.getParent () ;
try {

se.setLock (false, false);
handle = de.espirit.firstspirit.access.AccessUtil.delete(se, true);

handle.getResult () ;

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 194

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

handle.checkAndThrow () ;

Set notDeleted = new HashSet () ;

progress = handle.getProgress (true) ;

notDeleted.addAll (progress.getDeleteFailedElements ()) ;
notDeleted.addAll (progress.getMissingPermissionElements()) ;
notDeleted.addAll (progress.getLockFailedElements()) ;

notDeleted.addAll (progress.getReferencedElements ()) ;

if (!notDeleted.isEmpty()) {

text = "The following elements could not be deleted: " +
notDeleted;

requestOperation =
context.requireSpecialist (OperationAgent.TYPE) .getOperation (RequestOperation
.TYPE) ;

requestOperation.setKind (RequestOperation.Kind.INFO) ;
requestOperation.addOk () ;

requestOperation.perform(text) ;

if (parent != null) {
parent.refresh () ;

context.getGuiHost () .gotoTreeNode (parent) ;

if (!se.isDeleted()) {
se.setlLock (true, false);

}

context.doTransition ("->End") ;

} catch (Exception ex) {

text = "Error while deleting: " + ex;

requestOperation =

context.requireSpecialist (OperationAgent.TYPE) .getOperation (RequestOperation
.TYPE) ;

requestOperation.setKind (RequestOperation.Kind.INFO) ;

requestOperation.addOk () ;

requestOperation.perform(text) ;

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

195

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

context.getSession () .put ("error", ex.toString()):;
context.doTransition ("->Error") ;

}

49.5 Example: "ContentDeleteDemo" workflow

Alongside deleting individual elements and subtrees (see Chapter 4.9.4, page 193), it is also
possible to delete structured data using a workflow.

A distinction is made between normal elements ("StoreElements”, such as pages, media, page
references) and "Entities" in the workflow (in the script) for this purpose.

In the script, this information is retrieved using a workflow's context
(WorkflowScriptContext) (see Chapter 4.8.3, page 181):

workflowable = context.getWorkflowable ()

The getWorkflowable() method returns, in the form of a data record, whether the element where
a workflow was started is a StoreElement, such as a media file, or an Entity (see example script).
The output of a script can be adjusted accordingly, for instance:

if (workflowable instanceof ContentWorkflowable) ({

} else {

}

In the example, the output is controlled depending on the context in which the workflow was
started. If the delete functionality is started on a data record, the script delivers the output:

Entity Léschen . S
Delete Entity:
. content=gallerymedia

entity=Entity type: Gallery_Media (3136)

oK

b

Figure4-67: Delete Entity

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 196

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

If it is started on a "StoreElement”, the output is:

i -
Delete StoreElement Iéj

Delete StoreElement:
= store=MediaStoreRoot (ID=391338)
id=392364

OK

L

Figure4-68: Delete StoreElement

In this example, data is also deleted directly via the WorkflowScriptContext (see Chapter4.8.3,
page 181):

| workflowable.delete () ; |

The delete method here is called at the Workflowable object in this instance and not, as in the
example from Chapter 4.94, at the StoreElement. Using this Delete method, a
StoreElement and a data record (Entity) can be deleted.

The workflow for deleting entities consists of the workflow and the "deletecontentdemo" script
belonging to it (for deleting individual entities)

deletecontentdemo

[] 0] A []

o] DoDelete
Start End

Figure 4-69: Example workflow "DeleteContentDemo"

After being deleted successfully, a workflow is advanced to the subsequent "End" state
automatically.

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 197

FirstSpirit™ Manual for Developers (Basics)

Script ("deletecontentdemo"):

FirstSpirit

//!Beanshell

import de.espirit.firstspirit.access.*;

import de.espirit.firstspirit.access.store.contentstore.*;
import de.espirit.firstspirit.ui.operations.RequestOperation;

import de.espirit.firstspirit.agency.OperationAgent;

workflowable = context.getWorkflowable () ;
if (workflowable instanceof ContentWorkflowable) {

message = "Delete Entity:\n content=" + workflowable.getContent () .getName ()
+ "\n entity=" + workflowable.getEntity () .getKeyValue /()

requestOperation =
context.requireSpecialist (OperationAgent.TYPE) .getOperation (RequestOperation
.TYPE) ;

requestOperation.setKind (RequestOperation.Kind.INFO) ;
requestOperation.addOk () ;
requestOperation.perform (message) ; }

else {

message = "Delete StoreElement:\n store=" +
workflowable.getStore () .getName () + "\n 1d=" + workflowable.getId() ;

requestOperation =
context.requireSpecialist (OperationAgent.TYPE) .getOperation (RequestOperation
.TYPE) ;

requestOperation.setKind (RequestOperation.Kind.INFO) ;
requestOperation.addOk () ;
requestOperation.perform(message) ;

}

workflowable.delete () ;

context.doTransition ("->End") ;

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

198

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

4.10 Workflows with a complex function

Very complex functions can be implemented using workflow modeling and the BeanShell scripts
within these models. A good example is the workflow described previously for deleting elements
(see Chapter 4.9.4, page 193).

Within the scripts, actions are run on certain project content using FirstSpirit's Access API. In
contrast to standard functions (such as for the "Delete" standard context menu entry), the
developer of the workflow (or the associated scripts) has to ensure that all required boundary
conditions, such as for deleting an element, are also covered by the script. For most actions,
write protection ("Lock") on the affected element is necessary for this at the very least. However,
what type of action is to be run on which elements is critical in this context. No write protection
has to be set for simply deleting an element such as a media file; however, it does need to be set
for recursive deletion such as a page with paragraphs (see Chapter 4.9.4, page 193).

The following chapters deal with write protection within the workflows with complex functionality.

410.1 Example: "RecursiveLock" workflow

This workflow for locking subtrees consists of the workflow and the corresponding "lockrecursive"
script.

0]

m M =
DoSelect finish
o] Recursive Lock Test
Start End
. S

= | 0]

lockrecursive
= =
WriteLockQn LL Write LockOff

m DoRecursive
Lock
Figure 4-70: "RecursiveLock" example workflow

Within the script, recursive write protection is carried out on the element where the workflow was
started. In order for this to work, the write protection for the workflow set automatically

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 199

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

beforehand has to be removed. To do so, write protection in the "WriteLockOff" state has to be
removed first:

B} properties [ﬁj

Commaon Color identifier

German English
Display name

Drescription

Inigue name WriteLockOff
Duration] h 0 m |0 5

Responsible

Write protection

Figure 4-71: Removing write protection using a workflow's state

The "Write protection" checkbox is unchecked; write protection for the workflow is now removed
when switching the "Recursive Lock Test" transition. The subsequent action, "DoRecursiveLock",
is automatically run and is linked to the "lockrecursive" script.

Recursive write protection can now be set on the element by using the script:

// set recursive lock

se = context.getStoreElement () ;
se.setLock (true) ;

text = "Subtree locked";

requestOperation =
context.requireSpecialist (OperationAgent.TYPE) .getOperation (RequestOperation
.TYPE) ;

requestOperation.setKind (RequestOperation.Kind.INFO) ;
requestOperation.addOk () ;
requestOperation.perform(text) ;
The elements are locked recursively; the editor is shown a dialog with the message "Subtree
locked":

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

200

FirstSpirit™ Manual for Developers (Basics) F i IS t SpiritTM

w W Marketing e
H Information : I&

+ B Aboutus
» BB Company

Subtree locked
p B Jobs u

» BB Operating figures
4 D About us £

p BB Pressreleases

Figure 4-72: Write protection on the subtree

Confirming the message causes the script to continue running, the recursive write protection on
the subtree is removed again:

// reset recursive lock

se.setlLock (false) ;

In the next step, simple write protection has to be restored on the element:

// non recursive lock, normal state during workflow
se.setlLock (true, false);

context.doTransition ("->WriteLockOn") ;

This is necessary to be able to switch the subsequent transition within the workflow.

Then standard write protection for the workflow has to be restored. Additionally, the "Write
protection" checkbox is reactivated in the "WriteLockOn" state.

B} properties Iﬁ

Commen | Caolor identifier

German | English
Display name

Description

Unigue name WriteLockOn
Duration 0 h |0 m |0 5

Responsible

Write protection ¥ I

Figure 4-73: Setting write protection using a workflow's state

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 201

FirstSpirit™ Manual for Developers (Basics)

Script "lockrecursive":

//!Beanshell
import de.espirit.firstspirit.common.gui.*;
import de.espirit.firstspirit.ui.operations.RequestOperation;

import de.espirit.firstspirit.agency.OperationAgent;

// set recursive lock

se = context.getStoreElement () ;
se.setlLock (true) ;

text = "Subtree locked";

requestOperation =
context.requireSpecialist (OperationAgent.TYPE) .getOperation (RequestOperation
.TYPE) ;

requestOperation.setKind (RequestOperation.Kind.INFO) ;
requestOperation.addOk () ;

requestOperation.perform (text) ;

// reset recursive lock

se.setLock (false) ;

// non recursive lock, normal state during workflow
se.setlLock (true, false);

context.doTransition ("->WriteLockOn") ;

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

FirstSpirit

202

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

410.2 Example: "RecursiveRelease" workflow

This workflow for recursive release consists of the workflow and the corresponding
"serverrelease" script.

serverrelease

: L .

DoRelease @

Start End

=
Errar
Figure 4-74: "RecursiveRelease" example workflow

The element, where the workflow was started and all dependent elements, is to be released
recursively in the workflow.

Server-side release, which is used within the "serverrelease" script, controls the release and the
internal setting of write protection for the affected element. If elements are found that already are
provided with write protection, the server cannot carry out the server-side release. These
affected elements can be retrieved via the return value of the server-side release (only in test
mode):

handle.getProgress (true) .getLockFailedElements ()
Accordingly, no recursive write protection has to be set for server-side release using the script.
So that the release can be made, however, no write protection may be set by the workflow.
Therefore, write protection on the element is first removed using the script:
se.setlLock (false, false);
Then server-side release is carried out by calling the method:
AccessUtil.release (IDProvider releaseStartNode, boolean checkOnly, boolean

releaseParentPath, boolean recursive, IDProvider.DependentReleaseType
dependentType)

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

203

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

In the example, the following transition parameters are configured for server-side release:

handle = AccessUtil.release(se, false, false, true,
de.espirit.firstspirit.access.store.IDProvider.DependentReleaseType.DEPENDEN
T RELEASE NEW AND CHANGED) ;

An explanation of the transfer parameters used can be found in Chapter 6, page 223.

Return parameters:

ServerActionhandle<? extends ReleaseProgress,Boolean >

The server-side release returns a serveraActionHandle, Which contains all information about the
release process.

Within the sample script, the result of the release process is first queried:

handle.getResult () ;

handle.checkAndThrow () ;
In connection with this, the errors during the release are examined. If elements cannot be
released, for example because a write protection exists on the element or the processor does not
have the corresponding permissions to release an element, these can be queried via the
methods
progress.getMissingPermissionElements () or

progress.getLockFailedElements ():

progress = handle.getProgress (true) ;
notReleased.addAll (progress.getMissingPermissionElements ()) ;

notReleased.addAll (progress.getLockFailedElements ()) ;

The script error handling shows the editor the elements which could not be released:

if (!notReleased.isEmpty()) {

text = "The following elements could not be released: " +
notReleased;
requestOperation =
context.requireSpecialist (OperationAgent.TYPE) .getOperation (RequestOperation
.TYPE) ;

requestOperation.setKind (RequestOperation.Kind.ERROR) ;
requestOperation.addOk () ;

requestOperation.perform(text) ;

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

204

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

i .
& Error — @

The following elements could not be released: [599226]

X

Ok

L

Figure 4-75: Error message — Unreleased elements
n The error message is shown in test mode only ("checkonly”).

Script "serverdelete":

//!Beanshell

import de.espirit.firstspirit.common.gui.*;

import de.espirit.firstspirit.access.*;

import de.espirit.firstspirit.access.store.*;

import de.espirit.firstspirit.ui.operations.RequestOperation;

import de.espirit.firstspirit.agency.OperationAgent;

se = context.getStoreElement () ;
try {
se.setlLock (false, false);

handle = AccessUtil.release(se, false, false, true,
de.espirit.firstspirit.access.store.IDProvider.DependentReleaseType.DEPENDEN
T RELEASE NEW AND CHANGED) ;

handle.getResult () ;
handle.checkAndThrow () ;
Set notReleased = new HashSet () ;

progress = handle.getProgress (true) ;

notReleased.addAll (progress.getMissingPermissionElements ()) ;

notReleased.addAll (progress.getLockFailedElements ()) ;

if (!notReleased.isEmpty()) {
text = "The following elements could not be released: " +
notReleased;

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

205

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit

requestOperation =
context.requireSpecialist (OperationAgent.TYPE) .getOperation (RequestOperation
.TYPE) ;

requestOperation.setKind (RequestOperation.Kind.ERROR) ;
requestOperation.addOk () ;
requestOperation.perform(text) ;

}

se.refresh () ;

context.getGuiHost () .gotoTreeNode (se) ;

se.setlLock (true, false);

context.doTransition ("->End") ;

} catch (Exception ex) {

text = "Error while releasing: " + ex;

requestOperation =
context.requireSpecialist (OperationAgent.TYPE) .getOperation (RequestOperation
.TYPE) ;

requestOperation.setKind (RequestOperation.Kind.ERROR) ;
requestOperation.addOk () ;

requestOperation.perform(text) ;

context.getSession () .put ("error", ex.toString()):;

context.doTransition ("->Error") ;

}

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

206

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

4.11 Multiple workflow selection

In FirstSpirit, many dialogs have the option to select and edit elements multiple times. A multiple
selection is, for example, possible within the tree view in the FirstSpirit JavaClient (see Figure
4-76). With it, multiple elements can be marked on which a certain action (such as moving,
copying, deleting) can also be run.

It is possible to select multiple items at once by pressing the SHIFT or CTRL key at the same
time. Moreover, the key combination STRG + A can be used to select all visible elements of a
store area (within the tree view) or all elements within a table (for example, within the task list).

The multiple selection of elements within the tree view is limited to the current store area. In other
words, for example, if an element is marked in the page store, then afterward, no other element
from a different store area can be selected.

n If the key combination CTRL + A is used within the tree view of the FirstSpirit
JavaClient, only the currently visible (expanded) elements of the tree view are marked. If,
for example, a folder in the page store is not expanded, the pages under it are not a part
of the selection.

411.1 Multiple workflow selection

The selection of multiple workflows enables starting and switching a workflow for a quantity of
objects.

To do so, the desired objects can be marked within the tree view. In connection with this, the
context menu is opened as usual and the desired workflow is selected.

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

207

™

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

» BB FirstSpirit
» B Marketing
» B8 Product management
» BB Other momee
8 WEBE
v B withra S
&
& Cut Strg+X

B copy Strg+C

—

M Delete Enff

Display in new workspace

Package pool 4
Add to Content Transport feature

Export

=

Task

Figure 4-76: Starting a workflow on multiple elements

411.2 Requirements for starting and advancement

Starting or advancing a workflow can only happen if all elements have the same status of the
workflow or, until now, no workflow has been started on the selected elements (see Figure 4-76).

During multiple element selection, for every element, it is determined which workflows and which
transitions of a workflow can be shown via the context menu. In this, for example, it is taken into
account whether:

= a workflow was already started on the element,

= the user has the required permissions to start the workflow on this element,

= a workflow may be started on this element,

= a workflow was already started on the elements, but the elements did not reach the same
state as the workflow.

If these requirements are not fulfilled for even one element of the multiple selection, the context

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 208

FirstSpirit™ Manual for Developers (Basics) F i IS t SpiritTM

menu delivers the evaluation "not available" for all selected elements.

Figure 4-77: Context menu — not available

In this case, the multiple selection should be canceled, the individual elements checked again
and reselected where necessary.

4.11.3 Multiple selection via the task list

Alongside the multiple selection via the tree view, workflows started once can also be moved
forward via the task list (see Figure 4-78) or via the "Workflows" overview in the template store
(see Chapter 4.1, page 127).

The task list provides all tasks not yet completed ("open tasks") and all started tasks ("initiated
tasks") within a table view. Alongside the name of the workflow, the current state of the
respective instance of the workflow is shown here.

-

BB Tasklist (User: Admin) AR X

Refresh list Close task

Opentasks | |nitiated tasks

Workflow Status Priarity Initiatar Starttime |Context D Deadline
CounterD... Start medium Admin 13.06.201... Products .. 391739

CounterD... Start medium Admin 13.06.201... Product gr... 392884

CounterD... Start medium Admin 13.06.201... Aboutus 392473

CounterD... Start medium Admin 13.068.201... Company 392424

Actions

P DoSelectCounting

Figure 4-78: Multiple selection via the task list

Within the tabular task list, multiple tasks can be selected. As long as these tasks have the same

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 209

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

workflows and the same status and the user has the required permissions to run the workflow for
the selected elements, the possible actions are shown in the lower area of the task list.

The tasks can thus be advanced simultaneously. Unlike when starting via the tree view, multiple
elements from different administrative areas can be marked and switched simultaneously in the
task list.

4.11.4 Multiple selection via the "Workflows" overview

Alongside the task list, within the template store there is an additional overview on the
"Workflows" node over all previously started tasks (see Chapter 4.1, page 127). Differently than
in the task list, the tasks can be filtered here according to specific search criteria and also shown
according to already concluded tasks (see Chapter 4.1.1, page 129).

Within the overview, multiple tasks can be selected. Directly advancing the workflow is not
possible here; however, clicking the "Edit" button opens the task list (see Chapter 4.1.2, page
131). The elements previously marked in the task list are selected directly and can be advanced
there (see Chapter 4.11.3, page 209).

Alongside editing, the overview can close multiple selected tasks (see Chapter 4.1.3, page 132).

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

210

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

5 Tracking changes via revision-metadata

FirstSpirit provides an option for tracking changes via the FirstSpirit Access API. Access to the
revision metadata is possible via certain API functions (see Chapter 5.2, page 213). Revision
metadata contains information on the type (which changes took place?) and the scope (which
elements were changed?) of a change to the project. The information which is made available via
the revision metadata is highly granular. With changes to content, it can be determined, for
example, which properties of an element were changed, for example whether the content was
changed in a certain editing language, whether a child element was added or removed or
whether certain attributes, such as permissions to the corresponding element, were changed.

Via the extended revision information, all changes that were made from the time of a certain
revision to the time of a certain revision within a project can be determined.

Access to this information is possible via the FirstSpirit Access API, for example by BeanShell
Script.

The following chapters present methods in order to obtain one or more revisions of a project
which are to be examined based on changes (see Chapter 5.1, page 212) and methods to
determine the corresponding information on the changes (see Chapter 5.2, page 213).
Independent of respective change type, different metadata information is available (see Chapter
5.2.1, page 213).

Additionally, examples of using track changes are described in the project.

The first example determines all the database changes which took place since the last released
revision of a project (see Chapter 5.3, page 215).

The second example determines changes to the content that took place between a to-be-defined
start revision and a to-be-defined end revision in the project (see Chapter 5.4, page 219).

All code excerpts in this chapter involve fragments, which are insufficient to put together the
entire script!

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 211

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

5.1 Get revision

FirstSpirit works with a revision-based repository. With it, special administration of chronological
development of data is used. This is revision management.

A revision can be presented as a type of "Snapshot" across the entire repository at a certain
point in time. In contrast to a version, which is usually only related to a single object, during a
revision, the total state of all objects in the repository are listed.

Revisions are listed with sequential numbering (revision ID), where there is always exactly one
current revision for the whole repository. If a repository is edited, all changes carried out are
linked to a new revision number. The revision number is the last current revision number of the
entire repository, increased by one. All unchanged objects retain their old revision numbers. If an
object is changed, it is not overwritten in the repository, but rather inserted as a new object (with
a higher revision number).

In order to determine in what time frame certain changes took place within the program, first the
corresponding revision for the repository has to be retrieved.

The revision can be retrieved directly via the project. In doing so, either the desired unique
revision ID, such as:

project.getRevision (revisionId) ;

or the date of the desired revision were transferred, such as:

project.getRevision (context.getStartTime ()) ;

The transitioned date does not have to be assigned to a unique revision. Any desired data value
can be transferred. If at this date a revision exists, it is returned; otherwise the methods return
the next lowest revision.

A selection of revisions within a certain time frame can be made available via the method:

project.getRevisions (Revision from, Revision to, int maxCount,
Filter<Revision> filter);

made available. Two revisions are transferred. The first revision ("from") defines the lower
revision limit and the second revision ("to") defines the upper revision limit. Along with both of
these revisions, all revisions which have a higher revision ID than the lower revision limit and a
lower revision ID than the upper revision limit are returned.

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

212

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

The respective most current version can be retrieved via:
getRevision (new Date());

via:

start = project.getRevision (context.getStartTime ())
end = project.getRevision (new Date()) ;

revisions = project.getRevisions (start, end, 0, null);

Optionally, the parameter "maxCount" can be passed, which limits the number of the returned
revisions to a highest value, and — likewise optionally — provides a filter for further limitation.

5.2 Determining changes to a revision

Via the revisions (see Chapter 5.1, page 212), in connection with the metadata, additional
information on the changes can be retrieved:

revision.getMetaData () ;

The metadata administers different information which is dependent on the type of the changes
respectively (see Chapter 5.2.1, page 213). In the process, language-dependent content
changes to an element are taken into account as well as structural changes (such as a move) or
a change to the element attributes (such as name, permission definition, etc.) (see Chapter 5.2.2,
page 214).

5.2.1 Determining the type of change

The changes that have taken place in a revision can be retrieved via:
metaData.getOperation () ;

via:

The provided revision operation (RevisionOperation) provides information on the type of

change (RevisionOperation.OperationType), for example:
operation.getType () ;

In this context, different types of changes are available for different project contents.

For contents of type IDProvider, the following types of changes are possible:

= CREATE an object has been newly created in the project
= MODIFY An object has been modified in the project

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 213

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

= MOVE An object has been moved in the project
= DELETE An object has been deleted in the project
= RELEASE An object has been released in the project

= SERVER RELEASE An object has been released on the server

The corresponding revision operation (for example, ModifyOperation) provides an object of
type BasicElementInfo with additional information on the respective object (for example, the
Uniqueldentifier).

For contents of type Entity, the following types of changes are possible:

= CONTENT_COMMIT Database contents have been modified

The corresponding revision operation (for example, ContentOperation) returns an object of
type EntityInfo with additional information on the respective data records (for example, the ID
of the data record or the ID of the associated database schema).

5.2.2 Determining changed elements

Depending on the respective change operation, additional information on changes can be called
up, such as which data records have been released in the project (for operation type:
CONTENT_COMMIT):

operation.getReleasedEntities () ;

or, for example, which contents have been newly created in the project (for operation type:
CREATE):

operation.getCreatedElement ()

Additional methods are in the examples in the two following chapters (see Chapter 5.3 and
Chapter 5.4).

For an overview of all available methods, see documentation on the FirstSpirit Access API 5,

® Via the FirstSpirit Online Documentation in the Template development — FirstSpirit API area

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 214

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

5.3 Changes since the last deployment

The changes in the project carried out since the time of the deployment are to be shown in the
first example. The following example involves a project in which the reports on the FirstSpirit
content store can be managed. An overview of the changes to the data records is to be made
available each time a project is deployed. A post-deployment script is first created in the
deployment schedules to determine the changes.

BR Schedule entry planning: Edit schedule entry l&
Properties | Actions
Active Action Parallel Execute even in case of error
¥ generate ¥
¥ deploy ¥
] ChangesSinceLastDeployment]
¥ mail >
Add Edit Delete Copy action Mew from template
OK Cancel ?

Figure 5-1: Configuration of the post-deployment script

The script first determines the ID of the revision which was current at the time of the last
deployment of the project:

task = context.getTask();
lastExecutionRevisionId = (Long) context.getVariable (task.getName () + ".revision");
if (lastExecutionRevisionId != null) {

context.logInfo ("revision of last execution=" + lastExecutionRevisionId) ;

revld = lastExecutionRevisionId.longValue () ;}

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

215

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

Subsequently, all revisions of the project since the last deployment are retrieved. The revision
with the just-determined revision ID is retrieved as the lower revision limit ("startRev"). The
current revision at the time of deployment is determined as the upper revision limit:

startRev = project.getRevision (revId) ;
endRev = project.getRevision (context.getStartTime()) ;
context.logInfo ("startRev=" + startRev.id + ", endRev=" + endRev.id) ;
if (startRev.id == endRev.id) {
context.logInfo ("no changes detected");
}

revisions = project.getRevisions (startRev, endRev, 0, null);

All of the determined revisions are then examined for changes in a loop:

checkChanges (revisions) {
for (revision : revisions) {
metaData = revision.getMetaData () ;
operation = metaData.getOperation () ;
if (operation != null) {
type = operation.getType () ;
switch (type) {

case RevisionOperation.OperationType.CONTENT COMMIT:
break;

}

In the process, only changes to database content — in other words, of operation type
CONTENT_COMMIT - are to be taken into account, and only the newly created and changed
data records of a specific database table.

All newly generated and released data records are first determined via:

createdEntities = operation.getCreatedEntities() ;

releasedEntities = operation.getReleasedEntities() ;

This selection is then restricted to a specific database table (here: MyEntityTypName):

ENTITY TYPE = "MyEntityTypName";

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 216

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

if (ENTITY TYPE.equals(created.getEntityTypeName ())) {
}
if (ENTITY TYPE.equals(released.getEntityTypeName ())) {
}
Related:

case RevisionOperation.OperationType.CONTENT COMMIT:
createdEntities = operation.getCreatedEntities();
for (created : createdEntities) {
if (ENTITY TYPE.equals (created.getEntityTypeName ())) {
createdCertificates.put (created.getEntityId (), revision);

context.logInfo ("\t created entity " + created.getEntityId() + " in
revision " + getRevisionString(revision)) ;

}

}

releasedEntities = operation.getReleasedEntities();

for (released : releasedEntities) {
if (ENTITY TYPE.equals (released.getEntityTypeName())) {
releasedCertificates.put (released.getEntityId (), revision);

context.logInfo ("\t released entity " + released.getEntityId() + " in
revision " + getRevisionString(revision)) ;

}
}
break;
The required information (e.g. review numbers) is retrieved using the IDs of the data records
determined to be changed and released ("created" and "released") and then saved for further
use.

context.setProperty ("created", createdList);

context.setProperty ("updated", updatedList);

In the process, the values saved via context.setProperty (. .) are only persistent within the
current schedule; this means they can continue to be used in a subsequent action in the
schedule with context.getProperty (..). In this example, the contents continue to be used
in the following "Mail" action (see Figure 5-1) in the e-mail template:

Hello,

$CMS_SET (created, #context.getProperty ("created"))$$CMS SET (updated,
#context.getProperty ("updated")) $

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 217

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit

new (created != null)$ (SCMS_ VALUE (created.size)$) SCMS_END IFS and
modified$CMS IF (updated != null)$ ($CMS VALUE (updated.size)$)$CMS END IFS$

certificates have been published on

http://www.gutachten-online.de

SCMS IF (created.size > 0)$New certificates:

$CMS FOR (entity, created)$ * SCMS VALUE (entity.Gutachtennr)$

(SCMS_VALUE (entity.Datum. format ("dd.MM.yy"))$S)

$CMS_END FORS$CMS END IF$

$CMS_IF (updated.size > 0)SUpdated certificates:

- S$CMS VALUE (entity.Kennzeichen) $

$CMS_FOR (entity, updated)$ * $CMS VALUE (entity.Gutachtennr)$

(SCMS_VALUE (entity.Datum. format ("dd.MM.yy"))$S)

$CMS_END FOR$$SCMS END IF$

This is an automatically generated e-mail which is sent when new certificates are

published.

If you have any questions,

The template now generates an e-mail when carrying out a deployment schedule with the

- $CMS VALUE (entity.Kennzeichen) $

please contact infol@gutachten-online.de

generated and modified contents:

Example (e-mail):

Hello,

new (4) and modified (2)

http://www.gutachten-online.de

New certificates:

* AZ33048/D (10.
* AZ45134/D (10.
* AZ46200/D (11.
* Az50261/D (13.

08.
08.
08.
08.

10)
10)
10)
10)

Updated certificates:

- DO-WZ
- DO-XY
- EN-AA

- BO-YZ

1234
4321
1111
5566

certificates have been published on

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

218

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

* AZ44356/D (10.08.10) - DO-ZZ 3388
* Az47709/D (05.05.08) - D-YY 9999

This is an automatically generated e-mail which is sent when new certificates are
published.

If you have any questions, please contact info@gutachten-online.de

Content saved via context.setVariable (..) also continues to be persistent while running
the current schedule (in contrast to saving content via context.setProperty(..)). This
option is used in the example in order to save the revision at the time of the current schedule:

context.setVariable (task.getName () + ".revision",
new Long(endRev.getId())):

When starting the next schedule, this information can then be used to retrieve the revision ID
which was current at the time of the last deployment of the project:

lastExecutionRevisionId = (Long) context.getVariable (task.getName () + ".revision");

The complete script and the templates described here can be requested as needed via the
FirstSpirit help desk.

5.4 Changes between two revisions

In the second example, the revisions can be selected conveniently via a GUI. To do so, a new
script has to be created in the project's template store first.

Input components for selecting a start and an end date for the desired revision limits can be
configured in the form area of the script:

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

219

FirstSpirit™ Manual for Developers (Basics) F i IS t SpiritTM

Choose Time Range

Start Date

813121210 P (= kY

» The editor must not he empty! % Date

44 4 September 2012 3 42

CW| Su Mo Tu We Th Fr Sa

a5 1
E | oz 3 a4 5 & [1 =
aF| g 10 11 12 12 14 15

Flease correctyour input! 22| 18 17 18 19 z0 21 Iz
9| 2z 24 25 25 27 8 29
40 | 30

Today is Tuesday, September 11, 2012

Time A2 .10 |4 oK Cancel

Figure 5-2: GUI for selecting the revision limits

The XML file for configuring the form area can be requested via the FirstSpirit help desk as
needed.

Similarly to the first example, the corresponding revisions can then be retrieved using the
selected data:

data = context.showForm() ;
if (data != null) {
context.logInfo ("data=" + data);

from = data.get (context.getProject () .getMasterLanguage (),
"from") .get () ;

to = data.get (context.getProject () .getMasterLanguage (),
"enddate") .get () ;

if (from != null) {
context.logInfo(from + " -- " + to);
start = project.getRevision (from) ;
end = project.getRevision (to) ;

context.logInfo ("startRev=" + start.id + ", endRev=" + end.id);

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 220

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

if (start.id <= end.id) {
revisions = project.getRevisions (start, end, 0, null);
} else {

revisions = project.getRevisions (end, start, 0, null);

}

context.logInfo ("found '" + revisions.size() + "' revisions -> first=" +
revisions.get (0) + ", last=" + revisions.get (revisions.size() - 1));

checkChanges (revisions) ;
1}
In checkChanges (see Chapter 5.3, page215), the changes that took place in this revision are
found. In this example, changes to project content of operation types DELETE and CREATE
(within the page store) are taken into account. In addition, changes to the project's database
content are determined.

Changes due to removing elements in the page store:

case RevisionOperation.OperationType.DELETE:
deleteRoot = operation.getDeleteRootElement () ;
if (deleteRoot.getStoreType () == Store.Type.PAGESTORE) {
// include only pagestore

context.logInfo ("found delete in pagestore (deleted node=" +
deleteRoot.getUid () + ") in revision=" +
getRevisionString (revision)) ;

}

break;

Changes due to adding elements in the project:

case RevisionOperation.OperationType.CREATE:
created = operation.getCreatedElement () ;
parent = operation.getParent () ;

context.logInfo ("found created element in store '" +
created.getStoreType () + "' (created node=" +
created.getUid() + ", parent node=" + parent.getUid() + ") in
revision=" + getRevisionString(revision)) ;

break;
Changes due to creating, deleting, changing or releasing database content:
case RevisionOperation.OperationType.CONTENT COMMIT:

created = operation.getCreatedEntities|() ;

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 221

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

changed operation.getChangedEntities () ;

deleted

operation.getDeletedEntities () ;
released = operation.getReleasedEntities() ;

context.logInfo ("found content changes in revision=" +
getRevisionString (revision)) ;

context.logInfo ("\t created entities (" + created.size() + ") "
+ created) ;

context.logInfo ("\t changed entities ("™ + changed.size() + ") "
+ changed) ;

context.logInfo ("\t deleted entities (" + deleted.size() + ") "
+ deleted) ;

context.logInfo ("\t released entities (" + released.size() + ")
" + released);

break;

The script is output via the Java console:

INFO 20.05.2008 15:44:50.317
startRev=6804, endRev=7677

found created element in store 'PAGESTORE' (created node=Testpage 131,
parent node=Test 6C22873) in revision=7335

— Thu May 15 16:02:51 CEST 2008 (importStoreElement) - Admin - CREATE

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 222

FirstSpirit™ Manual for Developers (Basics)

6

Server-side release

In addition to release via a workflow, all objects in FirstSpirit can be released server-side via the
Access API. To do so, there are methods of defining the different release settings for an object.
In this way, the specific release can be used to release additional objects dependent on the
current object, such as the complete parent chain and child elements of the object to be
released.

In general, a distinction is made among the following release options:

Standard release (see Chapter 6.1, page 224):

Release for the object to be released, including additional, defined release options for the
default case. These predefined release options are different depending on the object. In this
way, a page in the page store is released via the default release options, including the
subordinated sections and the parent elements that have never been released. In contrast,
the default release of a page reference in the site store only takes the page reference itself
into account. The default release options cannot be changed.

Specific release (see Chapter 6.2, page 224):

Release for the object to be released, including optional release options established by the
user. The different release options can be combined with each other in any way to realize a
comprehensive release within a short time. However, the release of all objects involved in the
release process is may be undesirable in certain circumstances and therefore should be
carried out with caution.

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

FirstSpirit

223

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

6.1 Default release

The release of the current object (for example, page or folder of the page store), including
defined, object-dependent release options for the default case, is carried out using this option.

Direct release of an object is carried out directly using the following APl method:

AccessUtil.release (IDProvider toRelease, boolean checkOnly)

Transition parameters:

toRelease: Element to be released

checkonly: If the value true is passed, the default release is just tested. The objects to be
released are not transferred to the release state. Instead, for example, the standard release is
run in order to discover errors prior to the actual release of an object.

Return parameters:

|ServerActionhandle<? extends ReleaseProgress,Boolean > |
The server-side release returns a serverActionHandle, Which contains all information on the

release process and, for example, contains the status of the release or the log info.

6.2 Specific release

The specific release takes even more (dependent) objects into account in the release process,
depending on the release parameters defined.

= Ensure accessibility (parent chain): Starting at the selected object, all new (never
released), higher-level nodes are also released (see Chapter 6.2.4, page 231). This option
makes sense, for example, if a new page within a new folder was created in the page store
and both are to be released together. In contrast to recursive release, other new pages below
the folder would not be released. While the combination of this option with the "recursive
release" option remains limited to the current store (see Chapter 6.2.5, page 233), it also has
an effect on the parent chain of the dependent objects and, thus, on other stores in
combination with the "Dependent release" option (see Chapter 6.2.6, page 234).

= Recursive release: Depending on the object selected, all subordinate nodes are also
released. This selection makes sense, for example, if within a folder in the page store many

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 224

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

pages were changed and now all changes are to be released together. This option remains
limited to the current store area (see Chapter 6.2.1, page 227).

= Only release new dependent objects: Starting from the selected object, all objects that are
dependent on the selected object (for example, a media file used in an image input
component) and that have not yet been released (newly created objects) are also released. If
this release option is combined with other options (for example, the release of the parent
chain), the dependent release also has an effect on other objects and stores included in the
release process.

= Release new and changed dependent objects: Starting from the selected object, all
objects that are dependent on the selected object (for example, a media file used in an image
input component) are also released. Objects that have never been released (newly created
objects) and objects that have been reedited after being successfully released (changed
objects) are taken into account in the process. If this release option is combined with other
options (for example, the release of the parent chain), the dependent release also has an
effect on other objects and stores included in the release process.

Specific release of an object is carried out using the following APl method:

AccessUtil.release (IDProvider releaseStartNode, boolean checkOnly,
boolean releaseParentPath, boolean recursive, IDProvider.DependentReleaseType
dependentType)

Transition parameters:

releaseStartNode: Start nodes for the release

checkonly: If the value true is passed, the specific release is just tested. The objects to be
released are not transferred to the release state. Instead, the defined release options are run in
order to discover errors before the real release, for instance.

releaseParentPath: If the value true is passed, the complete parent chain of the object to be
released is determined and all objects that have never been released before are also released. If
the option releaseParentPath=false is set, the parent chain is not released; the elements to be
released are, however, added to the release child list of the parent node. The following applies
here:

= With changed parent nodes: The object to be released can be accessed in release state. The
parent element, however, is not released.

= With_new parent nodes: Because the parent node was never released, the object to be
released in the release state cannot be reached. That can lead to invalid references in the
release state (see Chapter 6.2.4 and Chapter 6.2.5).

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

225

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

recursive: If the value true is passed, all child elements of the object to be released are
recursively determined and likewise released. If the value false is passed, the child elements
are not taken into account during release (see Chapter 6.2.1, Chapter 6.2.3 and Chapter 6.2.5).

dependentType: Objects dependent on the object to be released are determined and also
released using this parameter. If, for example, a media file is referenced on a page, this media
file can also be released directly during specific release of the page. The following dependencies
can be taken into account (see Chapter 6.2.2, Chapter 6.2.3 and Chapter 6.2.6):

* DEPENDENT RELEASE NEW AND CHANGED: New and modified dependent objects are taken into
account.

" DEPENDENT RELEASE NEW ONLY: Only newly created (not yet released objects) are taken into
account

" NO DEPENDENT RELEASE: Dependent objects are not taken into account and have to be
released separately if necessary (default setting).

The different release options can be combined with each other in any way to realize a

comprehensive release within a short time. However, the release of all objects involved in the

release process is may be undesirable in certain circumstances and therefore should be carried

out with caution.

The server-side release will therefore be explained in the following chapters based on some
examples.

Return parameters:

|ServerActionhandle<? extends ReleaseProgress,Boolean >

The server-side release returns a serveraActionHandle, Which contains all information about the
release process.

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

226

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

6.2.1 Recursive release

Server-side release — Recursive release

Site Store Root

L SS Folder

1) Start node of
Folder 1

the release

Ref 1

Folder 2

Site Store

Figure 6-1: Server-based release — recursive

For calling AccessUtil.release(...) the following parameters were set:

releaseStartNode: Folder 1
releaseParentPath: false

boolean recursive: true
DependentReleaseType: NO DEPENDENT RELEASE

The selected start node for the release is the "Folder 1" menu level.

Recursive release: At the start point of the "Folder 1" release, the option recursive is evaluated.
The recursive release has an effect solely on the child elements of the release start point. Thus
the "Ref 1", "Folder 2" and "Ref 2" child elements are released by the option in the example from
Figure 6-1.

Recursive releases of additional dependent elements are not run, even in combination with other
release options. The recursive release thus does not have an effect on the release of child
elements of dependent objects in other stores.

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 227

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

6.2.2 Dependent release
Server-side release: Dependent release

Media Store Root

—— MS Folder 1
Site Store Root
—— MS Folder 2
SS Folder
— _(— 1) Start node of
= Folder 1J the release
Pict 2 < ,,,,,,, Folder 2 references (

Pict 2 for the menu "
new . Ref 1

Pict 3

changed Folder 2

L MS Folder 3 L
Ref 2

dependent Pict 4 Folder 1 references),
release Pict 4 for the menu

new Site Store

Media Store

Figure 6-2: Server-side release — only new or new and modified releases

For calling accessutil.release(...) the following parameters were set:

releaseStartNode: Folder 1

releaseParentPath: false

boolean recursive: false

DependentReleaseType:

DEPENDENT RELEASE NEW AND CHANGED | DEPENDENT RELEASE NEW ONLY

The selected start node for the release is the "Folder 1" menu level.

Dependent release: The options DEPENDENT RELEASE NEW_ONLY and

DEPENDENT RELEASE NEW AND CHANGED have an effect on basically all dependent objects in the
page store, the site store and the media store. This release option thus does not just affect start
nodes, but rather all objects that are taken into account during the release process. All outgoing
references in the "Folder 1" menu level are examined and released by the option in the example
from Figure 6-2. If only the dependent release is activated (without recursive release), only "Pict
4" would be conditionally released (see Figure 6-2); if additional release options are activated,
the release can be substantially more extensive, however (see Chapter 6.2.3, page 229, Chapter

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

228

FirstSpirit™ Manual for Developers (Basics) F i IS t SpiritTM

6.2.6, page 234 and Chapter 6.2.7, page 236).

EJ All outgoing references for the dependent release are only completely taken into
account in one direction. If all dependent objects are to be included in the release
process, then the release has to be carried out in a certain order (see Chapter 6.2.8, page
238).

6.2.3 Dependent release with recursive release

(Server-side release: Release recursive + new and changed)

Page Store Root

Meta:
o MsFolder inFILE |7ttt o - - - R,

Page Store

PS Folder

Ref 1 references Page 1

dependent
release

Page 2 l

Media Store Root l

........ .}
—— MS Folder 1'
release

Page 1 references Pict
landPict3viaa
picture input
component

SS Folder

Folder 2 references
Pict 2 for the menu

dependent
release

recursive

release

dependent Folder 1 references
release Pict 4 for the menu

Media Store

Figure 6-3: Server-side release — releasing recursively and dependently

For calling accessutil.release(...) the following parameters were set:

releaseStartNode: Folder 1
releaseParentPath: false
boolean recursive: true
DependentReleaseType:

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

229

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

DEPENDENT RELEASE NEW AND CHANGED| | DEPENDENT RELEASE NEW ONLY
The selected start node for the release is the "Folder 1" menu level.

Dependent release and recursive release: If the options DEPENDENT RELEASE NEW ONLY Of
DEPENDENT RELEASE NEW AND CHANGED are combined with the recursive option, the dependent
release has an effect on all objects below the start node. Thus, in the example from Figure 6-3,
both the outgoing references of the "Folder 1" menu level (see Chapter 6.2.2, page 228) and the
outgoing references from the subordinate child objects are examined:

= Relating to the example, "Ref 1" underneath "Folder 1" is also examined, which has a
reference in the page store. The page reference "Ref 1" is released due to recursive release;
page "Page 1" is also released due to dependent release.

= The "Folder_2" menu level, which has become a part of the release process via the recursive
release option, has a reference to a media file in media store. The folder "Folder 2" and the
subordinate page reference "Ref 2" are released due to recursive release. The referenced
media file "Pict 2" is released due to dependent release.

= The page "Page 1", which was released dependently, also has outgoing references in media
store. The media referenced, "Pict 1" and "Pict 3", are likewise released dependently.

Additional dependent or recursive objects are no longer taken into account, as they are not
covered by any of the release options.

n All outgoing references for the dependent release are only completely taken into
account in one direction. If all dependent objects are to be included in the release
process, then the release has to be carried out in a certain order (see Chapter 6.2.8, page
238).

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 230

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

6.2.4 Ensuring accessibility (parent chain)

Server-side release: Release parent chain

Page Store Root
I— PS Folder
new

Page 1 A
Page 2

Page Store Ref 1 references Page 1

Site Store Root

L changed
SS Folder

new
- Release parent]

chain

new
I

1) Start node of
the release

Folder 2

L Ref 2

Site Store

Figure 6-4: Server-side release — release parent chain

For calling accessutil.release(...) the following parameters were set:

releaseStartNode: Ref 1
releaseParentPath: true

boolean recursive: false
DependentReleaseType: NO DEPENDENT RELEASE

The selected start node for the release is page reference "Ref 1".

Ensuring accessibility (parent chain): Starting from the start node of the release "Ref 1", the
complete parent chain of the object up to the root node of the store is considered. Through the
option releaseparentPath, all nodes of the parent chain are released which were not yet ever
released. Concretely, this means that objects which were already released once (changed
objects) are not released through the option releaserarentpath, not even if they have been
changed by an addition, for example of a page reference (see Figure 6-4).

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 231

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

If the option releaseParentPath=false is set, the parent chain is not released; the elements to
be released are, however, added to the release child list of the parent node. The following
applies here:

= With changed parent nodes: The object to be released can be accessed in release state. The
parent element, however, is not released.

= With_new parent nodes: Because the parent node was never released, the object to be
released in the release state cannot be reached. This can lead to invalid references in the
release state.

Background: If a page reference is to be released even though the editor has no permission to
release within the higher menu level, the page reference should still be taken over in the release
state. Possible content changes within the menu level (for example, additional references),
should, however, not be released with the releaserParentpPath option (see Figure 6-5).

Server-side release: Release parent chain

Site Store Root

L SS Folder

changed

f Folder 1% Ref 2 is added to the|
S changed release child list —

No release of the
Ref 1 menu level

Editor B:

has permissions for

creating and releasing in

Folder 1 o
@)

Editor A: B

has permissions for
creating and releasing in
Folder 2

No permission for releasing|
in Folder 1

Release
parent chain

Site Store

Figure 6-5: Server-side release — release parent chain (child release list)

In the example from Figure 6-5, through a release of page reference "Ref 2" from "Editor A", the
newly created page reference and the newly created menu level "Folder 2" would be released.
Menu level "Folder 1" is not released. So that the new menu level "Folder 2" (and with it the
page reference "Ref 2") is reachable in a released state, "Folder 2" is added with the option
releaseParentPath {0 the release child list of menu level "Folder 1". With that, page reference
"Ref 2" can be reached within the release state, but not the newly created page reference "Ref
1". If "Editor B" now releases page reference "Ref 1", this is also added to the release child list of
the menu levels "Folder 1". Because "Folder 1" is already reachable as a changed object via the

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

232

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit™

release child list of the likewise changed folder "SS Folder", the release is concluded with this.
Both menu levels ("Folder 1" and "SS Folder") are not released via the option, because it does

not involve newly created objects.

6.2.5 Ensure accessibility (parent chain) and recursive release

(Server-side release: Release parent chain + recursive j

Meta:
. MS Folder in FILE

Media Store Root l

- MS Folder 2

Pict 2
new

L MS Folder 3

new

P|ct 3

Page Store Root l
PS Folder

changed

Page 1 references

_y MS Folder 1 1and Pict 3viaa
picture input

component

q Folder 1 references N
Ricti4 Pict 4 for the menu
new

... (Ref 1 references Page 1

Site Store

Figure 6-6: Server-side release — parent chain and recursive release

For calling accessutil.release(...) the following parameters were set:

releaseStartNode: Ref 1
releaseParentPath: true

boolean recursive: true

DependentReleaseType: NO DEPENDENT RELEASE

The selected start node for the release is page reference "Ref 1".

).

added to
release child
list

release parent
chain

Start node of
the release

Release
recursive

Ensuring accessibility (parent chain) and recursive release: Starting from the start node of the

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

233

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

release "Ref 1", the complete parent chain of the object up to the root node of the store is
considered. Through the option releaseparentpath, all nodes of the parent chain are released
which were not yet ever released (compare to Chapter 6.2.4, page 231). Additionally, all child
elements of the start point are recursively released (compare to Chapter 6.2.1, page 227). Based
on the example in Figure 6-6, it is easy to recognize that this release is limited to the site store,
because no dependencies are taken into account here (in contrast to Figure 6-7). During this
release it is to be noted that defective references may arise if one of the objects referenced in the
site store was newly created, this in the example, "Page 1" and the media "Pict 1" and "Pict 4".
The current configuration in the example (compare to Figure 6-6) will thus lead to an error within
the release, because the page referenced, "Page 1", was never released. If the references
indicate objects that were already released once ("changed"), the respective last released
versions of the objects are referenced. In this case, the release from the example could be
successfully run.

6.2.6 Ensure accessibility (parent chain) and dependent release

Server-side release: Release parent chain + new and changed objects

Page Store Root
_____________________ added to
| ! release child
Meta: i PS Folder | e
MS Folderin FILE |~ " " " 0t m rmm e E e et S s nannaaa changed

Page 1 L €——— Ref 1 references Page 1 N
new dependent
release

Page 2
Page Store

Media Store Root

Page 1 references Pict

= MS Folder 1 1land Pict3viaa
picture input Site Store Root

component
pr—— added to
: SS Folder E release child

1 list

added to
release child
list

release parent
chain

dependent —

release Ref 1

1) Start node of
the release

Folder 2

L Ref 2

release
parent
chain

Folder 1 references
Pict 4 for the menu

dependent
release

Site Store

Media Store

Figure 6-7: Server-side release — release parent chain and dependent objects

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

234

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

For calling AccessUtil.release(...) the following parameters were set:

releaseStartNode: Ref 1

releaseParentPath: true

boolean recursive: false

DependentReleaseType:

DEPENDENT RELEASE NEW AND CHANGED| |DEPENDENT RELEASE NEW ONLY

The selected start node for the release is page reference "Ref 1".

Ensure accessibility (parent chain) and dependent release: If the options
DEPENDENT RELEASE NEW ONLY OF DEPENDENT RELEASE NEW AND CHANGED are combined with the

option releaseParentPath, the dependent release affects the current start node and the release
of never before released elements of the parent chain. For the release of a page reference, for
example, this means that the page referenced there is released. The whole parent chain is now
run through for the referenced page as well, and a search is run for elements that were never
released. These elements are likewise released. The same applies to dependent objects in the
media store.

= For the page reference "Ref 1", the entire parent chain is run through. There, all never
released objects are released, in other words, in the example, the new menu level "Folder 1"
is released, but not the changed menu level "SS Folder".

= The menu level "Folder 1" has an outgoing reference in the media store. Through the
dependent release, the medium "Pict 4" is also released.

= For the "Pict 4" medium, now, in turn, the entire parent chain is run through and all never
released objects are released. In the example, only the new media folder "MS Folder 3" is
released.

= During release of page reference "Ref 1", the page referenced, "Page 1", is released.

= For page "Page 1", now, in turn, the entire parent chain is run through and all never released
objects are released. In the example, no object is affected, because the parent node "PS
Folder" was already released once. Dependent objects of the "PS Folder" folder are therefore
not taken into account during the dependent release.

= However, "Page 1" that was released dependently still has outgoing references in the media
store. The media referenced, "Pict 1" and "Pict 3", are likewise released dependently.

= For both media, the parent chain is now likewise examined. Because the common parent
node "MS Folder 2" had only changed, no release is run here.

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 235

FirstSpirit™ Manual for Developers (Basics) F i IS t SpiritTM

E] All outgoing references for the dependent release are only completely taken into
account in one direction. If all dependent objects are to be contained in the release
process, the release thus has to be carried out in a certain order (see Chapter 6.2.8, page
238).

6.2.7 Ensure accessibility (parent chain), recursive and dependent release

(Server-side release: Release parent chain + recursive + new and changed objects)

Page Store Root

release
parent chain

Meta:
MS Folder in FILE

dependent
release

Media Store Root

1 Page 1 references Pict
dependent 1and Pict 3 viaa
release picture input
component

release parent
chain

release parent
chain

E
G

dependent

Folder 2 references
Pict 2 for the menu

release

Release
recursive

release
parent chain

dependent
release

Folder 1 references
Pict 4 for the menu

Media Store

Figure6-8: Server-side release including all options

For calling accessutil.release(...) the following parameters were set:

releaseStartNode: Folder 1

releaseParentPath: true

boolean recursive: true

DependentReleaseType:

DEPENDENT RELEASE NEW AND CHANGED| |DEPENDENT RELEASE NEW ONLY

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

236

FirstSpirit™ Manual for Developers (Basics)

The selected start node for the release is the "Folder 1" menu level.

Ensure accessibility (parent chain), release recursively and dependently: The most

comprehensive release is executed if all release options are combined with one another. In this
case, all never-before released elements of the parent chain as well as elements beneath the
start node are released. In addition, the dependent objects of all nodes affected by the release
process are released; the entire parent chain is examined and released there as well. The
recursive release has no effect on the dependent objects, unlike the release of the parent chain.
Based on the example in Figure6-8, it is clear that the release has an effect on nearly all objects
shown — only "Page 2" is not affected:

At the release start point "Folder 1", the option recursive is evaluated. The recursive release
has an effect solely on the child elements of the release start point. In the example from
Figure6-8, through the option, the child elements Ref 1, Folder 2 and Ref 2 are released.

All outgoing references of the released objects are released. In the example, this is the
objects "Pict 4" (via the reference within the menu level "Folder 1"), "Page 1" (via the page
reference "Ref 1"), "Pict 2" (via the reference within the menu level "Folder 2")

From these released objects, the outgoing edges are again examined and released. In the
example, these are the media "Pict 1" and "Pict 3" (via the reference within page "Page 1").
The complete parent chains are examined for all released elements, and all never-released
parent nodes are released. In the example, this is the "SS Folder" (parent element start
node), "PS Folder" (parent element "Page 1"), "MS Folder 2" (parent element "Pict 1" and
"Pict 2"), "MS Folder 3" (parent element "Pict 4").

Now, the dependent objects of the released parent nodes are released. In the example, this
is "MS Folder 1" (via the reference in "PS Folder"). Differently than with the release option
releaseParentPath, "MS Folder 1" is then also released if it was only "changed", in other
words, was already released once.

n All outgoing references for the dependent release are only completely taken into
account in one direction. If all dependent objects are to be contained in the release
process, the release thus has to be carried out in a certain order (see Chapter 6.2.8, page
238).

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

FirstSpirit

237

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

6.2.8 Order for the release

All outgoing references for the dependent release are only completely taken into account in one
direction, in order to eliminate cyclical dependencies during the release.

n Objects from page and media stores, which are referenced in the content, structure
or content store, are taken into account during the dependent release.

The reverse direction (site / media store— page / site / content store) does not function.

n Objects from remote projects are not taken into account during dependent release.

If all dependent objects are contained in the release process, the following order has to be
maintained:

= Release in the site store contains outgoing references to the content and the media store
= Release in the page store contains outgoing references to the media store

The following are not taken into account:

= Release in the page store contains no outgoing references to the site store.
= Release in the media store contains no outgoing references to the site store or the page
store.

Other cases in which dependent objects are shown in the reference graph but are not released
during the dependent release.

= Page—Page reference: Page with an FS_REFERENCE component, in which a page
reference is referenced.
= Only the page is released, not the dependent page reference.

= Page—Medium: Page with the page template in which a medium reference is hard-coded.
For example: $CMS_REF(media:"XXX")$ in the HTML channel.
= Only the page is released, not the dependent medium.

= Medium—Media file: In a CSS file (file parsing: yes), an additional hard-coded reference to a
media file (for example, a picture) is made. Both media are not yet released.
= If the CSS file is released ("Specific release -> Release dependent objects"), the medium
referenced is not released with it.

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 238

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

= Page with LINK/DOM editor—Page reference: Both referenced objects are not yet released.

= The medium referenced (image) was also released, but the page reference referenced
was not.

= Page—Data records: Page with the CONTENTLIST/FS_LIST/... component in which data
records are referenced.
= CS object is not released with it.

n Under certain circumstances, there can be cyclical dependencies that cannot be
released automatically and therefore have to be triggered manually.
Example: There are 2 pages in the page store ("Page 1" and "Page 2"), each with one
section and a section reference to the other page's section:
-- Page 1

-- Section A

-- Section reference on section B of page 2
-- Page 2

-- Section B

-- Section reference to section A of page 1

If the section references are not yet released, neither page 1 nor page 2 can be released
automatically in this configuration. In order to release the pages, first one of the section
references has to be deleted in order to display the cyclical dependency, for example,
"Section reference on section B of page 2". Then page 2 can be released. Then the
section reference has to be restored, after which page 1 can also be released.

There are some cases in which the dependent objects are shown in reference graphs but are not
released during the dependent release.

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15

239

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

7 Code completion for forms

In order to support template developers better during form creation, with FirstSpirit Version 5.0, a
code completion program has been introduced on the form tab. Using this code completion, all
available FirstSpirit input components and all corresponding parameters along with available
values are shown at the press of a button and inserted at the insert mark on the form tab, for
example:

y |
5§ Homepage

Freview: Froperties Farm Rules

|_ Templates (3 Page Templstes Haomepage

4 <FFS_BUTTOM

5 |FS_DATASET

6 F3 LIST

7 F3_REFERENCE

Figure 7-1: Auto completion on the form tab

To do so, the insert mark has to be positioned within a <CMS_MODULE> tag.

n You can look up tags and parameters for the input components, data and design
elements with the respective values and their syntax and meaning in the FirstSpirit Online
Documentation, Chapter "Template development"/ "Forms".

7.1.1 Inserting the input component tags

In order to determine input component tags (FS_ ... and CMS .. .), a pointy bracket has to be
opened (<) and the cursor positioned after it. The tags are then shown in a list, if <Ctrl> and the
space bar are held down at the same time. The desired tag can then be applied using the
keyboard (cursor button up and down and <Enter> or the mouse (double click or click and
<Enter>) on the form tab. The opening and closing tag and mandatory parameters (usually
name) are inserted in the process, for example, when selecting FS_ BUTTON:

| <FS_BUTTON name=""></FS_BUTTON> |

The cursor is then located between the quotation marks of the name parameter.

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 240

FirstSpirit™ Manual for Developers (Basics) F i ISt Spifit

The number of tags shown can be limited by entering the initial letter(s) of the desired input
components after the pointy bracket, for example <c for the input components beginning with
"CMS_" or <F for the input components beginning with "FS_".

n Crossed-out entries on the list are old and should not be used.

7.1.2 Inputting tags, parameters and key terms

In order to be able to show and select an input component's available tags, parameters and key
terms, the cursor has to be positioned as follows depending on form syntax:

= In opening tags: In order to show parameters within an open tag, there has to be an blank
space behind the cursor.

= Between opening and closing tags: In order to show tags between opening and closing
tags, an opening pointed bracket has to be behind the cursor (<).

= |n quotation marks: In order to show FirstSpirit preset values ("key terms") for a parameter,
the cursor has to be positioned inside the quotation marks.

Only tags, parameters and key terms that are available for the selected tag or parameter are
ever shown. Tags or parameters already used for the form that can only be used once are no
longer shown in the list.

If the desired tags, parameters and key terms are already known, the first letter(s) can be
entered. With <Ctrl> + space bar, the number of entries to be selected is reduced and and the
entry is directly inserted. Mandatory parameters are also inserted directly to the extent possible.

n Crossed-out entries on the list are old and should not be used.

FirstSpirit 5.0 = DEVB50DE_FirstSpirit_DeveloperDocumentationBasics = 1.16 = RELEASED = 2013-05-15 241

	1 Introduction
	1.1 Topics of this documentation
	1.2 Classification in the complete documentation
	1.3 General terms
	1.3.1 Templates
	1.3.2 New input components
	1.3.3 Content Store
	1.3.4 Workflows
	1.3.5 Integrated preview
	1.3.6 Content Highlighting & EasyEdit
	1.3.7 Centralized error correction and system reporting

	2 FirstSpirit JavaClient template store
	2.1 General
	2.2 General template store context menus
	2.2.1 New
	2.2.2 Editing on/off
	2.2.3 Reverting changes
	2.2.4 Cut
	2.2.5 Copy
	2.2.6 Paste
	2.2.7 Rename
	2.2.8 Delete
	2.2.8.1 Deleting objects in use

	2.3 Special template store context menus
	2.3.1 Update
	2.3.2 Export
	2.3.2.1 Exporting folders
	2.3.2.2 Exporting templates
	2.3.2.3 Exporting style and table format templates, link templates and scripts
	2.3.2.4 Exporting schemata
	2.3.2.5 Exporting table templates and queries
	2.3.2.6 Exporting workflows

	2.3.3 Import
	2.3.3.1 Importing style and table format templates
	2.3.3.2 Importing schemata
	2.3.3.3 Importing workflows

	2.3.4 Restoring deleted objects
	2.3.5 Edit externally

	2.4 Template store administrative context menus
	2.4.1 Version history
	2.4.2 Starting a workflow
	2.4.3 Running a script
	2.4.4 Search in templates
	2.4.5 Tools – Change permissions
	2.4.6 Tools – Delete write protection
	2.4.7 Tools – Select/remove preview graphic
	2.4.8 Tools – Display properties
	2.4.9 Tools – Display uses
	2.4.10 Tools – Apply template changes
	2.4.11 Tools – Cancel editing
	2.4.12 Tools – Change reference name
	2.4.13 Tools – Show dependencies
	2.4.14 Tools – Create copy of this workflow

	2.5 Page templates
	2.5.1 Preview tab
	2.5.2 Properties tab
	2.5.3 Form tab
	2.5.4 Template sets tab
	2.5.5 Rules tab
	2.5.6 Snippet tab

	2.6 Section templates
	2.6.1 Preview, Properties, Form, Template sets, Rules and Snippet tabs

	2.7 Format templates
	2.7.1 Properties tab
	2.7.2 Template sets tab

	2.8 Style templates
	2.8.1 Introduction: Inline tables
	2.8.2 Creating a style template
	2.8.3 Form area of a style template
	2.8.3.1 Preventing layout editing for editors

	2.8.4 Preassigning layout attributes
	2.8.5 Presentation channel of a style template
	2.8.6 Linking with standard table format templates
	2.8.7 Examples
	2.8.7.1 Example: Text input component for entering a background color
	2.8.7.2 Example: Input component for entering a text color
	2.8.7.3 Example: Input component for entering text alignment

	2.9 Table format templates
	2.9.1 Creating and editing display rules
	2.9.2 Evaluation order
	2.9.3 Inserting an inline table in the DOM editor

	2.10 Link templates
	2.10.1 Standard link types
	2.10.2 Generic link editors

	2.11 Scripts
	2.11.1 Properties tab
	2.11.2 Form tab
	2.11.3 Template sets tab

	2.12 Database schemata
	2.12.1 New: Create schema
	2.12.2 New: Creating a schema from a database
	2.12.3 The FirstSpirit schema editor
	2.12.4 Table templates
	2.12.4.1 Table templates – Preview, properties and form tabs
	2.12.4.2 Table templates – Mapping tab
	2.12.4.3 Table templates – Template sets tab

	2.12.5 Queries
	2.12.5.1 Query – Conditions tab
	2.12.5.2 Query – Parameter tab
	2.12.5.3 Query – Result tab
	2.12.5.4 Query – Result (release) tab

	2.13 Workflows

	3 Content sources in FirstSpirit
	3.1 Terms
	3.2 Standard layer
	3.3 DBA layer
	3.4 Content sources in FirstSpirit JavaClient

	4 Workflows
	4.1 Overview
	4.1.1 Task search (filtered overview)
	4.1.2 Editing tasks
	4.1.3 Closing tasks

	4.2 Modeling workflows
	4.2.1 Creating a workflow
	4.2.2 Workflow editor tool bar
	4.2.3 Elements of the graphical workflow editor
	4.2.3.1 State/status
	4.2.3.2 Activity
	4.2.3.3 Transition

	4.2.4 Keyboard shortcuts in the workflow editor
	4.2.5 Operating assistance for the editor
	4.2.6 Rules of modeling
	4.2.7 Examples for modeling rules
	4.2.8 Print preview for workflow models

	4.3 Error handling in workflows
	4.3.1 General error handling
	4.3.2 Error state
	4.3.3 Example: "Error" workflow

	4.4 Form support for workflows (form)
	4.4.1 Example: "GUI" workflow

	4.5 Properties of a workflow (configuration)
	4.5.1 General properties
	4.5.2 Display logic for workflows
	4.5.3 Properties of a state
	4.5.3.1 General tab
	4.5.3.2 Color coding tab

	4.5.4 Properties of an activity
	4.5.4.1 General tab
	4.5.4.2 E-mail tab

	4.5.5 Properties of a transition
	4.5.5.1 General tab
	4.5.5.2 Permissions tab
	4.5.5.3 E-mail tab

	4.6 Permission configuration for workflows
	4.6.1 General permission configuration using the template store
	4.6.2 Changing or locking editor preselection
	4.6.2.1 Manual editor (for each action)
	4.6.2.2 Automatic editor using permissions

	4.6.3 Context-dependent permissions for starting a workflow
	4.6.4 Context-dependent permissions for switching a workflow
	4.6.5 Effects on the permissions configuration

	4.7 Write protection within workflows
	4.7.1 General
	4.7.2 Write protection when creating and moving
	4.7.3 Write protection within scripts

	4.8 Use of scripts in workflows
	4.8.1 Automatic activities and scripts
	4.8.2 Manual activities and scripts
	4.8.3 Workflow context
	4.8.4 Example: Output of messages in workflows
	4.8.5 Example: Persistent content within workflows

	4.9 Deleting via a workflow
	4.9.1 Deleting via a workflow in the JavaClient
	4.9.2 Deleting via a workflow in the WebClient
	4.9.3 Permissions configuration
	4.9.4 Example: "Delete" workflow
	4.9.5 Example: "ContentDeleteDemo" workflow

	4.10 Workflows with a complex function
	4.10.1 Example: "RecursiveLock" workflow
	4.10.2 Example: "RecursiveRelease" workflow

	4.11 Multiple workflow selection
	4.11.1 Multiple workflow selection
	4.11.2 Requirements for starting and advancement
	4.11.3 Multiple selection via the task list
	4.11.4 Multiple selection via the "Workflows" overview

	5 Tracking changes via revision-metadata
	5.1 Get revision
	5.2 Determining changes to a revision
	5.2.1 Determining the type of change
	5.2.2 Determining changed elements

	5.3 Changes since the last deployment
	5.4 Changes between two revisions

	6 Server-side release
	6.1 Default release
	6.2 Specific release
	6.2.1 Recursive release
	6.2.2 Dependent release
	6.2.3 Dependent release with recursive release
	6.2.4 Ensuring accessibility (parent chain)
	6.2.5 Ensure accessibility (parent chain) and recursive release
	6.2.6 Ensure accessibility (parent chain) and dependent release
	6.2.7 Ensure accessibility (parent chain), recursive and dependent release
	6.2.8 Order for the release

	7 Code completion for forms
	7.1.1 Inserting the input component tags
	7.1.2 Inputting tags, parameters and key terms

