

FirstSpirit™ Manual for Developers
(Basics)
FirstSpirit™ Version 5.0

Version 1.16

Status RELEASED

Date 2013-05-15

Department FS-Core

Copyright 2013 e-Spirit AG

File name DEVB50EN_FirstSpirit_DeveloperDocumentationBasics

e-Spirit AG

Barcelonaweg 14
44269 Dortmund | Germany

T +49 231 . 477 77-0
F +49 231 . 477 77-499

 info@e-Spirit.com
 www.e-spirit.com

http://www.e-spirit.com/
mailto:info@e-spirit.com
http://www.e-spirit.com/en

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 2

Table of contents

1 Introduction ... 9

1.1 Topics of this documentation .. 9

1.2 Classification in the complete documentation ... 11

1.3 General terms.. 12

1.3.1 Templates ... 12

1.3.2 New input components ... 13

1.3.3 Content Store .. 14

1.3.4 Workflows ... 15

1.3.5 Integrated preview ... 17

1.3.6 Content Highlighting & EasyEdit .. 19

1.3.7 Centralized error correction and system reporting 20

2 FirstSpirit JavaClient template store .. 21

2.1 General .. 21

2.2 General template store context menus ... 22

2.2.1 New ... 23

2.2.2 Editing on/off .. 26

2.2.3 Reverting changes ... 27

2.2.4 Cut .. 27

2.2.5 Copy ... 28

2.2.6 Paste .. 29

2.2.7 Rename ... 30

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 3

2.2.8 Delete ... 31

2.3 Special template store context menus ... 34

2.3.1 Update ... 34

2.3.2 Export ... 35

2.3.3 Import ... 38

2.3.4 Restoring deleted objects .. 43

2.3.5 Edit externally .. 45

2.4 Template store administrative context menus ... 47

2.4.1 Version history... 47

2.4.2 Starting a workflow... 48

2.4.3 Running a script .. 48

2.4.4 Search in templates ... 48

2.4.5 Tools – Change permissions .. 48

2.4.6 Tools – Delete write protection ... 49

2.4.7 Tools – Select/remove preview graphic .. 49

2.4.8 Tools – Display properties ... 50

2.4.9 Tools – Display uses ... 52

2.4.10 Tools – Apply template changes ... 52

2.4.11 Tools – Cancel editing .. 53

2.4.12 Tools – Change reference name ... 53

2.4.13 Tools – Show dependencies ... 53

2.4.14 Tools – Create copy of this workflow ... 54

2.5 Page templates ... 55

2.5.1 Preview tab... 56

2.5.2 Properties tab .. 57

2.5.3 Form tab .. 59

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 4

2.5.4 Template sets tab ... 60

2.5.5 Rules tab ... 61

2.5.6 Snippet tab ... 62

2.6 Section templates... 63

2.6.1 Preview, Properties, Form, Template sets, Rules and Snippet tabs 64

2.7 Format templates ... 65

2.7.1 Properties tab .. 66

2.7.2 Template sets tab ... 68

2.8 Style templates ... 69

2.8.1 Introduction: Inline tables ... 69

2.8.2 Creating a style template ... 70

2.8.3 Form area of a style template ... 71

2.8.4 Preassigning layout attributes .. 74

2.8.5 Presentation channel of a style template .. 75

2.8.6 Linking with standard table format templates 75

2.8.7 Examples .. 77

2.9 Table format templates ... 80

2.9.1 Creating and editing display rules ... 82

2.9.2 Evaluation order .. 86

2.9.3 Inserting an inline table in the DOM editor 87

2.10 Link templates ... 88

2.10.1 Standard link types .. 89

2.10.2 Generic link editors .. 89

2.11 Scripts .. 91

2.11.1 Properties tab .. 92

2.11.2 Form tab .. 94

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 5

2.11.3 Template sets tab ... 95

2.12 Database schemata .. 96

2.12.1 New: Create schema ... 97

2.12.2 New: Creating a schema from a database 101

2.12.3 The FirstSpirit schema editor .. 104

2.12.4 Table templates .. 111

2.12.5 Queries .. 114

2.13 Workflows ... 118

3 Content sources in FirstSpirit ... 119

3.1 Terms ... 120

3.2 Standard layer ... 121

3.3 DBA layer.. 122

3.4 Content sources in FirstSpirit JavaClient .. 124

4 Workflows .. 126

4.1 Overview ... 127

4.1.1 Task search (filtered overview) .. 129

4.1.2 Editing tasks ... 131

4.1.3 Closing tasks ... 132

4.2 Modeling workflows ... 133

4.2.1 Creating a workflow ... 133

4.2.2 Workflow editor tool bar .. 134

4.2.3 Elements of the graphical workflow editor 135

4.2.4 Keyboard shortcuts in the workflow editor 137

4.2.5 Operating assistance for the editor ... 138

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 6

4.2.6 Rules of modeling .. 138

4.2.7 Examples for modeling rules .. 139

4.2.8 Print preview for workflow models... 140

4.3 Error handling in workflows ... 142

4.3.1 General error handling .. 142

4.3.2 Error state ... 142

4.3.3 Example: "Error" workflow ... 145

4.4 Form support for workflows (form) .. 147

4.4.1 Example: "GUI" workflow ... 149

4.5 Properties of a workflow (configuration) .. 150

4.5.1 General properties ... 150

4.5.2 Display logic for workflows .. 151

4.5.3 Properties of a state ... 152

4.5.4 Properties of an activity .. 156

4.5.5 Properties of a transition .. 161

4.6 Permission configuration for workflows ... 165

4.6.1 General permission configuration using the template store 165

4.6.2 Changing or locking editor preselection .. 166

4.6.3 Context-dependent permissions for starting a workflow 169

4.6.4 Context-dependent permissions for switching a workflow 172

4.6.5 Effects on the permissions configuration .. 173

4.7 Write protection within workflows .. 178

4.7.1 General .. 178

4.7.2 Write protection when creating and moving 178

4.7.3 Write protection within scripts ... 179

4.8 Use of scripts in workflows .. 180

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 7

4.8.1 Automatic activities and scripts .. 180

4.8.2 Manual activities and scripts ... 180

4.8.3 Workflow context .. 181

4.8.4 Example: Output of messages in workflows 183

4.8.5 Example: Persistent content within workflows 185

4.9 Deleting via a workflow ... 187

4.9.1 Deleting via a workflow in the JavaClient 187

4.9.2 Deleting via a workflow in the WebClient .. 189

4.9.3 Permissions configuration ... 190

4.9.4 Example: "Delete" workflow .. 193

4.9.5 Example: "ContentDeleteDemo" workflow 196

4.10 Workflows with a complex function ... 199

4.10.1 Example: "RecursiveLock" workflow .. 199

4.10.2 Example: "RecursiveRelease" workflow ... 203

4.11 Multiple workflow selection .. 207

4.11.1 Multiple workflow selection .. 207

4.11.2 Requirements for starting and advancement 208

4.11.3 Multiple selection via the task list .. 209

4.11.4 Multiple selection via the "Workflows" overview 210

5 Tracking changes via revision-metadata 211

5.1 Get revision .. 212

5.2 Determining changes to a revision ... 213

5.2.1 Determining the type of change ... 213

5.2.2 Determining changed elements ... 214

5.3 Changes since the last deployment ... 215

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 8

5.4 Changes between two revisions .. 219

6 Server-side release .. 223

6.1 Default release .. 224

6.2 Specific release .. 224

6.2.1 Recursive release .. 227

6.2.2 Dependent release... 228

6.2.3 Dependent release with recursive release 229

6.2.4 Ensuring accessibility (parent chain) .. 231

6.2.5 Ensure accessibility (parent chain) and recursive release 233

6.2.6 Ensure accessibility (parent chain) and dependent release 234

6.2.7 Ensure accessibility (parent chain), recursive and dependent release

 ... 236

6.2.8 Order for the release ... 238

7 Code completion for forms ... 240

7.1.1 Inserting the input component tags... 240

7.1.2 Inputting tags, parameters and key terms 241

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 9

1 Introduction

The objective of this Manual is to describe the implementation of FirstSpirit™ projects from the

perspectives of developers. In this context, the structure of the documentation has been chosen

to provide an overview of FirstSpirit™ mechanisms and respective applications that is as

comprehensive as possible (see Chapter 1.1, page 9).

Some areas, particularly those required for template development, are already documented in

detail in the FirstSpirit™ online documentation. For introducing the FirstSpirit™ concept from the

perspective of template development, Chapter 1.3 provides an explanation of general terms

(starting on page 12).

 This document is provided for information purposes only. e-Spirit may change the

contents hereof without notice. This document is not warranted to be error-free, nor

subject to any other warranties or conditions, whether expressed orally or implied in law,

including implied warranties and conditions of merchantability or fitness for a particular

purpose. e-Spirit specifically disclaims any liability with respect to this document and no

contractual obligations are formed either directly or indirectly by this document. The

technologies, functionality, services, and processes described herein are subject to

change without notice.

1.1 Topics of this documentation

This documentation describes the relevant functions and aspects for template development in

FirstSpirit. The structure is based largely on the user interface of FirstSpirit JavaClient.

The FirstSpirit JavaClient Template Store and all the available context menus and editing options

are described in Chapter 2 (see Chapter 2 starting on page 21).

FirstSpirit has efficient mechanisms for connecting databases. Chapter 3 handles the types of

layers available in FirstSpirit for connecting databases and lists some general recommendations

for handling data sources in FirstSpirit (see Chapter 3, page 119).

Workflows are a sequence of tasks that are processed according to a fixed, defined structure.

For example, they can be used to model release processes. Chapter 4 explains the workflow

editor used in FirstSpirit, including all configuration options (see Chapter 4 starting on page 126).

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 10

FirstSpirit provides an option for tracking changes via the FirstSpirit Access API. Chapter 5

describes access to revision metadata using specific API functions. Revision metadata contains

information on the type (which changes took place?) and the scope (which elements were

changed?) of a change to the project (see Chapter 5, page 211).

In addition to release via a workflow, all objects in FirstSpirit can be released server-side via the

Access API. Chapter 6 shows the methods for defining different release settings for an object

(see Chapter 6, page 223).

To support template developers, code completion is being introduced on the Form tab in

FirstSpirit Version 5.0. Chapter 7 explains how, via this code completion, all FirstSpirit input

components, as well as the parameters belonging to them, can be shown and inserted with the

push of a button.

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 11

1.2 Classification in the complete documentation

Some areas, particularly the areas required for template development, are already documented

in detail in the FirstSpirit™ online documentation. The classification of developer documentation

in the complete documentation is illustrated in Figure 1-1.

FirstSpirit Manual for

Developers (Basic Principles)

FirstSpirit

Online Documentation (HTML)

FirstSpirit

Access API
Javadoc

FirstSpirit Manual for Editors

JavaClient (PDF)

FirstSpirit Manual for Editors

(WebClient) (PDF)

FirstSpirit Manual for

Administrators (PDF)

FirstSpirit Installation

Guide (PDF)

 requires

FirstSpirit Interfaces

 refers to

FirstSpirit Manual for

Developers (Components)

For Developers

For Editors For Administrators

Figure 1-1: Classification of the developer documentation in the complete documentation

At least basic knowledge of the Manual for Editors and the Manual for Administrators is expected

for understanding the following chapters. A detailed description of individual template

components and the interfaces is given in the FirstSpirit Online Documentation.

Due to its scope, the documentation for developers is divided into this Manual, which explains

the basic aspects of template development, and the Developer Manual for Components, which

describes special aspects involving the development of modules and components for FirstSpirit.

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 12

The Manual for Developers (basics) examines the aspects listed in Chapter 1.1 (page 9).

The Developer Manual for Components examines the following aspects, among others:

 Installing and configuring modules

 The structure of modules and components

 The FirstSpirit GUI Object Model GOM

 The FirstSpirit security architecture

 Example listings

Knowledge of the following areas is also helpful for understanding the chapters that describe

expanding and adapting FirstSpirit:

 Programming in Java / BeanShell

 Relational database technology

1.3 General terms

1.3.1 Templates

Templates form the basis for every website. In them, the complete layout of the web page is

taken into account (among other things, corporate design and corporate identity). Templates are

needed to connect the contents entered in the page store and the media integrated into the

media store to the structure stored in the site store for a complete presentation when generating

the web page.

The basics of template development are communicated in a detailed, step-by-step-guide in the

FirstSpirit Online Documentation. The creation of the first templates is explained there based

on a simple example. The output language is HTML (see FirstSpirit Online Documentation /

Basics chapter / Step by step).

In FirstSpirit, different types of templates are available to the developer:

 Page templates create the basic framework of a page. The placement of logos and

navigation tools as well as similar, general settings are set in page templates. Moreover, the

page templates define the locations where an editor can insert content.

 Section templates are used to insert content into this basic framework. Section templates

are subdivided into individually specified input windows via which the editor can maintain the

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 13

editorial content of the section (in the Page Store).

 The formatting is defined in Format templates, which can be used in connection with the

DOM editor input element in the Page Store.

 The appearance of links is specified in detail by Link templates within a FirstSpirit project.

The template developers define all the input fields in which the editors can enter all required

content and the appearance of the link on the HTML page.

All template types are updated and administered in the FirstSpirit Template Store.

With FirstSpiritVersion 5.0, line numbers are indicated at many places in the Template Store as a

reading aid. They can be shown or hidden in JavaClient using the keyboard shortcut Ctrl + L.

1.3.2 New input components

In the scope of the fundamental revision that began with FirstSpirit Version 4.2 and the

consolidation of the input component model (compare with "FirstSpirit Roadmap 2009-2012"), a

series of input components that were previously separate were introduced together.

This consolidation affects the following input component groups:

 Single-value input components: link to other FirstSpirit objects, for example,

CM_INPUT_FILE, CM_INPUT_PICTURE, CM_INPUT_PAGEREF, etc.

 Set-valued input components: CM_INPUT_CONTENTLIST, CM_ INPUT_TABLIST,

CM_INPUT_CONTENTAREALIST, CM_INPUT_lLINKLIST

The new generation of input components,officially released with FirstSpirit Version 5.0, is

identified with the prefix "FS_" instead of the previous "CMS_INPUT_".

 For additional information on the new input components, see the FirstSpirit Online

Documentation
1
.

1
 ../Vorlagenentwicklung/Formulare/Eingabekomponenten (new)

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 14

1.3.3 Content Store

The Content Store creates and administers heavily structured data inventories that are to be

used and updated in FirstSpirit. Such inventories are product catalogs and address lists, for

example. These data inventories are subjected to frequent changes. Usually, such data is

collected in databases. The Content Store data is saved in a relational database system

supported by FirstSpirit.

The separation of layout, content and structure applies for data collection in the Content Store. In

order to guarantee this, in the schema area (in the Template Store), the structure of the data and

the layout for the data acquisition screen is specified. With this layout, the content is

administered in database tables in the Content Store. In the Site Store, these databases can

then be inserted into the Website structure.

In a first step, a database schema is created in the Template Store via a graphic editor. This

schema can be created either based on an existing database structure and, if needed, adapted

in the schema editor, or generated as an empty schema in order to structure it with the aid of the

schema editor. In this schema, the tables and relations of a data model are to be mapped. In the

table templates, input elements are then defined for the table columns and queries formulated for

the data inventory.

In the Content Store, the data inventories are updated by the responsible editor. For this

purpose, database tables are created based on the settings in the Template Store and filled with

content via the input elements configured.

To illustrate the structured content on a Website, the database table is inserted as a content

source on a page of the Page Store. This page then becomes referenced in the Site Store.

Settings for the display of data records can be made on this page reference. For example, if only

a certain section of the database table is to be displayed, the queries defined in the Template

Store can be called up here.

All Content Store menus are described in the "Documentation for Editors (JavaClient)".

 For the concept on working with "Schemes, table templates, views of a database",

see Chapter 3, page 119.

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 15

1.3.4 Workflows

A workflow is a sequence of tasks that are completed in a fixed, predefined structure. The tasks

also serve to transfer an object, for example, a page from the page store, from a start state (for

example, "Page changed") to an end state (for example, "Changed page checked and

released"). Due date deadlines and groups of authorized persons can be defined for the tasks to

be run between these states.

The workflows can be shown with a graphic editor in the Template Store. The task of the

Workflow Editor is to describe the workflow as abstractly and completely as possible. The

graphically created model can also be used subsequently as a basis for user support when

carrying out the work process.

The structure (sequence of tasks) and the properties (for example, without context) of a workflow

and the definition of authorized persons and groups who may move from one task to the task that

follows are defined within the Template Store (see Chapter4, page 126).

An example of a FirstSpirit workflow is the frequently used release process. It is the task of the

release process to ensure that a newly created entry made by an editor or a change to the

content is subjected to a test before going live. The release process can vary depending on

which workflows already are or are to be established in a company.

Figure 1-2: Example of a "simple" release

In this example, the editor-in-chief is responsible for inspecting the entries. Deployment is only

possible once the editor has checked the changes (see Figure 1-2).

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 16

Figure 1-3: Release with "technical and legal" inspection

In this example, the testing of articles specified for deployment is organized into "technical" and

"legal" partial steps (see Figure 1-3). These partial steps are normally carried out by different

people. In this case, the workflow ensures that the legal inspection is only done after the content

inspection, so that necessary content corrections also go through this inspection step. If a

correction should be necessary due to legal aspects, the model then assumes that a new content

inspection is unnecessary (this could, however, be necessary in application areas with different

circumstances).

Important aspects in the use of workflows include:

 Coordination of workflows into "logical" subareas:

Example: In the media store, only the workflows "B" and "C" are possible in area "A", while

the Site Store uses the workflow "E".

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 17

 Assigning users/groups and workflows:

Example: Workflow "B" may be carried out only by the user group "G".

 Defining rights in workflows:

Example: The transition to the state "legally inspected" can be carried out only by members

of the "Lawyers" group.

 Defining data fields that can (or must) be filled out by the user when going through the

workflows:

Example: The person doing the testing inserts a "legal test note" into the corresponding form

field.

For further information on generating workflows, see Chapter 4, page 126 ff.

1.3.5 Integrated preview

JavaClient provides a direct WYSIWYG preview with the "Integrated preview" function ("View" / "

Show integrated preview" menu). For template development, it can be used to check changes

directly in the presentation channel of templates (for example, HTML or XLS-FO) in the preview

window because every time the template is saved, the (configurable) preview page is updated.

Moreover an integrated form preview is available within the template store. If a template is

selected in the form area, a live view of the template being edited appears in the preview area

with the defined fallback values of the input components (see Figure 1-4).

The integrated preview can optionally be shown to the right next to the workspace or in an

external window.

All input fields can be edited directly within the integrated template preview. The template must

not be blocked for editing.

 The editing option just forms an aid for the template developer. With it, you can

check directly whether a defined, remote configuration provides the desired results for an

input component. However, the content entered is not saved in the Form preview. Default

values cannot be defined in the Form preview.

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 18

The default values for the input components can be defined with the "Default values" button

on the "Properties" tab of a template (see Chapter 2.5.2, page 57). The language-dependent

default values are shown in the preview area immediately after saving the properties.

Figure 1-4: Preview of the form area in the template store

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 19

1.3.6 Content Highlighting & EasyEdit

In order to make processing editorial content as easy and transparent as possible for the editor,

FirstSpirit offers a Content Highlighting function. This functionality links editorial maintenance in

FirstSpirit JavaClient to the output in the preview by automatically retrieving content and

highlighting it for editing. Content Highlighting functions bidirectionally.

In order to use this function in a project, the templates must first be adapted. The HTML

elements that are intended to be highlighted must be able to be referenced uniquely on an HTML

page. For this, identifiers known as editor identifiers are used; they can be stored by the template

developer within the HTML templates.

Because Content Highlighting was simplified with FirstSpirit Version 5.0, adapting existing

projects that still have the old functionality is absolutely necessary. Error-free use of Content

Highlighting cannot be ensured without these changes.

The template adaptations that are necessary for using the Content Highlighting function can have

an effect on WebClient 5 and are used there for the editorial processing of content. As in

JavaClient, the contents in WebClient are also highlighted in color and bordered surrounded by a

box. Control elements that allow the editor to edit the bordered contents directly (EasyEdit

functionality) are shown in this box.

A detailed description of the format templates and the style sheet is available in the FirstSpirit

online documentation2.

 The technologies used for Content Highlighting functionality are integrated into the

HTML source code of a FirstSpirit project more than the functions up to this point. The

ability to use Content Highlighting without making changes to a project's HTML cannot be

guaranteed. In particular, pixel-specific layouts in conjunction with CHTML can lead to

problems since some additional pixels are required in the HTML environment due to the

border around the highlighted content.

2
 FirstSpirit online documentation - Chapter: ../Advanced topics/Content highlighting

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 20

1.3.7 Centralized error correction and system reporting

Infrastructure for collecting errors and exceptions is provided. A loader icon is displayed in the

bottom left area of JavaClient for this; it continually shows data transmission during editing work.

A small exclamation mark is displayed in the icon when an exception occurs. Additional

information on the error that occurred can then be requested by clicking on the icon.

For more information on this function, refer to the FirstSpirit Manual for Editors (JavaClient),

subchapter "Centralized error collection and system reporting" in Chapter 3 "Menus and icons in

FirstSpirit JavaClient".

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 21

2 FirstSpirit JavaClient template store

2.1 General

Templates form the basis for every website. The complete website layout is taken into account in

these templates (including corporate design and corporate identity). Templates are needed to

connect the contents entered in the page store and the media entered in the media store to the

structure stored in the site store for a complete presentation when generating the web page.

Different types of templates can be defined and edited in the template store.

 Page templates (see Chapter 2.5, page 55)

 Section templates (see Chapter 2.6, page 63)

 Format templates (see Chapter 2.7, page 65)

 Style templates (see Chapter 2.8, page 69)

 Table format templates (see Chapter 2.9, page 80)

 Link templates (see Chapter 2.10, page 88)

Furthermore, additional editing options are available for:

 Scripts (see Chapter 2.11, page 91)

 Database schemata (see Chapter 2.12, page 96)

 Workflows (see Chapter 2.13, page 118)

Moving using drag-and-drop: Folders and templates can be moved in template management

using the mouse for drag-and-drop (indicated by a small square on the mouse pointer).

Copying using drag-and-drop: Furthermore, it is possible to copy folders and templates in

the template store by using the mouse for drag-and-drop while holding the Ctrl key (indicated by

a small plus on the mouse pointer).

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 22

 The user has to have the required permissions to use drag-and-drop (moving,

copying) for nodes in the template store. Otherwise an error message appears, "This

action cannot be performed (insufficient permissions)!"

With FirstSpiritVersion 5.0, line numbers are indicated at many places in the Template Store as a

reading aid. They can be shown or hidden in JavaClient using the keyboard shortcut Ctrl + L.

2.2 General template store context menus

Figure 2-1: General template store context menus

The template store context menus are described in the following chapters:

Context menu structuring (general, specific, administrative):

 Context menus are all structured according to the same schema:

 General functions are located in the top area (see this chapter)

 Specific functions for the selected node are located in the middle area (see Chapter 2.3,

page 34).

 Functions that are normally only needed by project administrators are located in the bottom

area. Normally, these functions cannot be performed by normal users and are disabled for

this reason (see Item 3) (see Chapter 2.4, page 47).

Calling up a context menu: To call up a context menu, an object such as a folder or template is

highlighted in the tree view on the left half of the screen and then the context menu for that node

is opened by right-clicking. Clicking the left mouse button selects the desired menu item.

Disabled menu items are shown in gray. If this is the case, the function is not available to the

user. The potential reasons for this are:

 The object is currently being edited by another template developer

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 23

 The state of the current object

 The user lacks the permissions to perform a specific action.

2.2.1 New

Figure 2-2: New function

New objects can be added to the project using the "New" context menu entry or the "New" icon in

the tool bar. The available selection depends on the object type for which the context menu or

function was called.

Overall, these objects can be created in the template store:

 Page and section templates

 Folders

 Format templates

 Table format templates

 Style templates

 Link templates

 Scripts

 Schemata

 Schemata from databases

 Table templates

 Queries

 Workflows

The function for creating a new object opens a dialog that has the following structure (see Figure

2-3):

 Display name

 Reference name

 Additional information (if it is necessary)

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 24

Figure 2-3: Creating a template

Display name: The language-dependent display name can be defined individually for every

project language. If language-dependent display of the tree view in JavaClient is activated(View /

Preferred display language menu), the display names entered here are displayed depending on

the selected project language. In contrast to unique reference names, language-dependent

designations can be changed at any time.

Reference name: A unique name for the new template is specified in the "Reference name"

field. Upon creation, the field for inputting the reference name is filled the same as the entry for

the display name. With that in mind, the display name is applied in the field (the first display

name entered if there are multiple languages). Blank spaces and special characters are replaced

by underscores in the process. The option for displaying the reference name allows the reference

name to be shown in Java Client's tree view (View / Preferred display language/ Show reference

names in tree menu). The reference name can be modified by the user during creation. After

being created, the reference name can be modified using the "Tools" context menu.

Subsequently modifying the reference name is, however, not recommended because otherwise

all of the references within the project are lost.

A unique reference to the template can be established using the reference name. In input

components (in the form area) for example, the unique reference name is used to establish

references to templates (see FirstSpirit online documentation, such as for the

CMS_INPUT_DOM input component).

If a reference name that has already been specified in another name space is entered when

creating a new object, the name is replaced by a unique name automatically, usually by

appending numbers to the name. (Invalid special characters are also replaced automatically.)

E.g.: A template page template already exists. A newly created section template called template

would then be saved under the reference name template_1 automatically.

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 25

The reference name for a template can be determined on the "Properties" tab (see Chapter

2.5.2, page 57).

 A reference name for a template should no longer be changed after creation since

otherwise all of the references within the project are lost!

 Clicking this button attaches the new template to the directory tree and it can be edited

further.

 Clicking this button cancels the operation. A new template is not created.

Special considerations

Folders

Unlike template reference names (see Chapter 2.2.1), folder names do not have to be uniquely

specified.

Table templates

A table template has to be created under the schema for each input table in the database model.

This table template defines which input components the editor can use later on to add data to the

corresponding tables and where this data is to be saved in the database.

In addition to the display and reference names, selecting a table from the database schema (see

Figure 2-4) for which the template is to be created is necessary to create a new table template

(also see: Chapter 2.12.1, page 97)

 The combobox is empty if the schema does not contain any tables. In that case, a

table template cannot be created.

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 26

Figure 2-4: Creating a table template

2.2.2 Editing on/off

Figure 2-5: Editing on/off function

You first have to enable editing mode in order to be able to make changes to an object. This

prevents another editor from simultaneously editing the same content and prevents conflicts that

could result from changing an element at the same time.

New objects can be blocked from being edited using the "Editing on/off" context menu entry on

the tool bar.

 Editing mode has to be disabled again after the desired changes have been made

in order to release the corresponding object for editing for other users. All changes made

are saved automatically upon exiting editing mode.

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 27

2.2.3 Reverting changes

Figure 2-6: Reverting changes function

This function can be used to undo changes made during the current editing operation that also

have not been saved yet. A confirmation prompt appears before changes are undone so that

content is not deleted accidentally.

The function is only active if editing mode is enabled on the object (see Chapter 2.2.2).

This function can be used for the following template store elements:

 Page and section templates

 Format (exception: system format templates), table and style templates

 Link templates

 Scripts

 Database schemata

 Table templates

 Queries

 Workflows

2.2.4 Cut

Figure 2-7: Cut function

This function can be used to cut an object from the current tree position and store it in the

clipboard.

 The "Cut" function is only carried out once the cut object is reinserted. If a cut object

is not reinserted, it retains its original tree position; i.e. it is not deleted.

These objects can then be inserted at another location using the Paste function (see Chapter

2.2.6).

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 28

This function can be used for the following template store elements:

 All template store folders

 Page and section templates

 Format (exception: system format templates and folders that contain system format

templates), table format and style templates

 Scripts

 Database schemata

 Table templates

 Queries

Workflows

2.2.5 Copy

Figure 2-8: Copy function

A copy of the current object is generated and stored in the clipboard using this function. These

objects can then be inserted at another location using the Paste function (see Chapter 2.2.6).

This function can be used for the following template store elements:

 All template store folders

 Page and section templates

 Format, table format and style templates

 Scripts

 Database schemata

 Table templates

 Queries

 Workflows

Copying using drag-and-drop: Furthermore, it is possible to copy folders and templates in

the template store by using the mouse for drag-and-drop while holding the Ctrl key (indicated by

a small plus on the mouse pointer).

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 29

 The user has to have the required permissions to use drag-and-drop (moving,

copying) for nodes in the template store. Otherwise an error message appears, "This

action cannot be performed (insufficient permissions)!"

2.2.6 Paste

Figure 2-9: Paste function

The contents of the clipboard are inserted at the current position in the tree structure using this

function. Thus, this function is only active if there is data in the clipboard that is allowed to be

inserted at the current position.

The clipboard is an area within JavaClient where a wide assortment of objects can be stored

(pages, page references, images, data records, sections, individual input components, text, files).

It is used as a "collection point" for the editor where materials and content can be centrally and

conveniently entered for later work steps.

More detailed information about the clipboard can be found in the release notes for FirstSpirit

5.0.

 Objects can only be inserted in the areas intended for the respective objects. It is

not possible, for instance, to paste a section template underneath the node for page

templates. In this case, the "Paste" entry is disabled.

This function can be used for the following template store elements:

 All template store root nodes

 All template store folders

 Database schemata (only for table templates)

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 30

2.2.7 Rename

Figure 2-10: Rename function

It is possible to modify the language-dependent display name of the current object in the

FirstSpirit JavaClient tree structure using this function. Calling this function opens a window with

the current display name; the name can then be modified.

Figure 2-11: Rename

 Unique reference names cannot be changed since otherwise the references to this

object would be lost (e.g. reference names from section or page templates). In this case,

the "Reference name" field is disabled and cannot be edited. Folders do not have unique

reference names. Thus, they can be renamed at any time.

This function can be used for the following template store elements:

 All template store folders

 Page and section templates

 Format, table format and style templates

 Link templates

 Scripts

 Database schemata

 Table templates

 Queries

 Workflows

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 31

2.2.8 Delete

Figure 2-12: Delete function

It is possible to delete the currently highlighted object or the currently highlighted tree section

using this function. A confirmation prompt prevents content from being deleted accidentally.

Project administrators have the option of restoring deleted elements (see Chapter 2.3.4, page

43).

The "Delete objects" function is available for the following elements:

 Page templates

 Section templates (see Chapter 2.2.8.1)

 Format, table format and style templates (system format templates cannot be deleted)

 Link templates

 Scripts

 Workflows

 Database schemata, queries and table templates

The "Delete tree sections" function is available for the following elements:

 All template store folders

For more detailed information on deleting objects and tree sections, see FirstSpirit Manual for

Editors, Chapter 3.2.8 "Delete".

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 32

2.2.8.1 Deleting objects in use

 This function is only available to project and server administrators.

Templates still being used by other objects in the client can also be deleted. In this case, the user

is shown a confirmation prompt before individual objects are deleted.

Figure 2-13: Deleting an object in use

 Clicking this button opens the "This object is still being referenced" dialog, which

shows the objects still currently using the object slated for deletion (see Figure 2-14).

Figure 2-14: This object is still being referenced

 Clicking this button deletes the object slated for deletion despite the uses present in the

project.

The reference continues to be shown in the reference graph after deletion. However, the deleted

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 33

object is now unknown. The reference is only removed after once again editing the existing

object.

Figure 2-15: Reference graphafter deleting an object still in use

Likewise, the user is shown a confirmation prompt before deleting multiple objects where at least

one of the objects is still in use. However, the prompt differs from the one for deleting a single

object (see Figure 2-16).

Figure 2-16: Deleting multiple objects in use

In this case, the usage of the corresponding objects cannot be visualized. A distinction in the

deletion process is made using the "Delete" and "Delete all" buttons.

Clicking "Delete all" deletes the selection objects as a group after a preceding prompt asking

whether the objects in use are to be deleted as well or skipped.

Clicking "Delete" would function the same as the deletion of multiple objects up to this point. In

this case, the deletion for each selected object has to be confirmed individually.

If the object to be deleted is a section template being used as a section restriction in the content

area of a page template, then this restriction is automatically removed from the list of allowed

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 34

section templates for the content area upon deletion of the section template. If, in this context, it

is the only section restriction for the content area, all section templates are allowed for this

content area after refreshing the page template (also refer to Chapter 2.5.2, page 57).

2.3 Special template store context menus

Figure 2-17: Special context menus – Template store (root)

Special functions for the respective object and functions that may be license-dependent are

available in the middle area of the context menu. The functions are also heavily dependent on

the selected object type or the scope of the license.

2.3.1 Update

Figure 2-18: Update

This function can be used for the following template store elements:

 Template store root nodes

This menu entry can be used to update the template store view. This is necessary if multiple

persons are working and making changes to a project at the same time.

 This function may not be used if an object is currently being edited and the changes

have not yet been saved! Otherwise, the unsaved changes are overwritten by the version

on the server and are thereby lost.

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 35

2.3.2 Export

Figure 2-19: Export function

Objects from a project can be combined into a compressed zip file and saved to the local file

system using the "Export" context menu entry. The export files can then be used to import the

exported contents of a project (source project) into other FirstSpirit projects (target project) (see

Chapter 2.3.3, page 38). The available selection depends on the object type for which the

context menu or function was called.

 The "Export" context menu available in FirstSpirit JavaClient is a client-side function

and, thus, places heavy demands on the main memory of the client system if large data

volumes are involved. Thus, this function should only be used to export small data

volumes.

This function can be used for the following template store elements:

 All template store folders (see Chapter 2.3.2.1, page 36)

 Page and section templates (see Chapter 2.3.2.2, page 36)

 Format templates (no system format templates)(see Chapter 2.3.2.2, page 36)

 Style and table format templates (see Chapter 2.3.2.3, page 36)

 Link templates (see Chapter 2.3.2.3, page 36)

 Scripts (see Chapter 2.3.2.3, page 36)

 Database schemata (see Chapter 2.3.2.4, page 36)

 Table templates (see Chapter 2.3.2.5, page 37)

 Queries (see Chapter 2.3.2.5, page 37)

 Workflows (see Chapter 2.3.2.6, page 37)

Upon calling up the context menu, first an export window opens for selecting the desired save

location for the export file in the workstation computer's local file system.

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 36

2.3.2.1 Exporting folders

Folders can be exported and imported for use in other FirstSpirit projects. The directory structure

from the target project is retained when exporting.

2.3.2.2 Exporting templates

Templates can be exported and imported for use in other FirstSpirit projects. If templates are to

be exported from a source project and imported into a target project frequently, the use of the

license-dependent "Corporate Content" function is recommended since more information is

available in the target project for assignment and for the update state.

2.3.2.3 Exporting style and table format templates, link templates and scripts

Exporting style and table format templates as well as link templates and scripts works the same

way as exporting templates (see Chapter 2.3.2.2, page 36).

 Style and table format templates are closely linked with each other (also see

Chapter 2.8 and 2.9 starting from page 69) and should therefore be exported together if at

all possible. To accomplish this, it is best to combine them in one folder, which can be

exported as described in Chapter 2.3.2.1. However, style templates can also be exported

and imported later individually without issue. For table format templates, the style

templates used as the standard style template and in the display rules always have to be

exported as well.

2.3.2.4 Exporting schemata

Schemata can be exported and imported for use in other FirstSpirit projects (see Chapter 2.3.3.1,

page 39).

The following dialog is shown after displaying the export window used to select the desired save

location for the export file from the local workstation's directories:

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 37

Figure 2-20: Exporting data when exporting a schema

 Clicking this button adds the data from the current project's content store's schema to

the export file. This data is then available to users of the second project when the export file is

imported into another FirstSpirit project.

 Clicking this button adds just the schema but not the schema's data from the current

project's content store. When the export file is imported into another FirstSpirit project, the

schema is available to the users in the second project, but the data from the first project's content

store is not.

The table templates associated with the schema are added to the export file automatically.

2.3.2.5 Exporting table templates and queries

If a schema is exported, the associated table templates (and queries) are added to the export file

automatically. Table templates (and queries) should always be exported together with the

associated schema if at all possible. If this is not possible, they can also be exported individually.

In this case, the template (and/or query) has to be imported in the target project at the

appropriate schema node. Otherwise there may be errors in the project since the mapping for the

table template no longer matches the schema's tables ("The referenced table 'xy' does not

exist").

2.3.2.6 Exporting workflows

Both individual workflows and folders with all included subfolders and workflows can be exported

to the computer's file system using this function. This allows workflows to be used at a later point,

i.e. in other projects.

To carry out the export, an export window opens where the desired save location for the export

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 38

file can be selected from the folders on the local workstation.

If scripts are used within a workflow, they can also be added to the export file. To accomplish

this, the desired workflow first has to be selected in the tree view and then the script using Ctrl +

click. Both objects are then included in the zip file if the "Export" function is selected using the

context menu. However, scripts can also be exported separately at a later time (see Chapter

2.3.2.3, page 36).

2.3.3 Import

Figure 2-21: Import function

Objects previously exported from a source project can be added to another FirstSpirit project

(target project) using the "Import" context menu entry. To do so, the desired zip file must first be

selected from the local workstation's file system and be imported to a suitable position in the

target project.

If the imported contents do not fit the context of the target project, they are imported into the

correct target project context automatically – to the extent this is possible. In this case, the import

is carried out independently of the object where the "Import" context menu was selected. If, for

example, a user tries to import a script's export file into the "Workflows" area, the selected script

is imported into the target project regardless, but it is placed in the correct "Scripts" area of the

target project instead of the "Workflows" area.

This automatic correction does not work in all cases. An error message is displayed instead if the

system cannot determine which target project object the import file can be assigned to.

The available selection depends on the object type for which the context menu or function was

called.

This function can be used for the following template store elements:

 All template store folders

 Style and table format templates (see Chapter 2.3.3.1, page 39)

 Link templates

 Database schemata (see Chapter 2.3.3.2, page 41)

 Workflows (see Chapter 2.3.3.3, page 43)

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 39

Page/section templates and folders, with all included templates and subfolders, exported to the

file system can be imported into the selected folder using this function.

To carry out the import, an import window opens where the user can browse for the desired

export file in the local workstation's folders.

Assigning template sets in a target project: When importing a template from a source project

to a target project, an attempt is made to transfer the contents of the template sets as well.

 In the process, assignment is attempted using the name (name in the source project to the

name in the target project). This means that if the names of the template sets are identical in

the source and target project, the contents are applied in the target project.

 If assignment using the name is not successful because the template sets are labeled

differently in the target project, assignment is attempted in the next step using the

presentation channel (name in the source project to the presentation channel in the target

project). In this context, a template set from a source project with the name "HTML" would be

assigned to the first located "HTML" presentation channel in the target project (regardless of

the name of the channel in the target project).

 If the template set cannot be assigned using the name or the presentation channel, the

contents of the template sets cannot be imported into the target project from the source

project and have to be created or copied manually, if necessary.

2.3.3.1 Importing style and table format templates

Style and table format templates can be imported from other FirstSpirit projects. To accomplish

this, an export file from the desired templates first has to be exported from another FirstSpirit

project (see Chapter 2.3.2.3, page 36).

Style templates can be imported without issue. Table format templates should be imported

together with the style templates being used (see Chapter 2.8 starting from page 69). If these

style templates are not also exported, the table format templates can be exported regardless, but

the references to the style templates are lost.

To import style and table format templates, call up the context menu at the "Format templates"

root node or a folder below that root node and select the "Import" function. The import dialog

appears after selecting the desired export file.

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 40

Figure 2-22: Importing a table format template

Import elements individually: This functionality is not available in the template store.

Type: Type of the element contained in the export file.

Reference name: Name of the element contained in the export file.

Import: If this checkbox is enabled, the associated element is imported into the target project; if

this checkbox is disabled, the element is not imported.

 Clicking this button inverts the selection made in the "Import" column.

 Clicking this button confirms the dialog selection and opens the "Select database layer"

dialog (see Figure 2-24).

 Clicking this button cancels the import operation.

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 41

2.3.3.2 Importing schemata

Schemata can be imported from other FirstSpirit projects. To accomplish this, an export file from

the desired templates first has to be exported from another FirstSpirit project (see Chapter

2.3.2.4, page 36).

The export file from the first FirstSpirit project can now be imported into the second project. To

accomplish this, the context menu at the "Database schemata" root node or a folder below that

root node is called up and the "Import" function is selected. The import dialog appears after

selecting the desired export file.

Figure 2-23: Importing a schema with table templates

Import elements individually: This functionality is not available in the template store.

Type: Type of the element contained in the export file.

Name: Name of the element included in the export file.

Import: If this checkbox is enabled, the associated element (and all elements below it, such as

table templates) is imported into the target project; if this checkbox is disabled, the element is not

imported.

 Clicking this button inverts the selection made in the "Import" column.

 Clicking this button confirms the dialog selection and opens the "Select database layer"

dialog (see Figure 2-24).

 Clicking this button cancels the import operation.

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 42

Figure 2-24: Importing a schema

Database: Selection of the desired database layer. All of the layers that have been enabled for

the project by the project administrator are displayed in the drop-down list.

Import data from schema 'xy': If this checkbox is enabled, the existing data maintained for this

schema in the source project's content store is applied to the target project. Upon creating a

table in the target project's content store based on the imported schema information, the

structured data maintained up until now is displayed in the target project.

Figure 2-25: Table view of the structured data in the target project

The data can also be modified in the target project; i.e. it is not write-protected.

If only the schema - and not the existing data maintained for this schema in the source project's

content store - is to be applied, either the schema has to be exported from the source project

without data (see Figure 2-20) or the "Import data from schema 'xy'" checkbox has to be disabled

in the target project. The existing data (based on the associated schema) is ignored during

importing in both cases. This means it is protected from access from the target project.

If the existing data from the source project is, in fact, to be displayed in the target project but

modification to the structured data is to be prevented, write protection for the selected database

layer has to be enabled after importing the data.

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 43

2.3.3.3 Importing workflows

This function can be called up using the context menu in the Workflows area and at the folder

level.

Workflows and folders, with all included subfolders and workflows (and included scripts if

applicable), exported to the file system can be imported into the selected folder using this

function.

To carry out the import, an import window opens where the user can browse for the desired

export file in the local workstation's folders.

 The permissions configuration has to be adjusted specifically to the project during

importing if necessary (see Chapter 4.6, page 165).

2.3.4 Restoring deleted objects

Figure 2-26: Restoring deleted objects

The Restore deleted objects function can be called for page, section, format and link templates

as well as scripts at both the root and folder level, as well as at the schema level for database

schemata. If an object is accidentally deleted from the tree structure, this function can be used to

restore it. A window containing the deleted objects opens after clicking this function.

Figure 2-27: Deleted objects

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 44

At the root level, all of the objects that have an available backup are displayed, whereas at the

folder level only objects that have been located within this folder are displayed. The following

information is provided for each object:

Revision: Version number of the deleted object.

Deleted on: Date and time when the object was deleted.

UID / Name: The reference name of the deleted object.

ID: The unique ID number for the deleted object.

Object count: The number of objects located below the deleted object in the tree structure.

These can be displayed in a pop-up window using the button. These hierarchically

lower-level objects are also reinserted if the object is restored.

Deleted by: Name of the user that deleted the object.

Select the specified object and activate the button to restore the object.

Figure 2-28: Restoring deleted objects

Only check – Do not perform a restore: If this option is selected, whether a restore can be

carried out without errors is checked. This simulates the restore, but the deleted object is not

restored. Whether or not a restore is possible is then displayed in a pop-up window.

Standard restore: This option is preset by default If a restore is carried out with this option, the

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 45

restore is carried out directly dependent on the object. Therefore, depending on the object,

different options can be selected in the "Specific restore" area.

Specific restore: This option can be selected to adapt the standard restore options manually.

Specific restore – Restore parent element (if necessary): If this option is selected, the parent

element is also restored if necessary.

Specific restore – Ignore missing dependent objects: If this option is selected, missing

references to the selected object are ignored during the restore.

 This option is only available to project administrators.

The position where the deleted object is to be inserted can be selected in the next dialog. A

subfolder is normally selected as the restore point in this dialog. If the root node of a store is to

be selected, the subfolder highlighted in the middle column has to be deselected by holding

CTRL and clicking on the subfolder.

2.3.5 Edit externally

Figure 2-29: Edit externally function

This function can be called using the context menu on page templates and section templates. It

is divided into multiple areas: All of the template sets that have been configured for this project

in the server and project configuration are listed; the Form and Rules areas are also present.

If one of the available editing areas is activated, then the corresponding source file opens in an

external editor. An editor should be entered in the user settings of the Global Settings for editing

a source file in an external editor. An additional window displaying all of the opened templates

also appears.

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 46

Figure 2-30: Edit externally

Modifications to the source text are saved, after the templates are highlighted, using the "Save

and close local copy" or "Save local Copy" buttons. The editor is then ended in the first step.

Likewise, unsaved modifications can be reverted using "Discard local copy".

Autosave: If this is checked, then all of the modifications saved in the external editor are also

saved in FirstSpirit Client.

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 47

2.4 Template store administrative context menus

2.4.1 Version history

The version history for each template store object can be retrieved using this function.

Figure 2-31: Version history for the section template folder

You can find general information on FirstSpirit's version history and on the functions of the dialog

in Figure 2-31 in the FirstSpirit Manual for Editors, Chapter 11.10.

In addition to the generally available information for a revision (revision, date, editor, comment),

the right side of the list display shows which element modification resulted in the allocation of a

new revision number (e.g. attribute, child list, preview, presentation channels). This depends on

which object the version history was retrieved for.

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 48

2.4.2 Starting a workflow

If a workflow is not yet active on the selected object, then all of the workflows that have been

defined for this node in the tree structure in the permissions system are listed under this menu

item. The required workflow can be started under this menu item.

If a workflow is already active for the selected object, then it can be advanced under this menu

item.

Detailed documentation of workflows is located in Chapter 4 starting on page 126 and in

FirstSpirit Manual for Editors, Chapter 12.

2.4.3 Running a script

All of the scripts that can be called at this position in JavaClient are listed under this menu item.

Scripts make it possible to have pre-programmed actions or calculations run. Information on

script development in FirstSpirit is located in the FirstSpirit Online Documentation.

2.4.4 Search in templates

This function is identical to the "Search in templates" function in the "Search" menu on the

FirstSpirit menu bar. Additional information on this search is located in theFirstSpirit Manual for

Editors, Chapter 3.

2.4.5 Tools – Change permissions

The permissions for the current node in the tree structure are defined using this function. It can

be called at every node using the context menu.

The entries in the lists in the areas "Inherited permissions" and "Permissions defined in this

object" are automatically displayed and are sorted alphabetically first by groups and then by

users.

You can find more detailed documentation on defining permissions in the FirstSpirit Manual for

Editors, Chapter 13.

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 49

2.4.6 Tools – Delete write protection

If write protection is present for the selected node due to an active workflow, the write protection

can be removed using this function. (Write protection is indicated in the tree by italics.) You can

find detailed information on write protection in workflows in Chapter 4.7 starting on page 178.

2.4.7 Tools – Select/remove preview graphic

This function can be called up using the context menu at the page/section level. The respective

object has to be in edit mode for this.

A preview graphic for the Preview tab of the respective object can be selected or an existing one

can be deleted using this function. For this purpose, a file window opens where the user can

browse for the desired preview graphic in the local workstation's folders. The graphic file has to

have the extension "gif", "jpg" or "png".

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 50

2.4.8 Tools – Display properties

The properties of an object can be displayed with the following information using this function.

The information when using this function can vary depending on the object type.

Figure 2-32: Properties of a page template – Editorial

The properties for other objects can be displayed using the path.

Editorial tab

Object properties relevant for editorial work are shown on this tab.

Display name: Object display name (language-dependent)

State: Shows the state (e.g. "Not released", "Released", "Modified (not released)")

Revision: Shows the revision

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 51

Author: Name of the user that created the object

Created on: Time when the object was created in JavaClient, with date and time

Last save: Time when the object was last saved, with date and time.

Last editor: Name of the user that edited the object last

Released by: Name of the user that released the object

Figure 2-33: Properties of a page template – Technical

Technical tab

Object properties relevant for technical work are shown on this tab.

Label path: Path to the current object (display name)

Reference name (UID): Reference name (UID) for the object

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 52

UID path: Path to the current object (reference name)

ID: Object ID

ID path: Path for the current object (IDs)

 The path information can also be requested using the keyboard shortcut

Ctrl + Shift + Q.

Template name: Display name for the underlying template

Template ID: ID for the underlying template

The "OK" button closes the dialog. All of the information from the dialog can be transferred to the

clipboard using the "Copy details" button. The information can be output as an HTML page using

the "Generate report" button. An additional comment, such as an error description, can be

entered as well.

2.4.9 Tools – Display uses

This functionality can be called using the context menu on page, section, format and table

templates as well as scripts.

It can be used to automatically jump to nodes in other stores related to the object where this

functionality has been run. If the object is used multiple times, a new window opens displaying all

of the nodes (e.g. sections from the page store) based on the current object. Double-clicking one

of these entries shows the corresponding node in the directory tree.

2.4.10 Tools – Apply template changes

Changes to the definition of the content areas can be applied to a page template for existing

pages using this function.

The functionality is only available for page templates in the template store.

If, for instance, a content area is added to a page template, this change does not automatically

affect an existing page. The "Apply template changes" function can be used to update existing

pages if a change is made to a page template. The function checks the definition of the content

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 53

areas in the page template against the content areas of pages that use this template:

 If content areas are found that are defined in the template but not present on the existing

page, these content areas are added to the page.

 If, conversely, content areas are found that are missing in the templates but are present on

the page, then:

 They are removed from the page if they do not contain any sections.

 They remain on the page if they contain sections.

2.4.11 Tools – Cancel editing

You can use this function to exit edit mode on a node without saving changes that have been

made. However, you cannot undo changes that have already been saved using CTRL + S or the

save function on the icon bar.

2.4.12 Tools – Change reference name

Object reference names can be modified retroactively using this function.

 A warning notice is displayed first since references for the object may still exist that

would be invalid once the reference name has been changed. If "Change anyway" is

selected, the reference name for the object can be changed in the next dialog.

2.4.13 Tools – Show dependencies

Essential FirstSpirit functions are based on what is known as a project's reference graph. The

reference graph for a project is used for recognizing dependencies within the project and thus is

an essential component for complex functions, such as server-side release (see Chapter 6, page

223).

The visualization of the reference graph for an object can be requested by project administrators

using the "Tools – Show dependencies" context menu. This makes it possible to identify the

dependencies of a project even in complex projects.

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 54

 Reference graphs for individual data records from the content store are retrieved

using the respective data record's context menu.

The tabs indicate the dependencies of the object in the form of incoming and outgoing arrows,

both for the current state and the last released state (see Figure 2-34).

The display can be reorganized to a hierarchical view, which is particularly recommended for

complex dependencies (see Figure 2-34). It is possible to update directly in the event of changes

and to zoom the view using the buttons in the upper area of the window. The view can also be

saved as an image for later use.

Figure 2-34: Displaying dependencies using the reference graph

2.4.14 Tools – Create copy of this workflow

This function can be called for workflows. It creates a copy of the selected workflow below the

"Workflows" node.

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 55

2.5 Page templates

Figure 2-35: Template store tree view – Page templates

Page templates create the basic framework of a page. The placement of logos and navigation

tools as well as similar, general settings are set in page templates. Moreover, the page templates

define the locations where an editor can insert content.

Tree elements in page templates:

 Root element of page templates

 Folder in the page template node

 Page template

With FirstSpiritVersion 5.0, line numbers are indicated at many places in the Template Store as a

reading aid. They can be shown or hidden in JavaClient using the keyboard shortcut Ctrl + L.

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 56

2.5.1 Preview tab

To obtain a preview of how the template will look later in a browser, a previously prepared

preview graphic (e.g. a screenshot) can be displayed on the "Preview" tab. This allows each user

to tell immediately which template has just been highlighted.

A graphic can be added to this tab in three different ways:

1. Locking the template, then clicking "Select preview graphic" from the context menu and

selecting a "gif", "jpg" or "png" file.

2. Locking the template, then selecting a "gif", "jpg" or "png" file from the file explorer, dragging

it to the preview spot with the mouse and dropping it there.

3. Locking the template, selecting a link-free graphic (while holding the Ctrl key) from a website

(only MS IE), dragging it to the Preview tab with the mouse and dropping it there.

Figure 2-36: Page preview – "Preview" tab

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 57

2.5.2 Properties tab

The "Properties" tab contains different entries for page and section templates. The following

figure shows the properties for a page template:

Figure 2-37: Page template – "Properties" tab

Unique name: A unique designation that the template is saved under in the file directory is

specified in this field (see "Reference name" in Chapter 2.2.1, page 23).

Comment: A comment that describes the page or section template in more detail can be entered

here.

File extension – Template set: Name and type of the template sets defined by the project

administrator for the current project in the server and project configuration. Deactivated template

sets are grayed out and cannot be edited.

File extension – Overwritable: If this is checked, it means that the extensions of a page

template specified in one of the following two input fields can be overwritten by a section

template.

File extension – Target ext.: The template extension that is to be linked. The extension can be

edited by double-clicking in the field.

Preview page: A page from the site store where the template is used can be selected here. This

allows changes made to the template to be checked directly in the template store using the

preview function.

Hide template in selection list: Activating this option prevents an editor from using this

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 58

template when creating a new page.

Form: The "Default values" button that can be used to define default values for the template is

available at this spot. The maintenance dialog for defining the defaults opens. The language-

dependent default values are shown in the preview area immediately after saving the properties.

Content areas / Section restrictions: You can click on the icons in the top right to add a new

content area to the page template, delete an existing content area or resort the list of content

areas.

Just like all other templates, content areas can be created language-dependent and thus can be

provided with one (or more) language-dependent reference names and one unique reference

name.

Figure 2-38: Defining content areas for a page template

Section restrictions can be defined for the page template by clicking on a content area.

Figure 2-39: Defining section restrictions

This is accomplished by allowing or prohibiting the desired section template by adding them to or

removing them from a list (for a content area). For the corresponding content areas, this means

that only the respective selected section templates are permitted. The templates are added by

selecting the content area and clicking the open folder symbol. The templates are deleted by

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 59

highlighting the restriction below the page template and then removing it using the delete key on

the keyboard or clicking on the trash can icon.

Optionally, all of the section templates for all of the content areas of a page template can also be

allowed. This repeals every section restriction for the page template. This is possible using the

checkbox "Allow all section templates".

 If all of the section restrictions within a page template are deleted, there are no

more restrictions for creating sections on the page. The layout of the page may be

damaged in process, such as by creating sections unsuited for the page layout.

2.5.3 Form tab

Figure 2-40: Page template – "Form" tab

The "Form" tab shows the GUI.XML file. If a template is locked, changes can be made here

directly.

DTD validation is carried out when saving GUI.XML. Incorrect formatting would be disastrous

here; GUI.XML cannot be saved in that case. Other errors are just displayed.

 If a preview for GUI.XML is requested in the locked state then the changes are

saved automatically beforehand. (A new version is not created – that only occurs when

unlocking!)

For updating content areas on existing pages (when changing the definition within the page

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 60

template), see Chapter 2.4.10, page 52.

A listing of all of the available input elements can be found in the "FirstSpirit Online

Documentation". The input elements are explained with all of their attributes and a schematic

example under the menu item Template development – Forms.

The addition of input components on the "Form" tab has been simplified by code completion (see

Chapter 7, page 240).

2.5.4 Template sets tab

Figure 2-41: Page template – Template sets tab

The "Internet", "Print" and "RSS feed" tabs are template sets that the project administrator

created during server and project configuration for this project. The tabs show the source text of

the different template sets for the current template. If the template is locked, changes can be

made here directly.

If a change has been made to the source text, the formatting of CMS_HEADER is checked for

the change when saving. If an error occurs, it is displayed immediately via a new window.

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 61

2.5.5 Rules tab

A template developer can influence specific elements or properties of a form by defining rules

within the (form) template and can create a "dynamic form" this way. The "Rules" tab area is

used for defining rules. Here, for instance, an input component that has been defined in the

template's "Form" tab area can be linked to a rule.

You can find a detailed description of the rules in the FirstSpirit Online Documentation.

 Higher level objects, i.e. objects outside the actual form, cannot be included. This

means that you cannot influence which templates may be used in which areas of the site

store, for instance.

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 62

2.5.6 Snippet tab

The way search results are to be displayed based on some template types can be specified via

the "Snippet" tab. The variable names of a template's input components are referenced for this.

This display is used in both JavaClient and WebClient.

The goal is to display search hits with the following instead of with just the object name:

 an image

 a title

 a text excerpt

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 63

This should be information that best represents the respective object. This way, the editor is able

to receive a clear presentation of the content of the search hit in order to determine the most

relevant hit more easily and to get to the object being searched for more quickly.

In order to be able to adapt the output more strongly to the requirements of the respective

projects and editors, multiple input components can also be combined. In addition, methods that

can be used with $CMS_VALUE(...)$ can be implemented. Thus input editorial content can be

used for searching depending on the inputs. By default, if an input component specified on the

"Snippet" tab is not filled by an editor, the name is shown as the title and the path to the search

hit is shown as the text excerpt. The path is shown in WebClient in each case regardless.

You can find a detailed description of the snippet in the FirstSpirit Online Documentation.

2.6 Section templates

Figure 2-42: Template store tree view – Section templates

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 64

Section templates are used to insert content into the basic framework of a page defined by page

templates. All of the input elements that are to hold dynamic page content (text, tables, images,

data records, etc.) are defined in a section template. Any number of sections can be added in

each section area of a page. There are usually also multiple different section templates available

for the different types of potential content a page may have.

Tree elements in section templates:

 Root element of section templates

 Folder within section template node

 Section templates

2.6.1 Preview, Properties, Form, Template sets, Rules and Snippet tabs

The Preview, Properties, Form, Rules, Snippet and Template sets tabs of the section templates

are identical in function to the page template tabs of the same name and can be edited the same

way.

You can find information on the individual tabs in Chapter 2.5.1 (page 56) to Chapter 2.5.6 (page

62).

 There is also the option of using HTML anchor links on a page, such as when using

extensive page content. This requires that the <a> tag be enabled on the section

template's Properties tab. Subsequently, the anchor link is generated from the section

template's reference name automatically and can then be used within a link template.

You can find a detailed description of using anchor links in the FirstSpirit Online

Documentation.

 The option "Hide template in selection list" (see Chapter 2.5.2) is not available for

section templates.

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 65

2.7 Format templates

Figure 2-43: Template store tree view – Format templates

Text formatting is defined using format templates. The formatting can then be used in the DOM

editor and DOM table input elements. Some format templates are included in the delivery by

default, such as format templates for sections ("standard"), line breaks (abbreviated as "br"),

"bold", "italic", to display tables (abbreviated as "table", "tr" and "td"), etc. They can be found in

the "Common format templates" folder in the "Format templates" area of the Template Store.

 These standard format templates are in many ways required for correct operation

and must not be deleted.

The format templates

 "Deleted" (abbreviated as "deleted"),

 "Deleted (Block)" (abbreviated as "deleted_block"),

 "Inserted" (abbreviated as "inserted") and

 "Inserted (Block)" (abbreviated as "inserted_block"),

are used to display version comparisons ("Version history"). Changing the properties of these

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 66

format templates (color, font size, border, etc.) (see section 2.7.1, page 66) affects how changes

are displayed in version comparisons.

It is even possible to change how other standard format templates are displayed in the DOM

editor.

In addition to the standard format templates, template developers can create other project-

specific format templates.

2.7.1 Properties tab

Figure 2-44: Format template – "Properties" tab

The basic properties of a format template are defined on the Properties tab page. The individual

fields have the following meanings in this context:

Tag: The text entered in this field is needed in the form area of a page and section template to

specify valid format templates for the input component. The corresponding xml tag name is

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 67

generated from this name, such as for the "Bold" format template (also refer to FirstSpirit Online

Documentation – Template syntax / format templates area). The name must be unique and

cannot contain any special characters. It is specified automatically according to the format

template's unique reference name. In order to ensure the uniqueness, the abbreviation should

not be changed manually (see Chapter 2.2.1, page 23).

 A unique name or abbreviation of a format template cannot be changed once it has

been created since otherwise all references within the project would be lost!

Tool tip: The text entered in this field appears as helpful text when the user hovers over it with

the mouse, such as in the DOM editor.

Section: The entire section is formatted if the "Section" checkbox is checked. If the checkbox is

unchecked, the formatting is only applied to individual, highlighted characters.

Alignment: If the "Section" checkbox has been checked, the alignment of the text, such as in the

DOM editor, can be specified here.

Display indent: Defines how the corresponding formatted text is to be displayed. All of the blank

spaces are displayed and the text is no longer automatically wrapped if this option is enabled.

Black spaces are shown in HTML notation if this option is disabled.

Quote: Selecting Yes applies the complete conversion rules to the individual template sets (the

convert part and quote part). Selecting No only applies the convert part of the conversion rules to

the individual template sets.

Additional formatting only shown in the editor can be defined using the "Display in editor" field.

Font: A font used to display the text is selected here. (This font has to be installed on every client

computer, otherwise a similar font is used.)

Style: You can select whether the text is to be shown in bold, italics or underlined in the DOM

editor here.

Color: The color for the displayed text can be selected here.

Size: The size that text is to be shown at in the DOM editor is specified here. Relative inputs are

also possible here (+2, -1, etc.).

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 68

Border color: The color for a border within an input component can be selected here.

Background color: The color for the background within an input component can be selected

here.

2.7.2 Template sets tab

Figure 2-45: Format template – Template sets tab

Conversion: One of the conversion rules configured in the server and project configuration in

the server properties can be selected here.

Template: The HTML code that generates the desired formatting for text on the website can be

entered here. The #content expression represents the text that has been entered in the DOM

editor.

A detailed description of the format templates and the conversion rules is available in the

FirstSpirit Online Documentation.

 The selected conversion rule is applied only when outputting CMS_INPUT_DOM or

CMS_INPUT_DOMTABLE input components via the #content system object, e.g. via

$CMS_VALUE(#content)$.

With FirstSpiritVersion 5.0, line numbers are indicated at many places in the Template Store as a

reading aid. They can be shown or hidden in JavaClient using the keyboard shortcut Ctrl + L.

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 69

2.8 Style templates

Figure 2-46: Template store tree view – Style templates

2.8.1 Introduction: Inline tables

What are known as inline tables can be integrated into the flow of text using the DOM editor

(CMS_INPUT_DOM input component). This allows any number of design possibilities to be

made available to the editor down to the cell level.

The table layout is specified by both table format templates (see Chapter 2.9, page 80) and style

templates (start from Chapter 2.8.2, page 70). Style templates are used to define table layout

features, such as background color, text alignment, font, word wrapping, borders and border

spacing.

Each table format template can be assigned precisely one standard style template (for the entire

table) and multiple additional style templates for separately displaying individual table cells (see

Chapter 2.9.1, page 82). The style templates define the layout of individual table cells, such as

the background color ("bgcolor"), the alignment of text in a cell ("align") or the color of the text in

a cell ("color").

Therefore, a style template has to be created first in order to use inline tables in the DOM editor

(see Chapter 2.8.2, page 70).

Style and table format templates should be combined in a folder (e.g. "Table") for a better

overview.

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 70

Inline table icons:

 Folder

 Table format template

 Style template

 The inline table function is also available in WebEdit.

With FirstSpiritVersion 5.0, line numbers are indicated at many places in the Template Store as a

reading aid. They can be shown or hidden in JavaClient using the keyboard shortcut Ctrl + L.

2.8.2 Creating a style template

Style templates are created in the "Format templates" area. Select the item New – Create style

template in the context menu to do this. A reference name for the style template has to be

specified in the window that opens. Specifying a display name is optional.

Figure 2-47: New – Create style template

Clicking creates the new style template. Input components that affect the properties of the

layout, such as background color, text alignment, font, word wrapping, borders and border

spacing, can be created using a style template's form area (see Chapter 2.8.3, page 71).

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 71

2.8.3 Form area of a style template

Unlike other format templates, style templates have a "Form" tab. In the form area of a style

template, input components can be created for maintaining layout attributes.

Figure 2-48: Form area of a style template

Some specified layout attributes (with reserved identifiers) directly affect the display of the table

in the DOM editor.

 bgcolor: Determines the background color of a table cell

(for an example see Chapter 2.8.7.1, page 77)

 color: Determines the font color for text in a table cell

(for an example see Chapter 2.8.7.2, page 78)

 align: Determines the alignment of text in a table cell

(for an example see Chapter 2.8.7.3, page 79)

 The specified identifiers cannot be modified. The attributes always have to be

specified with name="Identifier" in the input component, e.g. <CMS_INPUT_TEXT

name="bgcolor" .../>

Other additional, freely defined attributes can certainly be maintained using the form area's input

component in addition to these standard attributes, e.g. CSS attributes.

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 72

Supported input components for maintaining layout attributes:

 CMS_INPUT_TEXT / CMS_INPUT_TEXTAREA: Text field for specifying a value, e.g. for the

background color.

(for an example see Chapter 2.8.7.1, page 77)

 CMS_INPUT_COMBOBOX: Selection from a predefined number of values, e.g. for specifying a

background color or alignment

(for an example see Chapter 2.8.7.2, page 78)

 CMS_INPUT_RADIOBUTTON: Selection from a predefined number of values, e.g. for

specifying a background color or alignment

(for an example see Chapter 2.8.7.3, page 79)

 CMS_INPUT_NUMBER: Specifying a numeric value (e.g. value for a cell's background color)

 FS_BUTTON: Button for activating a script or executing a class

The addition of input components on the "Form" tab has been simplified by code completion (see

Chapter 7, page 240).

 The following applies to all input components used in a style template's form area:

The components should be defined as language-independent (useLanguages="no"). In

this case, the language-dependence of the component is covered by the language

selection in the DOM editor instance being processed by the editor.

 Additional input components for maintaining layout attributes (in style templates) are

not supported.

2.8.3.1 Preventing layout editing for editors

Editors can be prevented from performing layout attribute maintenance. Either the attribute

hidden="yes" or a corresponding rule has to be defined in the input component for this. The

attribute hidden="yes" causes the input component to be visible only in the template store but

not when maintaining the table in the page store. Thus the template developer can use the

attribute to prevent an editor from editing the layout and instead to specify defined values for the

layout such as the background color for cells (see Chapter 2.8.4, page 74).

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 73

If the attribute hidden="yes" is defined (for all of a style template's input components), the

editor does not have the option of modifying the layout properties of a table cell in the page store.

The corresponding "Cell properties" button is inactive in this case.

 If maintenance of layout properties was prevented by using validators, the button is

never inactive. Even if all of the input components are hidden. Consequently, an empty

dialog appears in both clients. This behavior also applies to the dialog for preassigning

layout attributes (see Chapter 2.8.4, page 74).

You can find more detailed information on validators in the FirstSpirit Online

Documentation.

If, on the other hand, individual components are "visible" (hidden="no") and others are

"hidden" (hidden="yes"), then the "Cell properties" button in the DOM editor (in the page

store) is active; however, the editor is only shown the "visible" components in the following

dialog.

All of the style template components are then displayed only if the template developer has not

defined any restrictions.

Figure 2-49: "Cell properties" button in the DOM editor

The editor opens a dialog for editing project-specific layout attributes by clicking the button (see

FirstSpirit Manual for Editors).

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 74

2.8.4 Preassigning layout attributes

Fallback values for the layout attributes can be defined in the template store. The input

component is preassigned values (e.g. with a color value) in a separate dialog that can be

opened on the "Properties" tab using the corresponding button.

Figure 2-50: Preview style template

In the dialog, a preassignment for the input component can be defined by the template

developer. A color value can be selected in the input component for "Background Color", for

instance (see Figure 2-50). This color value is applied to all table cells based on the

corresponding style template when creating an inline table in the DOM editor.

Depending on the defined value for the hidden attribute in the input component's definition, this

preassignment can be modified by the editor (see Chapter 2.8.3.1, page 72).

If editing is possible (hidden="no"), the editor can overwrite this predefined value when editing

a table cell in the DOM editor (see FirstSpirit Manual for Editors).

 The values in the dialog can only be edited or saved if the template is locked

("Switch to edit mode" button)!

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 75

2.8.5 Presentation channel of a style template

Inside a style template's presentation channel (e.g. "HTML"), the values input in the input

components can be read back out (see Chapter 2.8.4, page 74).

Figure 2-51: A style template's "HTML" presentation channel

The name of the input component has to be output using the instruction $CMS_VALUE(...)$ for

this:

$CMS_VALUE(if(bgcolor != null, " bgcolor=" + bgcolor, ""))$

or

$CMS_IF(!bgcolor.isEmpty)$$CMS_VALUE(bgcolor)$$CMS_END_IF$

Refer to the FirstSpirit Online Documentation for more detailed information on outputting

variables3.

2.8.6 Linking with standard table format templates

Style template values can be linked to standard format templates for generating (and previewing)

tables in a project using the system object #style. The standard format templates for tables

made available by FirstSpirit are:

 Table (abbreviation: table): Formatting for tables

 Table cell (abbreviation: TD): Formatting for table cells

 Table row (abbreviation: tr): Formatting for table rows

For example, if, in a TD standard format template, the system object #style is used for

instance, values that have been defined by the editor in the "Cell properties" dialog (see

3
 FirstSpirit Online Documentation in the template development / variables area

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 76

FirstSpirit Manual for Editors) or values that have been predefined for the style template by the

template developer (see Chapter 2.8.4, page 74) are taken into account during generation.

Example of the output to the HTML channel of the TD standard format template:

<td$CMS_VALUE(#style)$

$CMS_VALUE(if(#cell.rowspan != 0, " rowspan='" + #cell.rowspan + "'"))$

$CMS_VALUE(if(#cell.colspan != 0, " colspan='" + #cell.colspan + "'"))$>

$CMS_VALUE(if(#content.isEmpty, " ", #content))$

</td>

 For more detailed information about how properties and information from tables and

their contents can be accessed, see FirstSpirit Online Documentation, #cell, #content,

#table and #tr system objects in the template development/template syntax/system

objects area.

The values of layout attributes defined by the editor (or template developer) in the "Cell

properties" dialog are now taken into account when generating the table (see Figure 2-52):

Figure 2-52: Table cell properties

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 77

The source text of a table cell is now generated as follows, for instance:

<table>

<tr>

<td bgcolor="#ff00ff" align="center" color="#00ddee" rowspan='1'

colspan='1'>This is a text.</td>

..

</tr>

</table>

2.8.7 Examples

2.8.7.1 Example: Text input component for entering a background color

Defining a component in the form area:

<CMS_MODULE>

 <CMS_INPUT_TEXT name="bgcolor" useLanguages="no">

 <LANGINFOS>

 <LANGINFO lang="*" label="Background color:"/>

 </LANGINFOS>

 </CMS_INPUT_TEXT>

</CMS_MODULE>

name="bgcolor": The input component uses the key value "bgcolor" to define a background

color. This name cannot be changed since it is a fixed key value.

Inputting a color value using an input component:

Figure 2-53: Input component for entering a background color

For outputting the value in the style template's presentation channel, see Chapter 2.8.5, page 75.

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 78

2.8.7.2 Example: Input component for entering a text color

Defining a component in the form area:

<CMS_MODULE>

 <CMS_INPUT_COMBOBOX name="color" useLanguages="no">

 <ENTRIES>

 <ENTRY value="">

 <LANGINFOS>

 <LANGINFO lang="*" label="default"/>

 </LANGINFOS>

 </ENTRY>

 <ENTRY value="#ee00ff">

 <LANGINFOS>

 <LANGINFO lang="*" label="superior"/>

 </LANGINFOS>

 </ENTRY>

 <ENTRY value="#00ddee">

 <LANGINFOS>

 <LANGINFO lang="*" label="lightGrey"/>

 </LANGINFOS>

 </ENTRY>

 </ENTRIES>

 <LANGINFOS>

 <LANGINFO lang="*" label="Font Color"/>

 </LANGINFOS>

 </CMS_INPUT_COMBOBOX>

</CMS_MODULE>

Selecting a color value using an input component:

Figure 2-54: Input component for selecting a color value for the text color

For outputting the value in the style template's presentation channel, see Chapter 2.8.5, page 75.

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 79

2.8.7.3 Example: Input component for entering text alignment

Defining a component in the form area:

<CMS_MODULE>

 <CMS_INPUT_RADIOBUTTON name="align" useLanguages="no">

 <ENTRIES>

 <ENTRY value="">

 <LANGINFOS>

 <LANGINFO lang="*" label="Left"/>

 </LANGINFOS>

 </ENTRY>

 <ENTRY value="right">

 <LANGINFOS>

 <LANGINFO lang="*" label="Right"/>

 </LANGINFOS>

 </ENTRY>

 <ENTRY value="center">

 <LANGINFOS>

 <LANGINFO lang="*" label="Center"/>

 </LANGINFOS>

 </ENTRY>

 <ENTRY value="block">

 <LANGINFOS>

 <LANGINFO lang="*" label="Block"/>

 </LANGINFOS>

 </ENTRY>

 </ENTRIES>

 <LANGINFOS>

 <LANGINFO lang="*" label="Align:"/>

 </LANGINFOS>

 </CMS_INPUT_RADIOBUTTON>

</CMS_MODULE>

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 80

Selecting a text alignment using an input component

Figure 2-55: Input component for selecting text alignment

For outputting the value in the style template's presentation channel, see Chapter 2.8.5, page 75.

2.9 Table format templates

Table format templates are required for creating what are known as inline tables (see Chapter

2.8.1, page 69). A table format template has to be created in the "Format templates" area for

each desired table layout.

Select New – Create table format template in the context menu to do this. A reference name

for the table format template has to be specified in the window that opens. Specifying a display

name is optional.

A detailed description of reference and display names can be found in Chapter 2.2.1, page 23.

Figure 2-56: New – Create table format template

The "Properties" tab opens once has been clicked. The size of the table can be defined

and the style templates created in Chapter 2.8.2 can be assigned here.

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 81

Figure 2-57: Table format template

Number of rows/columns: The Minimum and Maximum fields are used to define how many

rows and columns the table can have at least and at most.

 The minimum of rows and columns is by default 2.

If the editor inserts an inline table with this table format template into the DOM editor later on, the

table is automatically created with the minimum number of rows and columns specified here. The

editor cannot exceed or go below the default values when editing a table. The corresponding

buttons are disabled in this case. For instance, if a minimum row count of four rows is defined,

the "Delete row" button is disabled in the DOM editor as soon as the table only contains four

rows.

Standard style template: The desired style template used as the basis for the table can be

selected in this field by clicking the icon. All of the available style templates are displayed in

the window that opens.

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 82

Figure 2-58: Table format template – Standard style template

The desired style template can be selected from the tree structure and the selection can be

confirmed with .

2.9.1 Creating and editing display rules

The default style template defined in the table format template applies as the basis for a table's

layout (see Figure 2-58). Furthermore, additional layout options for formatting rows, columns and

individual cells that overwrite the default style template are available to the editor in the Display

rules area. These layout options are based on the previously created style templates (see

Chapter 2.8.2, page 70).

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 83

New display rules are created using the icon. The following window opens after the icon is

clicked:

Figure 2-59: Table format template – Display rule

The desired style template to be applied for the display rule can be selected by clicking the

icon. All of the available style templates are displayed in the window that opens.

Figure 2-60: Table format template – Style template

The desired style template can be selected from the tree structure and the selection can be

confirmed with .

Conditions for applying the rule, and thus applying the selected style template, are defined using

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 84

the Row(s) and Column(s) comboboxes. Both conditions have to be met to apply the rule.

ALL: The display rule applies to all rows or columns without restriction. If the "ALL columns"

option were selected, the display rule would only take the restriction defined under the "Rows"

option into account and vice versa.

 Defining a display rule that affects ALL columns and ALL rows is not possible. A

rule of that type would correspond to the default style template.

Even: The display rule applies to even rows or columns (starting with the second row/column).

Odd: The display rule applies to odd rows or columns (starting with the first row/column).

First: The display rule applies to the first row or column.

Last: The display rule applies to the last row or column.

User-defined: The display rule applies to a specific row or column. The number for the specific

row/column has to be entered in the field to the right next to the combobox if this option is

enabled.

The "Applies to" field continues to show which row(s) and column(s) the selected style template

applies to.

Examples:

Figure 2-61: Display rules – Example 1

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 85

In this example, the "header" style template is applied to the First row in ALL columns, i.e. to all

of the cells in the first row.

Figure 2-62: Display rules – Example 2

In this example, the "checker" style template is applied to Even rows in Odd columns, i.e. to all

of the cells where both conditions apply.

The settings for the new display rule are saved by clicking . The display rule then appears

in the following list:

Figure 2-63: List of display rules

Rule type: Specifies whether the rule applies to rows, columns or cells.

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 86

Applies to: Specifies which areas of the table the rule applies to.

Template: Specifies which style template is applied.

Editable: This checkbox is checked by default. As a result, the editor can modify the properties

of the cell(s) that the display rule applies to. The editor cannot change the properties for the

associated cell(s) if this checkbox is unchecked.

Deletable: This checkbox is checked by default if the rule is for rows or columns. The editor can

delete the row(s) or column(s) that this display rule applies to. The editor cannot delete the

associated row(s) or column(s) if the checkbox is unchecked. The checkbox is checked if the rule

applies to a cell. It cannot be unchecked since individual cells cannot be deleted from tables.

Display in the editor: This column shows the background color and the text alignment of the

row/column/cell if the corresponding values are defined.

 Edit: Clicking this icon (or double-clicking the display rule) opens an already existing display

rule for editing.

 Up one position: If multiple display rules are present, they can be moved up in the list by one

position using this icon.

 Down one position: If multiple display rules are present, they can be moved down in the list

by one position using this icon.

 Delete: Clicking this icon deletes the highlighted display rule.

The width of columns in this list can be changed as needed by clicking on the column line and

dragging with the mouse button held down.

 If multiple rules are present in the list, they are evaluated from top to bottom.

2.9.2 Evaluation order

The table format templates, style templates and display rules created in chapters 2.8.2 to 2.9.1

contain formatting specifications. These are evaluated as follows:

1. First, the display rules in the list (see

2. Figure 2-63: List of display rules) are evaluated top-down.

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 87

3. The standard style template is used in cells where a display rule does not apply.

2.9.3 Inserting an inline table in the DOM editor

In order to make inline tables available to the editor in the DOM editor, this input component type

has to be inserted in the desired section template. To accomplish this, the parameter

table="yes" has to be added to the input component CMS_INPUT_DOM.

Example:

<CMS_INPUT_DOM name="st_inlinetable" table="yes">

 <LANGINFOS>

 <LANGINFO lang="*" label="Table"/>

 </LANGINFOS>

</CMS_INPUT_DOM>

The input component can appear as follows:

Figure 2-64: DOM editor with inline table

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 88

2.10 Link templates

Figure 2-65: Template store tree view – Link templates

Template developers can specify the layout of links within a FirstSpirit project in detail using link

templates. Editors input all of the necessary content using an input screen. Which fields can be

filled out in the input screen depends on the configuration of link templates. Previously static link

editors have been completely converted for generic links in FirstSpirit Version 5.0. As many

instances of these links as is necessary can be created below the "Link templates" node. Each

instance has to have a unique name.

Different link templates can be defined for different input components in the form area of a page

or section template thanks to the option to define multiple instances (link templates). This way,

internal links input in the DOM editor input component by the editor are configured and displayed

differently than links such as those maintained in the FS_LIST input component.

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 89

 For more detailed information on link templates see "FirstSpirit Online

Documentation".

 If you change link templates afterwards, this can result in the fact that the preview of

content which has been already entered in the related input masks is not up-to-date. This

can be resolved by repeated saving the input masks.

2.10.1 Standard link types

Selecting a link type is no longer necessary since static links are no longer supported in

FirstSpirit Version 5.0 and thus only generic links still exist. The corresponding selection in the

New dialog has been removed for this reason.

More detailed information on this topic can be found in the release notes for FirstSpirit 5.0.

2.10.2 Generic link editors

The configuration options of link templates have been expanded by the implementation of

"generic link editors". Just like with page and section templates, now the configuration is created

with the help of input components in the form area. All input options for maintaining links can be

mapped using FirstSpirit's regular form syntax in the process.

The addition of input components on the "Form" tab has been simplified by code completion (see

Chapter 7, page 240).

As part of implementing generic link editors, link templates can now be structured in folders as

well.

The conventional input options for links (in static link editors) can certainly be generated using

the new, generic editors as well. Some new input components have been introduced to map all

of the functions of previous static link editors to the new generic editors. For instance, making a

selection using the "mediaref" field in static link editors was not able to be mapped to previously

existing input components. The input components CMS_INPUT_PICTURE and

CMS_INPUT_FILE each only support selecting the respective reference type, i.e. either images

or files but not both. Therefore, FS_REFERENCE input components were introduced, which

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 90

support any number of reference types.

In the same vein, expansions to CMS_INPUT_ OBJECTCHOOSER input components for

selecting data records from one specific database table and the new FS_DATASET input

component for selecting data records from any number of database tables were introduced for

mapping links to database content.

The distinction between definition (form) and output was removed for generic link editors. Now a

new template just has to be created under the "Link templates" root node or under a folder.

The "Properties" tab can appear as follows:

Figure 2-66: Generic link – "Properties" tab

Each input component can be used on the "Form" tab.

For more detailed information on generic link editors see "FirstSpirit Online Documentation" –

"Link templates" / "Generic link editors" chapter.

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 91

2.11 Scripts

Figure 2-67: Template store tree view – Scripts

Different types of operating workflows can be automated in FirstSpirit using scripts. In this

process, a script is used for describing the sequence to be carried out and can make changes to

FirstSpirit data structures as needed. Scripts allow functions that are not yet present in FirstSpirit

to be implemented quickly. Additional implementation areas include complex migration scenarios

and connecting external systems.

BeanShell4 is the supported scripting language in FirstSpirit. BeanShell syntax is heavily based

on JAVA but offers multiple simplifications, such as dynamic typing for variables and functions

instead of static typing, as well as (limited) reflexive access to the program itself and substantial

additional functionality.

Scripting with BeanShell provides a high degree of flexibility for template developers. Working

with scripts is not a trivial matter, however. Therefore, carefully check whether a corresponding

function is already available in FirstSpirit before implementing a script.

For more detailed information on developing scripts in BeanShell see "FirstSpirit Online

Documentation" – "Scripting" chapter.

4 Additional information on this scripting language can be found at www.beanshell.org, which also provides a detailed manual (in

English).

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 92

Examples of using scripts in workflows (see Chapter 4.8, page 180).

2.11.1 Properties tab

Figure 2-68: Scripts – "Properties" tab

Unique name: Script reference name.

Comment: An optional comment that describes the script in more detail can be entered here.

Script type: The context where the script is to be run can be configured here.

 Template: The script can be called and run in a template using

$CMS_RENDER(script:..)$, e.g. for rendering specific content for the PDF presentation

channel:

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 93

<fo:table table-layout="fixed" width="170mm">

 $CMS_RENDER(script:"fotablecolumns",colWidth:set_cw,colNumbers:set_cn)$

 <fo:table-body>

 $CMS_VALUE(#content)$

 </fo:table-body>

</fo:table>

 Menu: The script can be run using the "Tools" – "Execute script" menu.

 Scripts of "Menu" type are displayed in the "Actions" WebEdit menu.

 Context menu: The script can be called and run on a specific element in FirstSpirit

JavaClient's tree view using the context menu.

 Uninterpreted: The script is not checked against BeanShell syntax when saved. This allows

HTML syntax to be saved (such as for displaying list elements). These scripts should no

longer be used.

The corresponding templates are to be converted to format templates in projects that use

uninterpreted scripts. For this reason, it will no longer be possible to save scripts of this type until

the scripts have been converted to another script type. This type is no longer available for newly

created scripts.

Use on entry page: This option can be enabled for scripts of "Menu" type. Then, depending on

the settings in the "Display logic" area (see below), this script is displayed on the project entry

page in the "My actions" area and can be run directly when clicked.

Keyboard shortcut: A unique keyboard shortcut can be defined for a script in this field. In this

case, the script does not have to be run using the context menu or the "Tools" menu, instead it

can be called directly using the defined keyboard shortcut. The cursor has to be inside this field

to define a new keyboard shortcut. Then entering the desired key combination using the

keyboard is all that is needed. The input is then applied in the input field. Text input is not

possible. To change the keyboard shortcut, reposition the cursor in the field and then select the

new key combination. Press the icon to delete the defined keyboard shortcut for the script.

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 94

 Keyboard shortcuts can only be used for scripts of "Context menu" or "Menu" type.

Display logic (only for menus/context menus): Scripts can be displayed or hidden depending

on specific properties using display logic (the same as for workflow display logic, see Chapter

4.5.2, page 151). For instance, a script of "Context menu" script type can only be displayed if the

context menu is called on a page reference in the site store:

//!Beanshell

import de.espirit.firstspirit.access.store.sitestore.PageRef;

e = context.getStoreElement();

return (e instanceof PageRef);

Always active: The "Always active" checkbox can be unchecked if the display logic is to be

disabled. In this case, the script is always displayed, regardless of the display logic. The stored

display logic is no longer evaluated, but it remains stored and can be reenabled by unchecking

the checkbox.

2.11.2 Form tab

As with page and section templates, individual input components that can be called during a

script's runtime can be defined on the "Form" tab. The values of the input components can be

returned to the script for processing (the same as for form support in workflows, see Chapter 4.4,

page 147).

The addition of input components on the "Form" tab has been simplified by code completion (see

Chapter 7, page 240).

With FirstSpiritVersion 5.0, line numbers are indicated at many places in the Template Store as a

reading aid. They can be shown or hidden in JavaClient using the keyboard shortcut Ctrl + L.

A listing of all of the available input elements can be found in the "FirstSpirit Online

Documentation". The input elements are explained with all of their attributes and a schematic

example under the menu item Template development – Forms.

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 95

2.11.3 Template sets tab

Figure 2-69: "Scripts" presentation channels

The BeanShell source code is defined in the presentation channels where the script is to be run.

Specifying the character string //! Beanshell in the first line of a script causes the system to

interpret the following source text as BeanShell script.

For examples of script development in workflows see Chapter 4.8, page 180.

For general information on script development in FirstSpirit, see "FirstSpirit Online

Documentation".

With FirstSpiritVersion 5.0, line numbers are indicated at many places in the Template Store as a

reading aid. They can be shown or hidden in JavaClient using the keyboard shortcut Ctrl + L.

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 96

2.12 Database schemata

Figure 2-70: Template store tree view – Database schemata

FirstSpirit has high-performance mechanisms for connecting databases (see Chapter 3, page

119).

A graphical schema editor in the template store can be used to create and modify database

tables (see Chapter 2.12.1, page 97), define templates for maintaining and displaying data

records (see Chapter 2.12.4.1, page 111) and formulate queries for filtering data records (see

Chapter 2.12.5.1, page 114). To accomplish this, a database abstraction layer that maps the

universal FirstSpirit content type system to the specific database system to be used has been

implemented by FirstSpirit (see Chapter 3, page 119).

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 97

2.12.1 New: Create schema

Which data are saved in which form and how these data relate to each other is defined in a

database schema. The graphical editor in FirstSpirit JavaClient can be used to model database

tables with the associated columns and relationships between individual tables (see Chapter

2.12.1, page 97).

Creating a new schema in JavaClient generates – in addition to adding a schema node below the

"Database schemata" root node – a new database (see Figure 2-71 "Database_1") or a new

database schema (see Figure 2-71 "Schema") in the database configured for the associated

project. If the project administrator configures the default database for the project, a new

database would be created in the default database (Derby) using the "New – Create schema"

context menu. (The behavior depends on the configuration of the database layer – see

"FirstSpirit Manual for Administrators" for setting "No schema sync".) The editor receives access

to the database via the respective tables in FirstSpirit's content store and can import content that

is written to the database into the associated tables (if the database was not defined as "write-

protected" by the project administrator) (see Chapter 3, page 119).

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 98

Database_1

Schema

Database Layer

exiting layer

new layer

New database or new database schema

FirstSpirit JavaClient

DBMS Derby (internal)

Figure 2-71: Creating a new schema

If a new schema is created for a content source in FirstSprit, the database where it is to be

stored for productive operation and the rights for the DBMS account used by FirstSpirit in

productive operation should be decided in advance. Converting the layer types is not readily

possible later on (see "FirstSpirit Manual for Administrators"). In case of doubt, a separate

standard layer should be created for each FirstSpirit schema (see Chapter 3.2, page 121).

 We generally recommend carrying out development in an environment matching

production operation. In particular, the Derby DBMS contained in FirstSpirit is not suited

for production operation and, therefore, should only be used for tests.

A database layer has to be selected in addition to the (language-dependent) display and

reference name to generate a new schema.

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 99

Figure 2-72: Creating a schema

A detailed description for reference and display names can be found in Chapter 2.2.1 on page

23.

 The reference name defined for a schema in a FirstSpirit project does not

correspond to the physical name of the schema in the database. The physical name is

specified automatically based on the database – for instance, according to the following

pattern for the default database (Derby): derby_projectID_schemaID

Database layer: An existing database layer for a database, where the individual database tables

for this schema are to be saved, has to be selected in the "Database layer" field. What are known

as "DBA layers" and (optional) "Standard layers" are available for selection in the process:

 Standard layer: A standard layer has to be selected when working directly on an existing

database schema (see Figure 2-75). This layer can be used in multiple FirstSpirit projects

that all write to the same database or read content from the same database. Only one of the

respective participating projects should have write permission for the database so that

overlap does not occur when using a standard layer (see Chapter 3.2, page 121).

 DBA layer: If a DBA layer is selected, a separate schema or database is created for each

respective project upon creation (during the first sync). It is impossible to overlap when

writing content in this case (see Chapter 3.3, page 122).

 Please contact the project or system administrator if you have questions regarding

the database.

If there are no database layers available, a new one can be created directly using the "Create

schema" dialog. The entry "New DBA layer" is then shown instead of a database layer in the

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 100

"Database layer" drop-down list (see Figure 2-72). The new layer is generated in addition to the

schema or database upon confirming the dialog (see Figure 2-71).

Figure 2-73: Creating a schema – When a layer is not available

 Clicking this button connects the new, empty schema in the tree view and a schema or a

database is generated in the configured DBMS. The schema can be edited further using the

graphical editor.

 Clicking this button cancels the operation. A new schema is not created.

A new schema can also be created via importing an export file from another FirstSpirit project

(see Chapter 2.3.3.2, page 41).

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 101

2.12.2 New: Creating a schema from a database

An already existing schema can be taken over in the new schema node from a(n external)

database using this function.

Instead of generating an empty schema node (see Chapter 2.12.1), a new schema node is

created in the FirstSpirit project based on the pre-existing tables and relationships of a database.

The new schema is created from a database using the "Generate schema from database"

context menu entry.

 The structure and contents of an external database may not be changed. In contrast

to internal databases, only read access is possible for external databases, not write

access. The restrictions "No schema sync" and "Write-protected" have to be enabled by

the project administrator for this. In this case, content can be read out of an external

schema and generated as a new schema node in FirstSpirit JavaClient. The contents can

then be displayed (but not modified) in the content store using table templates.

For more information see "FirstSpirit Manual for Administrators".

Generating a new schema from an existing database in JavaClient inserts a new schema node

underneath the "Database schemata" root node. In the process, an attempt is automatically

made to transfer the existing tables and content from an existing database or from an existing

database schema to the graphical schema editor (for "Restrictions" see "FirstSpirit Manual for

Administrators"). If the project administrator configures an external Oracle database for the

project, a schema based on the external database is generated using the "New – Generate

schema from database" context menu. The associated tables are also taken over. Depending on

the database configuration, the editor receives read access to the database via the content store

and can read out and generate content from the respective tables.

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 102

Database_1 Database Layer

DBMS Oracle (external)

Schema

FirstSpirit JavaClient

existing data
base or
schema

physical name of
the data base or the
schema

Figure 2-74: Generating a schema from an external database

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 103

The following inputs are required to create a new schema:

Figure 2-75: Generating a schema from a database

Name of the database schema: The name for the database schema has to be specified in this

field. In contrast to creating a new, empty schema, the name is not freely selectable. Instead, it

has to correspond exactly to the physical name of the database schema (or the database).

 If a name is selected that is not available in the respective database, then an empty

schema node is created. In this case, no content (e.g. tables) can be taken over from the

selected database.

Database layer: An existing database layer has to be selected in the "Database layer" field (see

Chapter 2.12.1, page 97).

 The option to select an external database is only available if the project

administrator configured access to an external database for the project in the project

properties.

Please contact the project or system administrator if you have questions regarding the

database.

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 104

 Clicking this button connects the new schema and the associated tables in the tree view

and it can be edited further using the graphical editor.

 Clicking this button cancels the operation. A schema is not created.

2.12.3 The FirstSpirit schema editor

A graphical editor for editing a schema in FirstSpirit JavaClient is available on the right side of the

window. The editor can be used to create the desired database schema. Depending on the

configuration, a schema can access existing database structures or create new table structures

in an existing database.

The editor is operated either using the editor's tool bar or using a context menu which can be

called up at any position in the editor by right-clicking.

Figure 2-76: Database schema editor

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 105

Figure 2-76 shows the database schema of the product database of the "Mithras Energy" test

project as an example. Among other aspects, the tables for products (Products), product

categories (Product_Categories), product properties (Product_Properties) and

contacts(Contacts) can be seen. In this instance, products and contacts, for example, are linked

via a 1:N relationship, and products and product categories via an M:N relationship.

 Create table: with this button, a new table can be inserted in the database schema. The

following window opens:

Figure 2-77: Creating a table

Table name: A unique name has to be entered for the database table in this field.

 Create column: with this button, a new column is added to the activated table. The following

window opens:

Figure 2-78: Creating a column

Name: The column name has to be entered in this field. As long as this field is empty, Name is

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 106

shown in red and the new column cannot be saved.

Data type: The desired data type can be selected for the new table column using this combobox.

Boolean: This data type allows two values: true or false. In the schema editor, this data type

receives a xs: boolean.

Date: This data type is used for date values. In the schema editor, this data type receives a xs:

date.

Double: This data type enables entry of floating-point numbers. In the schema editor, this data

type receives a xs: decimal.

FirstSpirit editor: This data type enables the use of DOM editors. The maximum character

length is 65535. In the schema editor, this data type receives a xml.

Integer: This data type is used for whole numbers. In the schema editor, this data type receives

a xs: integer.

Long: This data type is also used for whole numbers, but the value range is larger than the

range for the Integer data type. In the schema editor, this data type receives a xs:long.

String: This data type is used for character strings. In the schema editor, this data type receives

a xs: string. The number of maximum characters allowed can be specified for this data type.

Options: The maximum character length for the String column type has to be specified in this

field. The respective value is shown in square brackets after xs: string.

Generate for all languages: This option enables language-dependent input of the values by the

editor. If the checkbox is checked, a single column is generated for each attribute in every

language. This makes sense if the attribute terms differ based on language. The columns receive

a corresponding language code for each language in the process.

Allow empty values: By activating this option, the editor is allowed to create a new data record

without putting a value in this column. If empty values are not allowed (i.e. input is mandatory),

the column name is shown written in red in the database schema model.

 Remove column: The individual columns of a table of the database schema are removed

using this function. The desired column can be selected from the combobox in the following

dialog:

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 107

Figure 2-79: Removing a column

 Create foreign key relationships: A relationship can be created between the activated table

and another table using this button.

Creating a relationship should be done according to the example in the product database shown

in Figure 2-76. We want to create the relationship between the tables named Products and

Contacts: A contact person can assign multiple products, they are in other words in a 1:N

relationship.

Initially, the Contacts table and (while pressing the shift key) the Products table have to be

activated (activated tables change their frame color). If the button Create relationships is now

selected, the first step of the procedure appears, in which the type of relationship has to be

established. The two tables should be in a 1:N relationship.

Figure 2-80: Create relationship– Step 1

The second window of the relationship appears as follows (however, the appearance can vary

depending on the selection in the first window):

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 108

Figure 2-81: Create relationship– Step 2

The direction of a connection is assigned based on the order the tables are activated. As a result,

1 element from the Contacts table is connected to N elements from the Products table. If the

tables are accidentally activated in the wrong order, it can be reversed with the buttons

Exchange source and target. The additional information in this window can usually be taken over

the same way the system suggests. The names that are specified in the "Names of connections

in object model" area are used during later use to trace data inventories based on their

relationships.

 Delete elements: The activated table can be deleted from the database schema with this

button. It is deleted directly, without a confirmation prompt; unsaved files are lost in the process

and cannot be restored.

 Properties: The name of the activated table can be shown using this button.

 Assign automatically: The tables shown are automatically assigned in the editor by activating

this button.

 Load saved assignments: Changes to the assignment of the tables in the schema can be

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 109

undone using this button. The last saved assignment is again shown.

 Enlarge view: With this button, the elements of the database schema are shown enlarged.

 Shrink view: With this button, the elements from the database schema are shown smaller.

 Normal view: With this button, the elements of the database schema are once again shown

at their original size.

 Print: With this button, the database schema can be printed. Next, the following print preview

window opens:

Figure 2-82: Print preview

View: This combobox can be used to affect the preview size of the database schema. Possible

zoom levels are 10%, 25%, 50% and 100%.

Scaling: The database schema is printed smaller as needed. Scaling levels 10%, 25%, 50% and

100% are possible.

Set up printer: Opens the dialog for the printer settings.

Set up page: Opens the dialog for the page settings.

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 110

The print job is started with the current settings using the button.

 Only show usable attributes: If this is checked, then all of the

attributes of a table that the editor can fill with content are hidden.

In addition to functions of the icons, additional functions can be called up using the context menu:

Rename table/column: A new name can be specified for an existing table or for an existing

column of a table using this function. A window appears where the desired table or column can

be selected and a new name can be specified. When renaming it is important to note that table

templates and queries based on this table or column have to be adapted.

Figure 2-83: Renaming a table

Figure 2-84: Renaming a column

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 111

2.12.4 Table templates

A table template has to be created under the schema for each input table in the database model.

Which input components the editor can use to import data into the correspond tables is defined in

this table template.

2.12.4.1 Table templates – Preview, properties and form tabs

The preview, properties and form tabs for table templates are identical to the tabs for page

templates with the same names and can be edited in the same way.

You can find information on the tabs in Chapter 2.5.1 (page 56) to Chapter 2.5.3 (page 59).

 The option "Hide template in selection list" (see Chapter 2.5.2) is not available for

table templates.

Important for using table templates in WebClient

If a table template is to be able to be used in WebClient, the checkbox "Usable in WebEdit“ must

be activated on the "Properties“ tab. Moreover, an adequate preview page must be set in the tab

"Properties" (cf. Chapter 2.5.2) for a correct display of the data records in WebClient.

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 112

2.12.4.2 Table templates – Mapping tab

This area defines which input components are used to insert data records into the database

tables. Each input component (defined on the Form tab) is assigned a table column in the

process.

Figure 2-85: Table template – "Mapping" tab

Connected to table: The table that the mapping settings apply to is displayed in this field.

Cell height (in rows): Data records can be displayed over multiple rows in the content source

later on (see FirstSpirit Manual for Editors, Chapter 5). This combobox can be used to configure

how many rows a cell or data record is to have in the data overview (maximum of 10). This could

allow image thumbnails to be displayed in the overview, for instance.

Allow data record copying: If this checkbox is checked (default setting), existing data records

can be copied by the editor in the associated data source. If the checkbox is unchecked, only

"blank" new data records can be created; the icon is disabled.

 Each row of the list corresponds to a column in the data overview of the associated

content source. Clicking the icons moves a highlighted row up or down or the associated column

in the data overview left or right by one position. This can be used to move more important

columns farther to the left. The order can be changed manually by the editor; upon updating the

view, however, the order reverts back to the setting on this tab. In contrast, the order selected

here has no effect in data entry.

Display in overview: This column can be used to hide table columns from the data overview in

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 113

the respective content source by unchecking the checkboxes, e.g. to improve the overview if

there are too many columns. In contrast, hiding has no effect in data entry.

Variable: This column contains the name of the variable as it was defined in the table template's

form (Chapter 2.12.4.1, page 111).

Type: The type of the input component for the respective variable is specified in this column.

Language-dependent: If the input component on the Form tab is defined as being multi-lingual,

the this is shown by a check in this column.

Column width: In this field, the width of the column is specified in pixels as it will be displayed in

the content store later.

Language (DE/EN): The table column where the content of the input element is to be transferred

to is selected in this field. There is a separate column for each project language. The same table

column has to be selected for each language if a language-independent input component is

involved. A separate table column where the value is transferred to has to exist for each

language for language-dependent input components.

2.12.4.3 Table templates – Template sets tab

The appearance that individual data records are intended to assume later on the website or in

other presentation channels imported using this table template is determined using this tab.

The tab for table templates is identical to the tab of the same name for page templates and can

be edited in the same way.

For information on the "Template sets" tab see Chapter 2.5.4, page 60.

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 114

2.12.5 Queries

Multiple queries can be created for each database schema to limit the number of data records for

later output. The conditions a data record has to fulfill to be recorded in the result list is

determined in these queries.

2.12.5.1 Query – Conditions tab

The desired filter criteria for a query can be defined on the "Conditions" tab using a graphical

editor in what is known as Wizard mode. Multiple rules can be set in the process, which then

affect the display of suitable data records on the "Result" tab.

Figure 2-86: Query – "Conditions" tab (Wizard mode) (new Look&Feel)

Wizard mode: If this option is disabled, the source code for the selected query is displayed in an

editor and can still be modified as needed. A query can also be programmed directly using this

editor.

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 115

 Tags and parameters that can be used for directly programming queries can be

looked up in the FirstSpirit Online Documentation: Section "Query portion (QUERY)" in

Chapter "contentSelect function" ("Template development" / "Template syntax" /

"Functions" / "In header" / "contentSelect").

Figure 2-87: "Conditions" tab (no Wizard mode)

If changes that cannot be mapped in Wizard mode are made to the query, then the query is

adjusted automatically (in the editor) as soon as Wizard mode is activated again.

Result table: A table from the FirstSpirit schema for restrictions to be made during output can be

selected here. This field is deactivated once a selection has been made. The selection can only

be removed by "resetting" the entire query (see below).

Add restriction: Activating this button adds a new condition. A window opens where a specific

column of the selected result table can be selected as a new reference. The limiting condition

can then only be set for this reference. The specific values that have to be met can be specified

in the condition column in the lower window area. The desired comparison operator for the

condition for this is selected in the field on the left. In the field on the right, either a specific

comparison value can be entered or a parameter identifier for the comparison value can be

specified. This parameter is then requested each time the query is run; as a result, the specific

comparison value only has to be specified when the query is run.

Reset: All of the conditions and query results defined up to this point are deleted. A result table

can be selected again. A confirmation prompt appears before changes are undone so that data is

not deleted accidentally.

Columns AND, rows OR: If this option is selected, then the intersection of all column results is

always output. The individual rows of a column condition are connected by an OR link in this

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 116

case.

Columns OR, rows AND: If this option is selected, then all of the combined results from all

columns are output; duplicate data records are skipped in the process. The individual rows of a

column condition are connected by an AND link in this case.

2.12.5.2 Query – Parameter tab

Figure 2-88: Query – "Parameter" tab (new Look&Feel)

All of the parameters that can be used in this query are listed in this area. The parameter can be

set as needed even at this point in the Value column. This means the corresponding query

parameters are assigned values. These values are then used for the query each time it is run.

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 117

2.12.5.3 Query – Result tab

The result data records that result from the conditions in the query and query parameter value

assignment are output in this area.

Figure 2-89: Query – Result tab

2.12.5.4 Query – Result (release) tab

The result data records that result from the conditions and query parameters in the query and are

in the release state are output in this area Thus the result quantity can differ from the list from

the Result tab.

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 118

2.13 Workflows

Figure 2-90: Template store tree view – Workflows

A workflow is a sequence of tasks that are completed in a fixed, predefined structure. Due date

deadlines and groups of authorized persons can be defined for the respective tasks. Issuing a

task and requesting release are workflows integrated into FirstSpirit.

For modeling, configuring and running workflows, see Chapter 4, page 126 ff.

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 119

3 Content sources in FirstSpirit

FirstSpirit has efficient mechanisms for connecting databases. The connected databases are

identified as content sources in the editing environment. The data records managed in the

content sources can be integrated into websites and edited seamlessly in FirstSpirit without

leaving the editing environment (see Chapter 3.4, page 124).

A database connection is available for a majority of databases and is run using the JDBC driver

provided by the database suppliers. Each database supplier implements a separate internal

structure for managing data saved in the database server (DBMS). These internal structures, in

conjunction with security and maintenance specifications, have implications on the form and

configuration for connecting databases to FirstSpirit.

 For more detailed information on connecting databases to FirstSpirit and configuring

them, see "FirstSpirit Manual for Administrators", Chapter 4.8 "Database connection".

The following chapter is intended to support template developers with selecting the correct

connection and to explain concepts for working with content sources in FirstSpirit JavaClient:

Chapter 3.1 defines the terms in use since, in relation to databases, the terms can have different

meanings depending on the context being used.

Chapter 3.2 and 3.3 cover the layer types used in FirstSpirit for connecting databases. The layer

type selection has various effects on later operation and requires substantial effort to change and

should be considered carefully for these reasons.

The concept of content sources in FirstSpirit JavaClient is described in Chapter 3.4.

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 120

3.1 Terms

Many misunderstandings occur when dealing with connecting content sources to FirstSpirit due

to the vast assortment of terms, some of which may have multiple meanings. The suppliers of

databases to be connected often maintain their own terminology, which can overlap with

FirstSpirit's. Therefore, terms used in this document will first be clarified here:

Layer: This term represents a connection configuration to a database management system

(DBMS) in FirstSpirit. A layer can be assigned to multiple FirstSpirit schemata (see below) in

FirstSpirit.

 Standard layer: This layer type includes an explicit definition of the used DB schema in the

layer definition. In this case, all of the tables of FirstSpirit schemata that use this layer are

saved in the specified DB schema. A FirstSpirit user cannot create any additional new

schemata in a FirstSpirit project only assigned standard layers. Only a FirstSpirit

administrator can add additional standard layers to a project. A standard layer should always

be assigned to precisely one FirstSpirit schema. (see: Chapter 3.2, page 121)

 DBA layer: This layer type does not include any explicit definitions of the DB schema to be

used. FirstSpirit automatically creates a separate DB schema for each FirstSpirit schema.

This allows additional schemata to be created by FirstSpirit users as well. However, to do so,

comprehensive DBA permissions (DBA = database administrator) are required for most

DBMSs. (see: Chapter 3.3, page 122)

FirstSpirit schema: This term describes the structures and templates of content sources

described in FirstSpirit. Thus, FirstSpirit schemata contain both tables and their foreign key

relationships as well as templates for generation. The table structure and data records of

FirstSpirit schemata are stored in a DBMS within a DB schema (see below). Each FirstSpirit

schema is always assigned to precisely just one layer (see Chapter 3.2, page 121 and Chapter

3.3, page 122).

DB schema: This term describes the logical area within a database where tables can be stored

(tablespace). Each table in this area has to have a unique name. In DBMS, the term "database"

is also frequently used as a technical term. In the layer configuration, FirstSpirit simply calls this a

"schema".

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 121

3.2 Standard layer

The standard layer (see also: Chapter 3.1, page 120) was used in earlier versions of FirstSpirit

under the term "MultiProjectLayer". The mechanism for avoiding conflicts between identical table

names in different FirstSpirit schemata is no longer present in the standard layer, however. The

DBA layer was introduced as a replacement for the flexible assignment of FirstSpirit schemata to

DB schemata (see Chapter 3.3).

 If the standard layer is assigned to multiple FirstSpirit schemata, a conflict occurs in

the FirstSpirit schemata if table names are identical since they are assigned the same

table in the DB schema (see Figure 3-1).

Layer x

DB-Schema a

Tabelle

category

Tabelle

transaction

_counter

FirstSpirit Server

Project

Schema 1

Table „category“

Table „transaction_counter“

Schema 2

Table „category“

Table „transaction_counter“

Table

Table

Figure 3-1: Problematic use of a standard layer

The "transaction_counter" system table is a special case in this context; a hidden version of it

can be created for each FirstSpirit schema. FirstSpirit tries to resolve the conflict mentioned

above by converting the tables into one table.

 In any case, mixing two FirstSpirit schemata in one DB schema is not

recommended. Standard layers should always be assigned to just one FirstSpirit schema.

Figure 3-2 shows the correct use of standard layers. A separate standard layer is created for

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 122

each FirstSpirit schema and thus a separate DB schema where the associated tables are stored.

Layer 2

Layer 1

FirstSpirit Server

Project

Schema 1

Table „category“

Table „transaction_counter“

Schema 2

Table „category“

Table „transaction_counter“

DB-Schema 1

Tabelle

category

Tabelle

transaction

_counter

DB-Schema 2

Tabelle

category

Tabelle

transaction

_counter

Table Table

Table Table

Figure 3-2: Correct use of separated standard layers

3.3 DBA layer

The DBA layer was used in earlier versions of FirstSpirit under the name "SingleProjectLayer". It

was introduced for being able to create FirstSpirit schemata in a project even without intervention

by a database administrator.

In contrast to the standard layer, no explicit DB schema for saving tables is specified in the layer

definition for a DBA layer. FirstSpirit independently creates the DB schemata belonging to the

FirstSpirit schemata in the DBMS. The name of the DB schemata is composed of the schema

and project ID in the process (see Chapter 2.12.1, page 97).

The user specified in the layer has to have the permissions to create DB schemata in the DBMS

to use a DBA layer. In many DBMSs, this is only possible with permissions similar to a database

administrator's.

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 123

Layer

FirstSpirit Server

Project

Schema 1

Table „category“

Table „transaction_counter“

Schema 2

Table „category“

Table „transaction_counter“

DB-Schema 1

(automatic)

Tabelle

category

Tabelle

transaction

_counter

DB-Schema 2

(automatic)

Tabelle

category

Tabelle

transaction

_counter

h

Table Table

Table Table

Figure 3-3: DBA layer

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 124

3.4 Content sources in FirstSpirit JavaClient

Database_1

DBMS Derby (internal)

Schema

FirstSpirit Schema

Database view (table)

Table template

FORM: defines the
input components

creates a new data base schema
basing on the structure of the
FirstSpirit schema

reading and/or writing
database access

 MAPPING:defines where
the contents from the
database are stored

Database_1

e.g. Oracle data base

FirstSpirit Schema

Database view (table)

Table template

FORM: defines the
input components

reading and/or writing
database access

FirstSpirit JavaClient

 MAPPING:defines where
the contents from the
database are stored

Schema

maps the structure
from an existing data
base schema

Figure 3-4: Concept – Schemata, table templates, database views

FirstSpirit schema: Either a new, blank database schema (see Chapter 2.12.1, page 97) or a

database schema from an existing database (see Chapter 2.12.2, page 101) can be created

using FirstSpirit JavaClient.

After a new schema has been created, the required tables can be created in the selected

database and their relationships can be set using the graphical editor in FirstSpirit JavaClient

(see Chapter 2.12.1, page 97). The columns that are intended to be imported by the editor later

on have to be specified for each table. A column with the necessary primary key is generated

automatically when the table is created.

Instead of generating a blank schema node (see Chapter 2.12.1, page 97), a new schema node

can also be created based on the existing tables and relationships of a FirstSpirit project (see

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 125

Chapter 2.12.2, page 101).

Depending on the project administrator's settings for the configured database, the changes to a

schema in JavaClient, such as adding a table to the physical database, can be applied ("Sync")

or prevented ("No sync").

Table template: A table template can be created (below the schema node) for each table

modeled in the schema. Which input elements the editor can use later to import data into

corresponding tables and which input elements the editor can use to take over data from a

reference table is determined in these table templates (see Chapter 2.12.4.1, page 111). In

addition, the assignment of contents maintained via an input component to a database table in

the physical database can be established using the "Mapping" tab (see Chapter 2.12.4.2, page

112). Thus mapping defines the save location of the contents in the database. The appearance

of the data records for generation in the individual presentation channels can be set using the

Template sets tab (see Chapter 2.12.4.3, page 113).

Queries: In addition, queries can be created for each database schema (see Chapter 2.12.5.1,

page 114). Restrictions are made in the queries which are used to evaluate the result table. The

restrictions made are then taken into account when outputting a table's data records.

View of a database: The editors work from a database's "view" in FirstSpirit's content store. A

table with a link to the database table is created for this. The data is displayed in tabular form in

this table. Depending on the project administrator's settings for the configured database, editors

can either access database content with read-only access and for a task, such as outputting it

sorted on a page as the result of a query ("content projection"), or they can also have write

access and thus add new content to the database. New data records can be added or existing

data records can be modified if write access is granted. The input elements defined in the table

template are available to the editor for this (see Chapter 2.12.4.1, page 111).

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 126

4 Workflows

A workflow is a sequence of tasks that are completed in a fixed, predefined structure. Due date

deadlines and groups of authorized persons can be defined for the respective tasks. Workflows

are integrated into FirstSpirit for issuing a task and requesting release.

Project-specific workflows can be created in the template store using a graphical workflow editor

(see Chapter 4.2, page 133).

Instances of these workflows can then be started on each element in a FirstSpirit project linked to

a specific context or without context using the FirstSpirit menu bar. Each instance of a workflow

has to run according to the rules set in the workflow.

An overview of all open or already closed workflows (instances) in a project is located at the

"Workflows" root node in the template store (see Chapter 4.1, page 127). The overview also

makes it possible to have a filtered view dependent on different search criteria (see Chapter

4.1.1, page 129). Tasks can be edited (see Chapter 4.1.2, page 131) and closed again (see

Chapter 4.1.3, page 132) in the overview.

 For additional information on starting and advancing workflows, see "FirstSpirit

Manual for Editors", Chapter 12 "Workflows in FirstSpirit JavaClient" and "FirstSpirit

Manual for Editors (WebClient)".

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 127

4.1 Overview

An overview of all open or already closed workflows (instances) in a project is shown at the

"Workflows" root node in the template store.

Figure 4-1: Workflows overview

 Clicking this icon opens the task list for editing a task (see Chapter 4.1.2, page 131).

 Clicking this icon closes the highlighted task (see Chapter 4.1.3, page 132).

 Clicking this icon opens the "Task search" dialog for defining a task search filter (see Chapter

4.1.1, page 129).

 Clicking this icon removes the filtered display and instead displays the complete view of all

workflows that are still open (see Chapter 4.1.1, page 129).

The (filtered or unfiltered) workflows are listed in the table. The following information is available

for each task here:

Workflow: Name of the workflow that has been started.

State: State that the current instance of the workflow is in.

Priority: The current priority that has been defined for editing the task.

Initiator: Login name of the editor that started the workflow.

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 128

Start time: Date and time when the workflow was started.

Context: If the workflow was started on an element, such as a page or media file, that element is

displayed. Double-clicking the line changes the context directly to the corresponding element in

the tree view.

ID: If the workflow was started on an element, such as a page or media file, the ID of the element

is shown. Double-clicking the line changes the context directly to the corresponding element in

the tree view.

Deadline: If a deadline is set for the current task it is shown here.

Double-clicking a (context-sensitive) schedule in the table switches the focus in JavaClient

directly to the element in the tree view where the schedule was started.

It is possible to select multiple items in the table at once by pressing the SHIFT or CTRL key at

the same time.

Sorting by column content: Clicking the respective column header changes the sorting of the

entries in the table. The first click on a column header sorts entries in ascending order; clicking

again puts them in descending order (based on column content). Sorting is indicated by a icon

after the column header:

Figure 4-2: Sorting by column content (ascending order)

Clicking a third time removes the sorting.

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 129

4.1.1 Task search (filtered overview)

Workflows or tasks can be filtered according to filers such as workflow, element ID, editor, etc.

using the "Task search" dialog Clicking opens the dialog:

Figure 4-3: "Task search" for filtering the view

Open tasks: All "open tasks" are displayed. Tasks that have not yet reached the end state (of

the workflow) are considered open.

Closed tasks: All "closed tasks" are displayed. Tasks that have reached the end state (of the

workflow) are considered closed.

Result number: The number of found tasks that match the entered filter criteria; can be limited

to a maximum number of results. If more results match the search criteria than the maximum

allowed, only the most current results are shown.

Element ID: Unique ID for the object where the workflow was started. An empty field is shown if

the workflow does not have context.

Workflow: Name of the workflow that has been started. Either the unique reference name or the

language-dependent display name for the workflow is displayed in the view depending on the

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 130

"Preferred display language".

Initiator: Login name of the editor that started the workflow. Searching by partial strings is

supported here. This means the search result does not have to match the search term exactly.

Instead, all of the results that include the search term are displayed.

State: State that the current instance of the workflow is in. Searching by partial strings is

supported here. This means the search result does not have to match the search term exactly.

Instead, all of the results that include the search term are displayed.

State initiator: Login name of the editor that switched the current instance of the workflow into

the current state. Searching by partial strings is supported here. This means the search result

does not have to match the search term exactly. Instead, all of the results that include the search

term are displayed.

Start time from / Start time to: The date selection component can be opened using the

icon. A date for the start or end period of the search can be specified here. The deciding factor is

always the date when the workflow was started. All of the workflows from the currently selected

day are searched if only a start date is specified

 Clicking this button filters the tasks by the entered criteria. Clicking the icon removes

the filtered display and instead displays the complete view of all workflows that are still open.

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 131

4.1.2 Editing tasks

The task list can be opened by clicking the icon in the "Overview of workflows" dialog (see

Figure 4-1). The task selected in the overview is highlighted in the task list. If the user has the

permissions required for switching the workflow, the transitions are shown directly in the lower

area of the task list.

Figure 4-4: Task list

Initially, only 25 tasks are displayed in the task list on the "Open tasks" and "Initiated tasks" tabs

for performance reasons. If there are more tasks, they can be displayed using the Show older

tasks button.

Colored highlighting around a task specifies criteria such as whether the logged-in user is

selected as an editor directly or due to his or her group affiliation (red text), whether the logged-in

user is not selected as an editor (black text) or whether there is an invalid task (red background).

Invalid tasks can occur due to an object with an active workflow being deleted. These cannot be

advanced; instead they can only be closed using the "Close task" button. If the task can be

repaired, such as when a deleted object whose workflow still exists is restored, the "Repair task"

button is shown in the Actions area. Carrying out this action resets the task, the state color and

write protection.

Multiple selections can be made by simultaneously pressing the SHIFT or CTRL key (all of the

tasks can be selected using the key combination CTRL + A). If multiple tasks are highlighted in a

list, they can be advanced in one processing step (see Chapter 4.11.3, page 209).

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 132

The task list can also be opened using the "Tasks" menu or by clicking the icon on the

FirstSpirit tool bar.)

 For additional information on the task list see "FirstSpirit Manual for Editors".

4.1.3 Closing tasks

Under certain condition it may be necessary to close an open task even though the end state has

not yet been reached. A task can be closed by clicking the icon in the "Overview of

workflows" dialog (see Figure 4-1).

This function corresponds to the "Close task" button available in the task list.

Multiple selections can be made by simultaneously pressing the SHIFT or CTRL key (all of the

tasks can be selected using the key combination CTRL + A). If multiple tasks are highlighted in a

list, they can be deleted in one processing step.

A confirmation prompt appears before the tasks are deleted.

 Closed tasks cannot be restored.

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 133

4.2 Modeling workflows

4.2.1 Creating a workflow

New, project-specific workflows are created using the context menu at the "Workflows" root node

in the template store or at a folder in that node. Clicking the "Create workflow" entry creates a

new workflow in the tree display.

Figure 4-5: Creating using the context menu

A graphical editor for modeling a new workflow opens in the edit window on the right. A start

state with a transition to the first workflow activity and an end state are displayed there by default.

Figure 4-6: Initial state after creating a new workflow

The workflow can now be modeled in the editor by adding additional states, activities and

transitions (see Chapter 4.2.3 ff.).

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 134

In the process, each workflow has to begin with a start state and end with an end state.

The editor is operated either using the tool bar (see Chapter 4.2.2, page 134) or using a context

menu that can be activated at any position in the editor.

4.2.2 Workflow editor tool bar

Figure 4-7: Workflow editor tool bar

 Create new activity: A new activity is created in the editor by clicking

this icon (or using the keyboard shortcut A) (see Chapter 4.2.3.2, page 136).

 Create new state: A new state is created by clicking this icon (or using

the keyboard shortcut S) (see Chapter 4.2.3.1, page 135).

 A new transition is created in the editor by clicking this icon (or

using the keyboard shortcut T) (see Chapter 4.2.3.3, page 137).

Modify properties: Clicking this icon opens the Properties window for the

activated workflow element.

Cut element: Clicking this icon cuts out all of the highlighted workflow editor

elements and copies them to the clipboard. (Multiple elements can be highlighted by dragging a

box around them with the mouse.)

Copy element: Clicking this icon copies all of the highlighted workflow editor

elements to the clipboard.

Paste element: Clicking this icon pastes the elements copied to the clipboard

into the workflow editor.

Delete: An element can be removed from the workflow process using this icon.

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 135

Zoom 1:1: Workflow editor elements can be displayed back at

their original size using this icon.

Zoom in: Workflow editor elements can be shown enlarged using this icon.

Zoom out: Workflow editor elements can be shown shrunken using this

icon.

 Print: It is possible to print a graphic of the workflow using this icon (or using

the keyboard shortcut Ctrl + P). A window for print settings opens (see Chapter 4.2.8, page 140).

4.2.3 Elements of the graphical workflow editor

Three different object types are available in the editor. They can be used to model and configure

new workflows:

 States or statuses (see Chapter 4.2.3.1, page135)

 Activities (see Chapter 4.2.3.2, page 136)

 Transitions (see Chapter 4.2.3.3, page 137)

4.2.3.1 State/status

Figure 4-8: States (statuses) in the workflow editor

States, also called statuses, are represented by circles. A state is the result of an (automatic or

manual) activity. States specify the state a workflow can be in.

 A new state is created in the editor by clicking this icon (or using the

keyboard shortcut S). Depending on the configuration, a state can be:

 A start state (only has outgoing transitions)

 An end state (only has incoming transitions)

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 136

 A normal state (has incoming or outgoing transitions)

The display of the different types is emphasized by a dark border (for start and end states) (see

Figure 4-8).

4.2.3.2 Activity

Figure 4-9: Activities in the workflow editor

Activities are represented by rectangles. An activity consists of implementing a task (e.g.

"reviewing") and triggering an action (e.g. Clicking the "Approve release" button).

An activity can be run manually by a user or automatically by a script (see Chapter 4.5.4, page

156).

Manual activities are marked in the editor with an "M" in the top right corner (see Figure 4-9 – left

activity); automatic activities are marked in the editor with an "A" in the top right corner (see

Figure 4-9 – right activity).

 A new activity is created in the editor by clicking this icon (or using the

keyboard shortcut A). Depending on the configuration, an activity can be run:

 Manually (by an editor)

 Automatically (by a script)

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 137

4.2.3.3 Transition

Figure 4-10: Transition in the workflow editor

Transitions are represented by arrows. Transitions form the connection between an activity and a

state. The permissions for a workflow model are defined here. Canceling an action results in the

previous state (before switching to the transition) being retained. Canceling does not have to be

modeled separately in a workflow.

 A new transition is created in the editor by clicking this icon (or

using the keyboard shortcut T).

4.2.4 Keyboard shortcuts in the workflow editor

A Create a new activity.

T Create a new transition.

S Create a new state.

Ctrl + P Request a print preview of the workflow model

Alt + Enter
Open the Properties dialog box for a highlighted element

in the workflow model.

Ctrl + Z Undo

Ctrl + Shift + Z Restore

Ctrl + X Cut

Ctrl + C Copy

Ctrl + V Paste

Del Delete

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 138

4.2.5 Operating assistance for the editor

Clicking on an element once in the editor selects the element. This element can be moved to a

specific spot in the editor by holding down the left mouse button. Incoming and outgoing

transitions follow the moved element in the process.

You can use the mouse to draw a box around multiple elements. This allows you to move, cut or

copy multiple elements simultaneously.

If a state is selected in the workflow editor, then the Insert activity function causes a new activity

to be connected to this state automatically by a transition. In the same way, if an activity is

selected, the Insert state function creates a transition between the activity and the new state.

Transitions are always automatically straight connections from a source to a target. In particular,

support points can be inserted at a transition in order to make the representation of loops more

clear. The connection between two support points is straight as well, but as many support points

as needed can be added.

In order to add a support point, you have to right-click the transition at the desired spot. Right-

clicking on a support point removes that support point again.

A support point can be moved to a specific position in the editor by holding down the left mouse

button.

4.2.6 Rules of modeling

 Each workflow has precisely one start state.

 The start state can follow precisely one outgoing transition. Since nothing can be selected in

the start state, the first outgoing transition is always taken into account.

 Transitions represent a target-oriented connection between precisely one source and one

target element.

 A transition's source and target element can be states or activities but not other transitions.

 Transitions can only ever be between one state and one activity, never between two states or

two activities.

 States and activities can have as many incoming and outgoing transitions as desired

(exceptions: start state and end state).

 States and activities should always have names that are unique (to the workflow).

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 139

 Transitions may have a name; this name must then be unique in relation to the starting

element.

 Each workflow has a fixed, defined number of end states; at least one end state has to be

defined.

 An end state may not have any outgoing transitions.

4.2.7 Examples for modeling rules

 An activity always follows a state. A state and an activity are connected with "transitions"

and require a unique name. A name can be specified for transitions; the name has to be

unique in relation to the transition's starting element.

 Figure 4-11: State and activities modeling rule

 Multiple activities can result from one state. Likewise, multiple activities can lead to one

state.

 Figure 4-12: One state, multiple activities modeling rule

 One activity can lead to multiple states. Likewise, multiple states can trigger one activity.

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 140

 Figure 4-13: Multiple states, one activity model rule

 A script can only be attached to an (automatic) activity where the connecting line is

straight.

 Figure 4-14: Activities and scripts modeling rule

4.2.8 Print preview for workflow models

 Clicking the Print button (or using the keyboard shortcut Ctrl + P) requests a

print preview of the modeled workflow in the workflow editor (see Chapter 4.2.2, page 134). A

window for the print settings opens.

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 141

Figure 4-15: Print preview

View: The percentage size of the pages in the preview window can be configured using the

combobox.

Scaling: The percentage size of the workflow model can be selected on the print preview page

using the combobox. If the display is sized accordingly, multiple preview pages are displayed.

 Clicking this button opens a window where print settings can be changed.

 Clicking this button opens a window where some settings for the printed pages

can be changed.

 Clicking this button starts the print operation.

 Clicking this button cancels the print operation.

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 142

4.3 Error handling in workflows

4.3.1 General error handling

When starting: If an exception occurs when starting a workflow, because the user does not have

permission for switching a workflow's transition for instance, the workflow is not started for the

object.

When switching: The situation is different if the workflow has already been started and an error or

exception occurs while switching a transition. In this case, the state before switching the

transition, i.e. the last "error-free" state, is retained. If an error state is defined in the workflow

model, the element will be in the error state after the exception occurs (see Chapter 4.3.2, page

142).

4.3.2 Error state

There are many reasons for why an exception could occur when running a workflow, such as

improper configuration in the workflow's model or a script error in an attached script. In order to

reliably catch these errors and prevent an instance of the workflow from being in an inconsistent

state after switching a transition, an optional error state is available in the modeling for workflows

A normal state is simply added to the model for this. Then the "Error" type has to be activated in

the "Properties" dialog for the state:

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 143

Figure 4-16: Configuring the error state

 The state is then shown with a red border in the model.

Figure 4-17: Error state in the model

The error state cannot be switched via a transition; i.e. it only has outgoing transitions just like

the start state. Error handling within the workflow is modeled using these outgoing transitions

(see Figure 4-19).

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 144

If an exception occurs at any spot in the workflow, the workflow instance arrives at the error state

directly.

The error state catches all exceptions that occur when running the workflow, even exceptions

that are not handled in the workflow. Examples of handled and unhandled exceptions are

described in Chapter 4.3.3.

After error handling, the workflow can be advanced to the subsequent state (according to the

workflow model).

The task list provides an overview of all instances of the workflow that had errors when being

run.

Figure 4-18: Task list with tasks in the error state

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 145

Clicking the table "State" label sorts schedules by their current state.

Each workflow can have just one error state. If a state is defined as the error state even though

an error state already exists in the workflow model, the first state is automatically reset to the

"Normal" type.

4.3.3 Example: "Error" workflow

Figure 4-19: "Error" example workflow

The workflow consists of the "errortest" workflow and the associated scripts "errorshow",

"errortest1" and "errortest2". The workflow is made available as a compressed zip file for import

into the template store ("Workflows" node).

Script errortest1:

//!Beanshell

throw new IllegalArgumentException("Error test 1");

The first script, "errortest1", throws an unhandled IllegalStateException. This exception is not

handled in the workflow, but results in the state going to "Error" instead of "End" regardless.

Script errortest2:

//!Beanshell

context.gotoErrorState("Error test 2",

new IllegalArgumentException("Error test 2"));

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 146

The second script, "errortest2", shows error handling within a script. The instance of the workflow

is switched to the Error state directly when an exception occurs

usingcontext.gotoErrorState(...).

Script errorshow:

import de.espirit.firstspirit.common.gui.*;

import de.espirit.firstspirit.access.*;

import de.espirit.firstspirit.ui.operations.RequestOperation;

import de.espirit.firstspirit.agency.OperationAgent;

errorInfo = context.getTask().getErrorInfo();

if (errorInfo != null) {

 text = new StringBuilder("<html>Error information:
");

 text.append("");

 text.append("Benutzer: " + errorInfo.getUserLogin() + " (" +

errorInfo.getUserName() + ")");

 text.append("Kommentar: " + errorInfo.getComment());

 text.append("Aktivität: " + errorInfo.getErrorActivity());

 text.append("Error: " + errorInfo.getThrowable());

 text.append("ErrorInfo: " + errorInfo.getErrorInfo());

 text.append("");

 text = text.toString();

 requestOperation =

context.requireSpecialist(OperationAgent.TYPE).getOperation(RequestOperation

.TYPE);

 requestOperation.setKind(RequestOperation.Kind.INFO);

 requestOperation.addOk();

 requestOperation.perform(text);

} else {

requestOperation =

context.requireSpecialist(OperationAgent.TYPE).getOperation(RequestOperation

.TYPE);

 requestOperation.setKind(RequestOperation.Kind.INFO);

 requestOperation.perform("No error information available.");

 }

context.doTransition("->Main");

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 147

The "errorshow" script displays error information via an error dialog. The dialog is called

automatically via a workflow as part of error handling when an error occurs. The dialog contains

relevant information for resolving errors (e.g. the user that started the workflow, the activity that

resulted in the error, etc.):

Figure 4-20: Dialog with relevant error information

The instance of the workflow is automatically reset to the "Main" state after displaying the dialog.

4.4 Form support for workflows (form)

Forms for entering content can be used in workflows. The forms are defined on the "Form" tab in

a workflow:

Figure 4-21: Form tab (workflow model)

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 148

While running a workflow, the editor can import values via input components that have been

defined in the form area.

Figure 4-22: Form while running

The saved values can be output in the workflow at a later time.

Figure 4-23: Information dialog with form content

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 149

4.4.1 Example: "GUI" workflow

In the example workflow, a script called "guitest" for displaying forms is run via the activity.

Figure 4-24: "GUI" example workflow

Script "guitest":

//!Beanshell

import de.espirit.firstspirit.common.gui.*;

import de.espirit.firstspirit.access.editor.*;

import de.espirit.firstspirit.ui.operations.RequestOperation;

import de.espirit.firstspirit.agency.OperationAgent;

se = context.getStoreElement();

transition = context.showActionDialog(); data = context.getData(); if (transition !=

null) {

 // display selected values

 name = data.get("name").getEditor().get(EditorValue.SOLE_LANGUAGE);

 obst = data.get("obst").getEditor().get(EditorValue.SOLE_LANGUAGE);

 gemuese = data.get("gemuese").getEditor().get(EditorValue.SOLE_LANGUAGE);

 // save selected values

 lastSelection = data.get("lastSelection").getEditor();

 lastSelection.set(EditorValue.SOLE_LANGUAGE, name + ", " + obst + ", " + gemuese);

 text = name + " hat " + obst + " und " + gemuese + " ausgewählt";

 requestOperation =

context.requireSpecialist(OperationAgent.TYPE).getOperation(RequestOperation.TYPE);

 requestOperation.setKind(RequestOperation.Kind.INFO);

 requestOperation.addOk();

 requestOperation.perform(text);

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 150

 // do transition

 context.doTransition(transition);

} else {

 requestOperation =

context.requireSpecialist(OperationAgent.TYPE).getOperation(RequestOperation.TYPE);

 requestOperation.setKind(RequestOperation.Kind.INFO);

 requestOperation.perform("Sie haben keine Transition ausgewählt.");

}

4.5 Properties of a workflow (configuration)

4.5.1 General properties

Figure 4-25: Properties tab (workflow model)

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 151

Keyboard shortcut: A unique keyboard shortcut can be defined for each workflow in this field. In

this case, the workflow does not have to be started or switched using the context menu or the

"Tasks" menu, instead it can be called directly using the defined keyboard shortcut. The cursor

has to be inside this field to define a new keyboard shortcut. Then entering the desired key

combination using the keyboard is all that is needed. The input is then applied in the input field.

Text input is not possible. To change the keyboard shortcut, reposition the cursor in the field and

then select the new key combination. Press the "Esc" key to delete a defined keyboard shortcut

for a workflow.

 Keyboard shortcuts can only be used for context-related workflows.

Workflow can be run in in WEBedit: If this checkbox is checked, the workflow can be run in

WebClient in addition to JavaClient.

Workflow can be run without context: If this checkbox is checked, the workflow can be started

without context relating to one (or more) objects. The standard "task" workflow can be started

without any context, for instance.

Display logic: Display logic can be used to display or hide workflows depending on certain

properties (see Chapter 4.5.2, page 151).

4.5.2 Display logic for workflows

A workflow can be assigned display logic in the template store on a workflow's "Properties" tab.

Display logic can be used to display or hide workflows depending on certain properties. The

display logic only relates to starting the workflow (not to visibility in the template store). If the

display logic prevents a workflow from starting, such as at a certain time or for a certain group,

this workflow is no longer displayed via the context menu (for context-related workflows) or via

the "Tasks – Start workflow" menu function (for workflows without context).

Display logic is implemented specific to a project via a BeanShell script. Thus, specific display

options can be stored for each workflow.

Possible applications:

 Workflows may only be run during a specific time frame (e.g. only on Monday between 8:00

a.m.– 9:00 p.m.)

 Workflows may only be run by a specific user or a specific group (see Figure 4-25 "Editors"

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 152

group). This can also be be implemented by configuring the permissions for running a

workflow, but that is only possible for context-related workflows. Displaying and hiding

workflows without context can be implemented using display logic.

 Workflows may only be displayed for specific elements, e.g. image media. The configuration

of permissions for individual elements for running a workflow would be accordingly extensive

depending on the number of image media. Therefore, this application is easier to implement

using a workflow's display logic.

 If the display logic is to be deactivated, the "Workflow always active"

checkbox can be checked. In this case, the workflow is always displayed, regardless of the

display logic. The stored display logic is no longer evaluated, but it remains stored and can be

reenabled by unchecking the checkbox.

 If this is a context-related workflow, the permission to start the workflow on the

element is evaluated in addition to the display logic. If the user does not have permission

to start the workflow, the workflow is not displayed regardless of the display logic.

4.5.3 Properties of a state

 If a state is highlighted in the workflow editor, the "Properties" window

can be retrieved by clicking on the icon, using the context menu, using the key combination Alt +

Enter or by double-clicking (see Chapter 4.2.2, page 134). Then settings for the selected element

can be made on the "General" and "Color coding" tabs.

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 153

4.5.3.1 General tab

Figure 4-26: Properties of a state (general)

Unique name: A unique name has to be specified for the selected state in this field (character

limit: <= 40 characters).

Dwelling period: A time frame that a workflow can remain in the current state before a message

is sent to the responsible user or group can be specified here.

Responsible party: The responsible users or groups that are to be messaged in the event the

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 154

dwelling period is exceeded are listed in this field. Clicking the symbol opens an additional

window where the responsible parties can be selected from a list.

 For using the group or user selection see FirstSpirit Manual for Editors, Chapter

13.2.4 "Changing authorized groups/users".

Write protection: If this option is enabled, then edit mode is blocked for the corresponding

object while it is in this state (see Chapter 4.7, page 178).

State type: The current state can be defined as a start or end node here. Each workflow requires

precisely one start state and at least one end state (also see Chapter 4.2.3.1, page 135).

 Normal: By default, applies to all states that are not a start or end state.

 Start: Describes the state of an object where the workflow is started. The start state is used

to define the selection of authorized users that are allowed to switch to future states of a

running workflow instance (see Chapter 4.6, page 165)

o Manual editor (for each action)

(see Chapter 4.6.2.1, page 168)

o Automatic editor using permissions

(see Chapter 4.6.2.2, page 169)

 End: Describes a possible state where an object can be after completing the workflow.

Whether an object is to be released as soon as it reaches the end state can also be set.

Comment: An explanatory comment for the current state can be provided in this field. This

comment is shown as a tool tip in the workflow editor.

Additional language-dependent display names and descriptions can be added using the Display

name and Description fields. This refers to the editing languages (not the project languages).

The project administrator defines the editing languages for a project and the editor can then

switch between them using the "View – Preferred display language" menu. The display name is

used in various places such as workflow dialogs (e.g. labeling the buttons in the transition dialog,

on the Help tab and History tab), as entries in the context menu for starting/switching workflows,

the description as a tool tip and on the Help tab. The unique name is displayed if a display name

is not specified. If a description does not exist, the text from the Comment field is displayed.

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 155

4.5.3.2 Color coding tab

Figure 4-27: Properties of a state (color coding)

The desired color coding for the current state can be selected using the color schema on this tab.

The object in the FirstSpirit client's tree structure (where the workflow was started) is highlighted

with this color once the instance of the workflow has reached the corresponding state.

In order to make subsequently finding a color that has already selected easier, all of the colors

that have already been selected once are listed on the right side of the window area

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 156

4.5.4 Properties of an activity

 If an activity is highlighted in the workflow editor, the "Properties"

window can be retrieved by clicking on the icon, using the context menu, using the key

combination Alt + Enter or by double-clicking (see Chapter 4.2.2, page 134). Settings for the

selected element can subsequently be made on the "General" and "E-mail" tabs.

4.5.4.1 General tab

Figure 4-28: Properties of an activity (general)

Unique name: A unique name has to be specified for the selected activity in this field (character

limit: <= 40 characters).

Script: A script that is run as soon as the activity is called can be selected using the combobox.

If the required activity is to be run using a script, automatic execution has to be selected (see

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 157

"Execution").

Execution: Whether an activity is to take place manually via a user or automatically via the

system is determined at this point (see Chapter 4.2.3.2, page 136):

 Manual: The editor is shown a dialog box that can be used to advance a workflow

(instance) when running a manual activity.

 Automatic: Automatic activities do not wait for user interaction and are run as soon as one of

the states is reached upstream in the model (i.e. the action is triggered by the system and not

by the user). Thus, an automatic action (and a connected script along with it) is run directly

after reaching a state. The script can carry out the necessary check and advance the

workflow (instance) automatically.

Comment: An optional explanatory comment can be provided in this field.

Additional language-dependent display names and descriptions can be added using the Display

name and Description fields. This refers to the editing languages (not the project languages).

The project administrator defines the editing languages for a project and the editor can then

switch between them using the "View – Preferred display language" menu. The display name is

used in various places such as workflow dialogs (e.g. labeling the buttons in the transition dialog,

on the Help tab and History tab), as entries in the context menu for starting/switching workflows,

the description as a tool tip and on the Help tab. The unique name is displayed if a display name

is not specified. If a description does not exist, the text from the Comment field is displayed.

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 158

4.5.4.2 E-mail tab

Figure 4-29: Properties of an activity (e-mail)

Send e-mail: If the checkbox is checked, an e-mail is sent to the selected recipients (see

"Distributor") as soon as the activity has been carried out.

Distributor: Which persons are to be sent an e-mail can be selected here.

 Authorized: Persons authorized to advance the workflow to the subsequent state. These

permissions are defined either directly in the workflow model using the permissions for

switching the transition (see Chapter 4.5.5.2, page 162) and/or using the permissions for

switching a transition on the object where the workflow's instance was started.

 Task creator: The user that started the instance of the workflow.

 Last editor: The user that switched the instance of the workflow to the current state.

 List: Clicking the symbol opens a window where the desired persons or groups can be

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 159

selected from a list.

 For using the group or user selection see FirstSpirit Manual for Editors, Chapter

13.2.4 "Changing authorized groups/users".

 Editor: The current editor of the workflow.

Title The text for the e-mail subject line is entered in this field.

Text: The message that the recipient is to receive is entered in this field. Here, the following %

expressions can be used as placeholders that are replaced by the system automatically:

Placeholders for creating context-specific information:

%FIRSTspiritURL% = HTTP connection mode (default mode)

%FIRSTspiritSOCKETURL% = SOCKET connection mode

%PAGESTORE_PREVIEW_URL% = Preview URL for a page from the page store

%SITESTORE_PREVIEW_URL% = Preview URL for a page reference from the site store

%WF_NAME% = Name of the workflow

%CREATOR% = Creator of the workflow (complete name)

%LAST_USER% = Last editor

%LAST_COMMENT% = Last comment

%NEXT_USER% = Next editor

%PRIORITY% = Priority

%DATE% = Due date (only if set)

%HISTORY% = History of the instance of the workflow

%WEBeditURL% = WebEdit link to the preview of the page

If the %FIRSTspiritURL%, %FIRSTspiritRMIURL% or %FIRSTspiritSOCKETURL% placeholders are

specified in the "Text" field, a link (that links to the corresponding node in the project) is created

in the sent e-mail, e.g. for %FIRSTspiritURL%:

http://myServer:9999/start/FIRSTspirit.jnlp?app=client&project=QS_akt&name=vorlage_1&type=

Page&id=4394331&host=myServer&port=9999&mode=HTTP

or for %PAGESTORE_PREVIEW_URL%:

http://myServer.espirit.com:9999/fs5preview/preview/4238727/page/DE/current/4238731/439433

1

http://myserver:9999/start/FIRSTspirit.jnlp?app=client&project=QS_akt&name=vorlage_1&type=Page&id=4394331&host=myServer&port=9999&mode=HTTP
http://myserver:9999/start/FIRSTspirit.jnlp?app=client&project=QS_akt&name=vorlage_1&type=Page&id=4394331&host=myServer&port=9999&mode=HTTP
http://myserver.espirit.com:9999/fs5preview/preview/4238727/page/DE/current/4238731/4394331
http://myserver.espirit.com:9999/fs5preview/preview/4238727/page/DE/current/4238731/4394331

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 160

Additional context-specific information for the respective instance of the workflow can be

generated using the other placeholders, e.g. %HISTORY%:

16. April 2012 - Admin, Manuell

Aktivität: Freigabe anfordern

Status: Freigabe angefordert

Kommentar: UserB : Freigabe erteilen bitte

In addition to the JavaClient-URL (%FIRSTspiritURL%), a link to a preview page in WebClient can

be transmitted in the text (%WEBeditURL%), e.g.:

http://myServer:9999/fs5webedit/?project=476656&store=pagestore&element

=477196

If a placeholder cannot be resolved because information is not available in the selected context,

it is replaced by the appropriate information:

 German (DE): <in aktuellem Kontext nicht verfügbar>

 English (EN): <not available in current context>

 Placeholder replacement only works if the JNLP servlet is installed on the system.

 For more detailed information on the JNLP servlet see FirstSpirit Manual for

Administrators, Chapter 4.3.1.2 "Area: Server"

http://myserver:9999/fs5webedit/?project=476656&store=pagestore&element=477196
http://myserver:9999/fs5webedit/?project=476656&store=pagestore&element=477196

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 161

4.5.5 Properties of a transition

4.5.5.1 General tab

Figure 4-30: Properties of a transition (general)

Unique name: A name for the selected transition can be specified in this field. This name name

has to be unique in relation to its source (character limit: <= 40 characters).

Source: The source that the transition starts from is displayed in this field automatically.

Target: The target that the transition points to is displayed in this field automatically.

Comment: An explanatory comment for the current transition can be provided in this field.

Additional language-dependent display names and descriptions can be added using the Display

name and Description fields. This refers to the editing languages (not the project languages).

The project administrator defines the editing languages for a project and the editor can then

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 162

switch between them using the "View – Preferred display language" menu. The display name is

used in various places such as workflow dialogs (e.g. labeling the buttons in the transition dialog,

on the Help tab and History tab), as entries in the context menu for starting/switching workflows,

the description as a tool tip and on the Help tab. The unique name is displayed if a display name

is not specified. If a description does not exist, the text from the Comment field is displayed.

4.5.5.2 Permissions tab

Figure 4-31: Properties of a transition (permissions)

Firmly defined: If this option is selected, the authorized users for this transition are firmly

defined. The responsible users and/or groups that are allowed to switch this transition are listed

in the field. Clicking the symbol after this field opens another field where the responsible parties

can be selected from a list of project groups or users.

From the object: If this option is selected, then authorized users are derived from the

permission definition in the FirstSpirit Client's tree structure. Which permission a user has to

have for the object being considered in order to be allowed to carry out this transition can be

selected in the field.

From the instance: If this option is selected, then authorized users are derived from the running

instance of the workflow. The creator of the instance or the last editor can be selected in the field.

The "Last editor of the target action" option is only available for outgoing transitions of a state

and can only be used if the workflow contains a loop so that an activity can be passed through

multiple times, e.g.:

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 163

Figure 4-32: Standard workflow release

The "Review release" activity shown in Figure 4-32 would be a target action in this case, i.e. an

activity that a state points to. If the "Last editor of the target action" option were selected for the

"Review" transition, only a user that has already carried out this transition once before can carry

out the respective transition.

Group connection: Groups that are not to appear in the "Next editor" of a "Workflow action"

workflow dialog can be selected here.

Figure 4-33: "Next editor" preselection

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 164

The groups selected using the "Group connection" function are in the dialog shown above

(Figure 4-33) but remain selectable using the icon regardless. In addition, the selection

under "Group connection" affects the transmission of e-mails.

4.5.5.3 E-mail tab

Figure 4-34: Properties of a transition (e-mail)

Send e-mail: Activating this option sends an e-mail to selected recipients as soon as this

transition has been carried out.

Sending e-mail and placeholder replacement works the sames as the description of sending e-

mail in Chapter 4.5.4.2, page 158.

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 165

4.6 Permission configuration for workflows

Permissions for running workflows are a special type of editorial permissions that only relate to

workflows in a project.

The permission configuration can be defined context-dependent directly on an object where the

instance of a workflow is started or it can be defined to be generally applicable in the workflow

model in the template store:

 General permission configuration for starting and switching a workflow in the template store

(for all instances) (see Chapter 4.6.1, page 165)

 Context-dependent permission assignment for starting a workflow on individual objects,

subtrees and stores (for individual instances – depending on the object where the workflow is

started) (see Chapter 4.6.3, page 169)

 Context-dependent permission assignment for switching individual transitions of a workflow

("special permissions") on objects, subtrees or stores (for individual instances – depending

on the object where the workflow is started) (see Chapter 4.6.4, page 172)

In addition to actual permission configuration, the authorized editors of a workflow (instance) can

be limited by the content editor (when editing an activity) if this has been configured by the

workflow's template developer (see Chapter 4.6.2, page 166).

The effects of permission definition in JavaClient are described in Chapter 4.6.5 (page 173 ff.)

using an example.

4.6.1 General permission configuration using the template store

Permissions for starting or switching a workflow are configured in the template store using

permission assignment to individual transitions. This ensures that each individual activity can

only be carried out by authorized users. The Properties dialog opens when double-clicking a

transition in a workflow's model. The permissions for switching a transition can be assigned on

the "Permissions" tab (see Chapter 4.5.5.2, page 162).

Overwriting transition permissions: The permissions defined in the workflow model are evaluated

for all instances of the workflow. Generally applicable permission configurations can be defined

for the workflow this way. These permissions, however, can be overwritten for (context-

dependent) workflows. It is possible to overwrite transition permissions for individual objects,

subtrees or stores using the "Permission assignment" dialog for the respective objects (see

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 166

Chapter 4.6.3, page 169 and Chapter 4.6.4, page 172).

Context-dependent transition permissions: In addition to the firmly defined permissions of a

group or user for switching a transition, transition permissions can also be assigned in the

template store based on context. In this case, "From the instance" transition permissions have to

be selected (see Chapter 4.5.5.2, page 162). If the "Last editor" is selected here, for instance,

then only the editor that switched the instance of the workflow into the current state automatically

receives permission for switching the transition.

Linking to editorial permissions: In addition to the option of determining permissions based on

context from the instance of the workflow (see above), the editorial rights can also be linked to

transition permissions (also based on context). In this case, the "From the object" transition

permissions have to be selected (see Chapter 4.5.5.2, page 162). If, for instance, the "Release"

editorial permission is selected here, then only the editor that has the "Release" permission for

the object where the instance of the workflow was started automatically receives permission for

switching the transition.

4.6.2 Changing or locking editor preselection

The preselection of authorized "Editors" is displayed in the activity dialog in the "Editors" field for

the content editor running the workflow. "Editors" are all of the groups or users that have

permission for switching the workflow's future transitions. Permissions that have been defined for

outgoing transitions of the future state are taken into account in the process (see Chapter 4.6.1,

page 165).

Example (workflow model):

Figure 4-35: Workflow model with permissions configuration (with gray background)

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 167

Example - Description (see Figure 4-35):

 The permissions for the transition "To activity (2a)" have been firmly defined for the user

"anna.administrator".

 The permissions for the transition "To activity (2b)" have been firmly defined for the user

"charlie.chef".

The content editor now starts the workflow. The "Activity(1)" activity dialog opens (see Figure

4-36). The editor can select between the two states "State(1a)" and "State(1b)". The future

editors of the workflow are listed in the "Editors" field automatically. After advancing the current

"Activity(1)", the workflow is in either "State(1a)" or "State(1b)". Therefore, future "editors" can

only be groups or editors that have permissions for the outgoing transitions of these two states.

Thus, in the example, "editors" that have permissions for switching "To activity(2a)" transitions

and for switching "To activity (2b)" transitions are shown.

Figure 4-36: Example – "Activity(1)" workflow action

This preselection of potential future editors can be modified by the content editor. The

configuration dialog for the start state has to be opened by the template developer at the

workflow's start state in the template store for this (see Chapter 4.5.3.1, page 153).

A choice can be made between two options on the "General" tab.

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 168

Figure 4-37: Permissions configuration for the start state

 Manual editor (for each action)

(see Chapter 4.6.2.1, page 168)

 Automatic editor using permissions

(see Chapter 4.6.2.2, page 169)

4.6.2.1 Manual editor (for each action)

Permissions defined in the workflow (for outgoing transitions of the future states) are evaluated in

the "Editors" field. If the option "Manual editor (for each action)" is selected, these editors can be

modified by the content editor. The button for selecting groups or users in the "Workflow action"

dialog, which is displayed when starting or switching the workflow (instance), is then active.

Figure 4-38: Workflow action – Manual editor using permissions

Clicking the button opens the dialog with all of the authorized editors for selecting groups

and users. This selection can then be limited to specific users by the editor.

 The content editor is only able to limit the editors. If the list of editors is to be

expanded, then permissions for the transitions of the workflow model have to be adjusted

by the template developer for this.

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 169

4.6.2.2 Automatic editor using permissions

Permissions defined in the workflow (for outgoing transitions of the future states) are evaluated in

the "Editors" field. If the option "Automatic editor using permissions" is selected, these editors

cannot be modified by the content editor. The button for selecting groups or users in the

"Workflow action" dialog, which is displayed when starting or switching the workflow (instance), is

then inactive.

Figure 4-39: Workflow action – Automatic editor using permissions

4.6.3 Context-dependent permissions for starting a workflow

Permission is assigned based on context in FirstSpirit JavaClient. All areas of the project can be

assigned editorial permissions for specific groups or users here. Detailed permission assignment

for each object is possible while doing so, i.e. for a single page in the page store, for instance.

These permissions can be inherited hierarchically within individual stores.

The permissions for running workflows are assigned using the "Permission assignment" dialog,

the same way as for editorial permissions for groups and users. The "Permission assignment"

dialog is opened using the "Tools – Modify permissions" context menu on the desired object in

the JavaClient tree structure. There is a "Workflow permissions" tab in addition to general

"permission assignment" of editorial permissions:

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 170

Figure 4-40: Context-dependent workflow permissions

Inherit permissions: The "Inherit permissions" radio button is selected by default (exception:

root node) This setting causes the permissions from "Workflow permissions" to be inherited from

a higher level node.

Define permissions: If the "Define permissions" radio button is activated, permissions for

workflows can be defined on the node. The window for taking over inherited permissions opens

in the first step.

Figure 4-41: Taking over inherited permissions?

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 171

If the permissions are taken over from a higher level node, then the inherited permissions are

taken over in the table of workflows. If, on the other hand, the dialog is confirmed with "No", the

workflow permissions are reset. The table view now active independent of the selection, this

means the user can define his or her own permissions.

All: If the checkbox "All" is checked, all workflows on the current node and all hierarchically

subordinate nodes of the tree structure can be started by the "authorized" user. The two tables

underneath cannot be edited in this case and the settings they contain are of no significance. If

the checkbox is not checked, the settings have to be set for each workflow individually.

Authorized: In this field, all users and/or groups that may call up a workflow on the current node

are listed. Upon clicking the icon, the "Select groups/users" window opens. All groups and

users of the project are listed. Authorized groups and individual users can be selected using the

window.

All of a project's workflows are listed in the top table (see Figure 4-40). If only selected workflows

are to be permitted for a subtree, then a list of workflows that can be started by selected users

can be created when defining permissions. A different user can be specified for each workflow in

the process.

The input options of this table are only active if the "All" checkbox is unchecked. In this case, the

permission for starting a workflow can be granted or prohibited for individual workflows.

Figure 4-42: Context-dependent permissions for starting individual workflows

Allowed: If the "Allowed" checkbox is checked, all of the authorized users (see "Authorized"

column) are allowed to start the workflow. The authorization is granted for the current node and

all hierarchically subordinate nodes of the tree structure.

Use release permissions: If the "Use release permissions" checkbox is checked, the release

permissions defined on the "Permission assignment" tab are evaluated for each user. Caution:

Inconsistencies can occur when defining permissions if this checkbox is not checked. A conflict

could result if, for instance, a user does not have permission for releasing for a specific object but

is placed in the "Request release" default workflow as an authorized user. Even in this sort of

case, the system would prohibit release, but the behavior (no release) is not obvious to the user

since the workflow can be run through as defined up until the "Grant release" status. If, however,

the "Use release permissions" checkbox is checked, then the user's release permissions are

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 172

evaluated for each of the workflow's transitions. If inconsistencies between editorial permissions

(no permission for releasing) and permissions in the workflow (e.g. granting release) are

determined, these transitions are hidden for the "unauthorized" user. In this case, the user can in

fact start "Request release", i.e. start the workflow, but the user can no longer advance to the

"Object released" state. The transition necessary to do so is hidden.

Name: The name of the workflow is in this column.

Authorized: All of the users and/or groups that are allowed to start a workflow on the current

node are listed in this field. Upon clicking the icon, the "Select groups/users" window opens.

All groups and users of the project are listed. Authorized groups and individual users can be

selected using the window.

 For more detailed information on editorial permissions see FirstSpirit Manual for

Editors, Chapter 13.

4.6.4 Context-dependent permissions for switching a workflow

The existing context-dependent permission assignments from Chapter 4.6.3 (page 169 ff.) only

refer to permission for starting a workflow. However, what are known as context-dependent

"special permissions" can be defined for the individual transitions.

If a specific activity is to be carried out by another user in an individual node, this can be defined

using context-dependent special permissions. First, the desired workflow has to be selected in

the upper table for this (see Figure 4-42). All of the transitions of the highlighted workflow are

then listed in the lower table for defining special permissions (see Figure 4-43). An authorized

user can then be specified for the desired workflow transition.

 If permissions for switching a transition have already been defined in the template

store using a workflow model (see Chapter 4.6.1, page 165), this definition (context-

dependent "special permissions") overwrites the existing authorizations (from the workflow

model).

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 173

Figure 4-43: Context-dependent special permissions for switching a transition

Special permissions: If the checkmark in this column is set, then the permissions assigned in

the workflow for this transition on this node are ignored. Instead, the permissions that were listed

on this location in the permissions column apply for this transition.

Transition: In this column, the names of the transitions are listed. If no name was assigned in the

workflow for a transition, the name of the source and the target of the transition appear here.

Authorized: In this field, all users and/or groups that may run this transition are listed. The

transition permissions listed here are taken over from the workflow model (see Chapter4.5.5.2,

page162), but upon activating the "Special permissions" checkbox, they are overwritten (default

setting: Group "Everyone").

Upon clicking the icon, the "Select groups/users" window opens. All groups and users of the

project are listed. Via the window, a selection of the authorized groups and users is made.

4.6.5 Effects on the permissions configuration

Transition permissions are either defined generally via the workflow model (see Chapter4.6.1,

page 165) or in context-dependent form for individual objects or partial trees (see Chapter 4.6.3,

page 169 and Chapter 4.6.4, page 172).

The effects are identical for both permissions definitions:

Transitions which lead to an activity authorize the user to call up and carry out these activities via

the context menu.

Transitions which lead to a state authorize the user to switch these states in the activity dialog.

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 174

Example (workflow model):

Figure 4-44: Example workflow model

Example permissions definition (defined via the workflow model):

Figure 4-45 Example permissions definition via the model

Example: Effects of the transition permissions:

1. Starting the workflow via the context menu: The Editors group can open the

context menu and start the workflow:

 Figure 4-46: Starting the workflow via the context menu

2. The "Activities(1)" dialog provides the option to advance the workflow into "State(1a)" or

"State(1b)". The button to advance "State (1a)" is only shown to the "Editors" group (see

Figure 4-47); the button to advance to "State (1b)" is only shown to the "Administrators"

group (see Figure 4-48).

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 175

Figure 4-47: Activity dialog to switch the transition "to state (1a)"

Figure 4-48: Activity dialog to switch the transition "to state (1b)"

3. If the instance of the workflow is in the state (1a), every user may query the following

transition "to activity (2a) via the context menu. The "Activity (2a)" dialog is shown.

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 176

 Figure 4-49: Switching the workflow via the context menu

4. If the instance of the workflow is in State (1b), the "ChiefEditor" user can call up the

following transition "to activity (2b)". The "Activity (2b)" dialog is shown.

 Figure 4-50: Switching the workflow via the context menu

5. The "Activity(2a)" dialog provides the option to end the workflow in state "End(1)". The

button to switch from "end(1)" appears for all users.

(The field with the future "editors" is in this case empty, because it involves the last

transition (see Chapter 4.6.2, page 166)).

 Figure 4-51: Activity dialog to switch the transition "End(1)"

6. The "Activity(2b)" dialog provides the option to end the workflow in state "End(2)". The

button to switch to "End(2)" only appears for the "ChiefEditor" user.

(The field with the future "editors" is in this case empty, because it involves the last

transition (see Chapter 4.6.2, page 166)).

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 177

 Figure 4-52: Activity dialog to switch the transition "End(2)"

 If a user or a group has permission to advance a transition that leads to an activity

dialog, this group and this user should also have permission to advance the transition into

at least one following state. Otherwise, the activity dialog only includes a button to cancel

the action. In this case, the permissions are to be checked and correspondingly redefined.

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 178

4.7 Write protection within workflows

4.7.1 General

When starting a (context-dependent) workflow, the element on which the workflow was started is

equipped with write protection (see Chapter 4.5.3.1, page 153). This write protection should

prevent an element from being changed by another editor while a workflow is running.

Write protection by means of running workflow instances:

Figure 4-53: Write protection on subordinated objects

The write protection affects the current object and all subordinated objects of the running

instance of the workflow. In the example from Figure 4-53, on the "Marketing" folder, a running

workflow is set with write protection. If a user tries to block this folder from being edited, they will

get the information that this element cannot currently be edited. The same message also

appears if the user tries to block the "Company" folder or any object under the "Marketing" folder.

The write protection is set independently of whether a script is being used by the workflow and

which actions will be run on the affected element.

4.7.2 Write protection when creating and moving

Within the FirstSpirit JavaClient, some actions can be run without the object being in edit mode.

These changes to the edit concept should ensure that parallel work (with many users) functions

as smoothly as possible, even in large projects. In this way, for example, while processing an

element, the entire subtree for editing is no longer required, rather only the object that is currently

to be changed. Creating or moving an element is therefore likewise possible without requiring

previous write protection on the parent node (Editing mode).

Because during the workflows, however, potentially critical actions are involved (for example,

release of an object), write protection of a workflow also prevents the creation or movement

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 179

within the currently running instance of the workflow.

If, for example, an editor tries to add a section on which a workflow is currently started, the

following error message is shown:

Figure 4-54: Write protection on a page (through a workflow)

4.7.3 Write protection within scripts

For some actions that are run via the FirstSpirit Access API, write-protection on the affected

element is necessary, such as:

 Recursive deletion of elements in the project

 (Recursive) release of elements in the project

A problem which presents itself in real life is setting write protection in a script (on an element or

subtree – API query setLock(true, false) or setLock(true)), if by starting the workflow. write

protection is already on the element (through the workflow – see Chapter 4.5.3.1). The write

protection of the workflow in this case prevents setting the "normal" write protection on the

element.

For simple delete or release actions within the workflow, setting the write protection is however

not necessary, because the affected element is already automatically blocked by the workflow

upon switching the transition.

It is different if the deletion or release is recursive; in other words, it is to be run on a subtree of

the project. In this case, a recursive write protection has to be set on the complete subtree and

this is only possible if the write protection of the workflow is turned off. In addition, the

(automatically set) write protection is temporarily removed via the state of the workflow and reset

upon ending the deletion and release option (via the script). The exact procedure is described

based on an example in Chapter 4.10.1.

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 180

4.8 Use of scripts in workflows

Scripts present a powerful aid in implementing customer-specific desires within the FirstSpirit

workflows. As already noted in the description of the workflow editor elements, scripts can be

bound exclusively within workflows to activities (see Chapter 4.5.4.1, page 156). An activity can

be run manually by a user or automatically by a script (see Chapter 4.2.3.2, page 136).

The result of an activity is always related to the instance of a workflow. It either involves a status

change into one of the following states accessible to the activity or the retention of the current

state (corresponds to the "Cancel" semantics in the activity dialog). This also applies to scripts

that are coupled to the activity. In other words, the script has to ensure on its own that a

transition is carried out in the following state.

Usually, the activities connected to the script can be defined in the workflow model either as

"manual" or as "automatic" – in both cases, it can make sense to use a script.

 If scripts are used within workflows, NO automatic evaluation of the editing

permissions (for example, during release) takes place. These permissions have to be

suitably linked to the transition permissions within the workflow (see Chapter 4.5.5.2, page

162).

4.8.1 Automatic activities and scripts

Automatic: Automatic activities do not wait for user interaction and are run as soon as one of the

states upstream in the model is reached (i.e. the action is triggered by the system and not by the

user). Thus, an automatic action (and a connected script along with it) is run directly after

reaching a state.

 Through the use of automatic actions, potentially endless loops can be built. This

situation is recognized by the FirstSpirit workflow interpreter; the execution of the

corresponding workflow instance ends and an error message appears.

4.8.2 Manual activities and scripts

In this case, the action is run by a user. If no script is available, then the user is shown the

standard form for workflows with all of the transitions allowed to them ("Activity dialog"). As soon

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 181

as the action is assigned a script, this dialog is no longer displayed automatically. If the activity

dialog is to be shown to the user, then this has to be run via the script (see Chapter 4.8.3, page

181 and Chapter 4.8.4, page 183).

4.8.3 Workflow context

The script context for workflow make the following methods available:

Transition showActionDialog();

Task: Display of the activity dialog (usually only relevant for "manual" actions). The transition

selected by the user is returned as a "Transition" object. Attention: the actual transition is NOT

carried out (for an example, see Chapter 4.8.4, page 183).

void doTransition(firstspirit.workflow.model.Transition transition)

Task: Execution of the specified transition. This can for example be selected by the user or

another transition available (and allowed) in this action. If a transition is selected that is not

allowed, then there will be an error message (for an example, see Chapter 4.8.4, page 183).

void doTransition(String transitionName)

Task: Execution of the transition indicated by name. If the transition in the model is not assigned

a name, then a name is automatically generated in the form "->"+"Name of the objective state",

which can be indicated here (for an example, see Chapter 4.8.5, page 185).

Transition[] getTransitions()

Task: Determines the quantity of all transitions that are available in their current state (for an

example, see Chapter 4.8.4, page 183).

Data getData();

Task: A workflow model can be assigned a form. This form is shown to the editor in the activity

dialog and they can enter or change data (see Chapter 4.4, page 147). Via this method, the

script has access to the content of the form, and changes can also be made (see Chapter 4.4.1,

page 149).

Map getSession()

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 182

Task: Each instance of a workflow is assigned (alongside the form) a special data structure

(Java map) which allows a script to save its own instance state and change it if necessary.

Because this state is part of a workflow instance, it is available to all scripts that are run during

the life cycle of the instance. In this way, it is possible with this method to exchange (instance-

related data) between scripts (for an example, see Chapter 4.8.5, page 185).

Examples:

Listing of all possible transitions with permissions starting from the current action:

//!firstspirit.scripting.BeanshellWrapper

transitions = context.getTransitions();

print("Number of transitions:" + transitions.length);

for (i=0; i<transitions.length; i++) {

 print("Transition:" + transitions[i].getTarget());

 allowedUsers = transitions[i].getAllowedUsers();

 for (j=0; j<allowedUsers.size(); j++) {

 print("Allowed User:" + allowedUsers.get(j));

 }

}

State store in workflow instances (counter):

//!firstspirit.scripting.BeanshellWrapper

state=context.getSession();

v=state.get("test");

if(v==null) v=0;

state.put("test",++v);

Generates an instance for every available workflow:

//!firstspirit.scripting.BeanshellWrapper

import firstspirit.access.store.templatestore.*;

u=context.getUserService();

ts=u.getTemplateStore();

wfs=ts.getWorkflows().getAllChilds(Workflow.class);

for (i=0; i<wfs.length; i++) {

 print("Workflow:" + wfs[i].getName());

 try {

 u.createTask(null, wfs[i], wfs[i].getName());

 } catch (Exception e) { print("Error!");}

}

Other methods can be taken from the FirstSpirit Access API.

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 183

4.8.4 Example: Output of messages in workflows

Within a workflow, messages can be output to the user running it. The output of messages is

realized via scripts within the workflow. A dialog via the script appears for the editor who is

running the corresponding action within a workflow. There, certain information from the context of

the workflow can be shown (see Chapter 4.8.3, page 181).

Example: Workflow "Message":

Figure 4-55: Example workflow "Message"

In this example workflow, before and after a transition is switched, an information dialog appears

with the output "Hello $USER":

Figure 4-56: First information dialog

After advancing the transition dialog, an additional informational dialog is shown with the output

"You have selected transition $TRANSITION. Thank you for the comment $KOMMENTAR"

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 184

Script "transitionMessage":

//!Beanshell

import de.espirit.firstspirit.common.gui.*;

import de.espirit.firstspirit.ui.operations.RequestOperation;

import de.espirit.firstspirit.agency.OperationAgent;

userName = context.getGuiHost().getUserService().getUser().getLoginName();

text = "Hallo " + userName + ". Please select a Transition.";

requestOperation =

context.requireSpecialist(OperationAgent.TYPE).getOperation(RequestOperation.TYPE);

 requestOperation.setKind(RequestOperation.Kind.INFO);

 requestOperation.addOk();

 requestOperation.perform(text);

context.showActionDialog();

transition = context.getTransitionParameters();

if (transition.getTransition() != null) {

 text="You selected transition '" + transition.getTransition() + "'. A good

choice.\nThank you for your comment '" + transition.getComment() + "'";

 requestOperation =

context.requireSpecialist(OperationAgent.TYPE).getOperation(RequestOperation.TYPE);

 requestOperation.setKind(RequestOperation.Kind.INFO);

 requestOperation.addOk();

 requestOperation.perform(text);

 context.doTransition(transition.getTransition());

} else {

 requestOperation =

context.requireSpecialist(OperationAgent.TYPE).getOperation(RequestOperation.TYPE);

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 185

 requestOperation.setKind(RequestOperation.Kind.INFO);

 requestOperation.perform("You have not selected any transition.");

}

The information which is shown to the editor within the dialogs is retrieved in the script via the

workflow context (WorkflowScriptContext), for example, the transition parameters (see

example script):

context.getTransitionParameters();

4.8.5 Example: Persistent content within workflows

Within workflows, content can now be saved via the session and read out again after switching a

transition.

Example: Workflow "Counter":

Figure 4-57: Example workflow "Counter"

Within the "DoSelectCounting" activity, a counter can be increased during every execution of the

workflow by a value of 1. The value of the counter is saved, and upon a restart of the workflow,

increased again by a value of 1. The value is shown to the user within an information dialog:

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 186

Figure 4-58: Value of the counter

"counter" script:

//!Beanshell

import de.espirit.firstspirit.common.gui.*;

import de.espirit.firstspirit.ui.operations.RequestOperation;

import de.espirit.firstspirit.agency.OperationAgent;

session = context.getSession();

counter = session.get("counter");

if (counter == null) {

 counter = new Integer(1);

}

text = "Counter: " + counter;

requestOperation =

context.requireSpecialist(OperationAgent.TYPE).getOperation(RequestOperation

.TYPE);

 requestOperation.setKind(RequestOperation.Kind.INFO);

 requestOperation.addOk();

 requestOperation.perform(text);

session.put("counter", new Integer(counter + 1));

context.doTransition("->Start");

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 187

4.9 Deleting via a workflow

To delete elements in the FirstSpirit JavaClient and in the FirstSpirit WebClient, a project-specific

workflow can be created and tied directly to the existing controls (buttons on the menu bar,

context menu entry) of elements. Instead of simply deleting an object, such as a page, a more

complex deletion function can be made available via the workflow, for example, the additional

deletion of dependent objects on a page (demo workflow, see Chapter 4.9.2).

 Deletion through a workflow is only available if the project was configured by the

project administrator.

Within the clients, the new workflow is then started via the familiar control elements. The

individual tasks of the workflow appear, as usual, in the task list (see Chapter 4.9.1, page 187).

If within a project, deletion via a workflow is configured, the permissions configuration for the

workflow has to be adapted. The conventional editing permissions for deletion that are defined

for a user or a group apply only if the permissions configuration is adapted correspondingly in the

workflow (see Chapter 4.9.3, page 190).

4.9.1 Deleting via a workflow in the JavaClient

If deletion of elements in the project was bound to a workflow, then the workflow can be started

and advanced in the JavaClient through the conventional control element. To do so, the following

control elements are available:

 Mark element and click the button.

 Mark element and run the context menu entry "Delete".

 Mark element and click on the icon in the icon bar

Similarly to multiple selection of workflows, deletion via a workflow can be run at the same time

on a number of objects (see Figure 4-59 and Chapter 4.11, page 207).

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 188

 The workflow can only be started if no workflow has been started on one of the

marked objects and the user has the corresponding permissions to run the workflow.

Otherwise, the corresponding control elements are deactivated.

Figure 4-59: Multiple selection while deleting via a workflow

 The "Delete" permission is also evaluated if elements are deleted via a workflow. If

a user has permission to switch the workflow but NOT permission to delete elements, the

workflow can be started (context menu entry "Delete" is activated) but deletion of the

element is however not possible. The transition that deletes the element is not shown to

these users.

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 189

4.9.2 Deleting via a workflow in the WebClient

If deleting elements in the project is bound to a workflow, then the workflow can be started in the

WebClient via the "Contents/Delete" menu or via the state menu. Likewise, in the state menu, a

workflow which was started for deletion of an element can be advanced.

Figure 4-60: Workflow to delete a page in the WebClient – Content menu

Figure 4-61: Workflow to delete a page in the WebClient – State menu

Figure 4-62: Advancing a workflow to delete an element

It is to be noted that a workflow in the WebClient is always run on a page reference, and this

represents the context for the workflow. If the corresponding page is also to be deleted, this has

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 190

to be controlled via the script used by the workflow. Here, the order of elements to be deleted is

to be noted (see also Chapter 2.2.8.1, page 32).

 The workflow can only be started if no workflow has been started on one of the

marked objects and the user has the corresponding permissions to run the workflow.

4.9.3 Permissions configuration

The permissions are assigned in FirstSpirit JavaClient. Here, all areas of the project can be

assigned permissions for certain groups or users (see Chapter 4.6, page 165).

The permissions to delete elements (without workflow) are normally defined via the editing

permissions. Editing permissions are defined for a user or a group on the respective element. In

this way, permissions can be assigned for all editorial work. In addition, alongside "View" or

"Change", there are, for example, the permission to "Delete object" or the permission to "Delete

folder".

Figure 4-63: Editorial permissions "Delete object" and "Delete folder"

Additional information on editorial permissions is located in the FirstSpirit Manual for Editors,

Chapter 13.1.

 These editorial permissions are not automatically accessed if deletion is tied to a

workflow. If these permissions are evaluated, the permissions configuration in the

workflow has to be adapted first (see Figure 4-65).

If deleting in a project involves a workflow, the permissions configuration has to be relocated to

the workflow. The permissions for running workflows are assigned, as with editing permissions

for groups and users, in the "Permissions assignment" dialog within the administration area in the

FirstSpirit JavaClient.

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 191

Figure 4-64: Permissions for running workflows

The permissions that are defined in the upper dialog area for running workflows ("Allowed") are

related exclusively to starting the respective workflow (see Chapter 4.6.3, page 169).

The permissions for running a transition (from one step of the workflow to the next) are either:

 determined via the template developer in the workflow (see Chapter 4.6.1, page 165)

 or via the assignment of "special permissions" for the individual steps of a workflow (see

Figure 4-64) (see Chapter 4.6.4, page 172)

Additional information on permissions for running workflows is located in the FirstSpirit Manual

for Editors, Chapter 13.2

If the conventional editorial permissions ("Delete folder", "Delete object") and the permissions to

run the workflow are to be suitably connected to one another, the permissions configuration has

to be adapted within the workflow. Permissions assignment to the individual transitions is done

within a workflow (see Chapter 4.5.5.2, page 162). This ensures that each individual activity can

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 192

only be carried out by authorized users. The permissions dialog opens when double-clicking the

transition in a workflow's model. The permissions for switching a transition can be assigned on

the "Permissions" tab:

Figure 4-65: Linking editorial permissions and transition permissions

If the option "From the object" is activated, then the authorized users are determined from the

editorial permissions, which were defined in the tree structure in JavaClient. In the field, you can

select which permissions the user has to have over the object in consideration in order to be able

to carry out this transition. If the permission "Delete object" or "Delete folder" is selected, then

during workflow startup, whether the user has permission to "Delete" the element is examined.

The permissions are then evaluated similarly to conventional deletion without a workflow.

Special case "Delete objects": When deleting an object through a workflow in combination with

the permissions configuration via the "From the object" option, a special case applies. If the

element is deleted, the permissions can no longer be determined from the object. In the example

from 4.9.4, the object and with it the permissions defined for the object on the last transition,

"End", is no longer available. In this case, the following applies: on a deleted object, "Everything

allowed" is always true. If you do not want this, the permissions configuration for the

corresponding transitions have to be changed (for example, on the "fixed, defined" groups or

users).

 If the "Special permissions" for the advancement of a workflow on an element are

defined (see Figure 4-64), the permissions that were defined for the template developer

will be overwritten.

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 193

4.9.4 Example: "Delete" workflow

The workflow to delete elements consists of the workflow and the corresponding scripts

"clientdelete" (to delete individual objects) and "serverdelete" (to delete subtrees).

If the "clientdelete" action is run, the element is blocked by the corresponding script and then

deleted. After deletion, the workflow is automatically advanced into the following state, "End".

If the action "server delete" is run, the element is blocked via the corresponding script

recursively. Via the "serverdelete" action, not only individual elements, but also subtrees can be

deleted. The deletion is done via a ServerHandle, which returns a results report and, in the case

of error, throws an exception.

After successful deletion, the workflow is advanced to the following status, "End". For both

actions, the following applies: In the event of an error, the workflow is advanced not into the end

state, but rather into an error state that was modeled in the workflow.

Figure 4-66: Example workflow "Delete"

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 194

Script "clientdelete":

//!Beanshell

import de.espirit.firstspirit.common.gui.*;

import de.espirit.firstspirit.ui.operations.RequestOperation;

import de.espirit.firstspirit.agency.OperationAgent;

se = context.getStoreElement();

try {

se.setLock(true);

 se.delete();

 context.doTransition("->Ende");

} catch (Exception ex) {

 text = "Error while deleting: " + ex;

 requestOperation =

context.requireSpecialist(OperationAgent.TYPE).getOperation(RequestOperation

.TYPE);

 requestOperation.setKind(RequestOperation.Kind.INFO);

 requestOperation.addOk();

 requestOperation.perform(text);

 context.getSession().put("error", ex.toString());

 context.doTransition("->Error");

}

Script "serverdelete":

//!Beanshell

import de.espirit.firstspirit.common.gui.*;

import de.espirit.firstspirit.ui.operations.RequestOperation;

import de.espirit.firstspirit.agency.OperationAgent;

se = context.getStoreElement();

parent = se.getParent();

try {

 se.setLock(false, false);

 handle = de.espirit.firstspirit.access.AccessUtil.delete(se, true);

 handle.getResult();

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 195

 handle.checkAndThrow();

 Set notDeleted = new HashSet();

 progress = handle.getProgress(true);

 notDeleted.addAll(progress.getDeleteFailedElements());

 notDeleted.addAll(progress.getMissingPermissionElements());

 notDeleted.addAll(progress.getLockFailedElements());

 notDeleted.addAll(progress.getReferencedElements());

 if (!notDeleted.isEmpty()) {

 text = "The following elements could not be deleted: " +

notDeleted;

 requestOperation =

context.requireSpecialist(OperationAgent.TYPE).getOperation(RequestOperation

.TYPE);

 requestOperation.setKind(RequestOperation.Kind.INFO);

 requestOperation.addOk();

 requestOperation.perform(text);

 }

 if (parent != null) {

 parent.refresh();

 context.getGuiHost().gotoTreeNode(parent);

 }

 if (!se.isDeleted()) {

 se.setLock(true, false);

 }

 context.doTransition("->End");

} catch (Exception ex) {

 text = "Error while deleting: " + ex;

 requestOperation =

context.requireSpecialist(OperationAgent.TYPE).getOperation(RequestOperation

.TYPE);

 requestOperation.setKind(RequestOperation.Kind.INFO);

 requestOperation.addOk();

 requestOperation.perform(text);

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 196

 context.getSession().put("error", ex.toString());

 context.doTransition("->Error");

}

4.9.5 Example: "ContentDeleteDemo" workflow

Alongside deleting individual elements and subtrees (see Chapter 4.9.4, page 193), it is also

possible to delete structured data using a workflow.

A distinction is made between normal elements ("StoreElements", such as pages, media, page

references) and "Entities" in the workflow (in the script) for this purpose.

In the script, this information is retrieved using a workflow's context

(WorkflowScriptContext) (see Chapter 4.8.3, page 181):

workflowable = context.getWorkflowable()

The getWorkflowable() method returns, in the form of a data record, whether the element where

a workflow was started is a StoreElement, such as a media file, or an Entity (see example script).

The output of a script can be adjusted accordingly, for instance:

if (workflowable instanceof ContentWorkflowable) {

...

} else {

...

}

In the example, the output is controlled depending on the context in which the workflow was

started. If the delete functionality is started on a data record, the script delivers the output:

Figure4-67: Delete Entity

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 197

If it is started on a "StoreElement", the output is:

Figure4-68: Delete StoreElement

In this example, data is also deleted directly via the WorkflowScriptContext (see Chapter4.8.3,

page 181):

workflowable.delete();

The delete method here is called at the Workflowable object in this instance and not, as in the

example from Chapter 4.9.4, at the StoreElement. Using this Delete method, a

StoreElement and a data record (Entity) can be deleted.

The workflow for deleting entities consists of the workflow and the "deletecontentdemo" script

belonging to it (for deleting individual entities)

Figure 4-69: Example workflow "DeleteContentDemo"

After being deleted successfully, a workflow is advanced to the subsequent "End" state

automatically.

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 198

Script ("deletecontentdemo"):

//!Beanshell

import de.espirit.firstspirit.access.*;

import de.espirit.firstspirit.access.store.contentstore.*;

import de.espirit.firstspirit.ui.operations.RequestOperation;

import de.espirit.firstspirit.agency.OperationAgent;

workflowable = context.getWorkflowable();

if (workflowable instanceof ContentWorkflowable) {

 message = "Delete Entity:\n content=" + workflowable.getContent().getName()

+ "\n entity=" + workflowable.getEntity().getKeyValue();

requestOperation =

context.requireSpecialist(OperationAgent.TYPE).getOperation(RequestOperation

.TYPE);

 requestOperation.setKind(RequestOperation.Kind.INFO);

 requestOperation.addOk();

 requestOperation.perform(message);}

else {

 message = "Delete StoreElement:\n store=" +

workflowable.getStore().getName() + "\n id=" + workflowable.getId();

requestOperation =

context.requireSpecialist(OperationAgent.TYPE).getOperation(RequestOperation

.TYPE);

 requestOperation.setKind(RequestOperation.Kind.INFO);

 requestOperation.addOk();

 requestOperation.perform(message);

}

workflowable.delete();

context.doTransition("->End");

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 199

4.10 Workflows with a complex function

Very complex functions can be implemented using workflow modeling and the BeanShell scripts

within these models. A good example is the workflow described previously for deleting elements

(see Chapter 4.9.4, page 193).

Within the scripts, actions are run on certain project content using FirstSpirit's Access API. In

contrast to standard functions (such as for the "Delete" standard context menu entry), the

developer of the workflow (or the associated scripts) has to ensure that all required boundary

conditions, such as for deleting an element, are also covered by the script. For most actions,

write protection ("Lock") on the affected element is necessary for this at the very least. However,

what type of action is to be run on which elements is critical in this context. No write protection

has to be set for simply deleting an element such as a media file; however, it does need to be set

for recursive deletion such as a page with paragraphs (see Chapter 4.9.4, page 193).

The following chapters deal with write protection within the workflows with complex functionality.

4.10.1 Example: "RecursiveLock" workflow

This workflow for locking subtrees consists of the workflow and the corresponding "lockrecursive"

script.

Figure 4-70: "RecursiveLock" example workflow

Within the script, recursive write protection is carried out on the element where the workflow was

started. In order for this to work, the write protection for the workflow set automatically

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 200

beforehand has to be removed. To do so, write protection in the "WriteLockOff" state has to be

removed first:

Figure 4-71: Removing write protection using a workflow's state

The "Write protection" checkbox is unchecked; write protection for the workflow is now removed

when switching the "Recursive Lock Test" transition. The subsequent action, "DoRecursiveLock",

is automatically run and is linked to the "lockrecursive" script.

Recursive write protection can now be set on the element by using the script:

// set recursive lock

se = context.getStoreElement();

se.setLock(true);

text = "Subtree locked";

 requestOperation =

context.requireSpecialist(OperationAgent.TYPE).getOperation(RequestOperation

.TYPE);

 requestOperation.setKind(RequestOperation.Kind.INFO);

 requestOperation.addOk();

 requestOperation.perform(text);

The elements are locked recursively; the editor is shown a dialog with the message "Subtree

locked":

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 201

Figure 4-72: Write protection on the subtree

Confirming the message causes the script to continue running, the recursive write protection on

the subtree is removed again:

// reset recursive lock

se.setLock(false);

In the next step, simple write protection has to be restored on the element:

// non recursive lock, normal state during workflow

se.setLock(true, false);

context.doTransition("->WriteLockOn");

This is necessary to be able to switch the subsequent transition within the workflow.

Then standard write protection for the workflow has to be restored. Additionally, the "Write

protection" checkbox is reactivated in the "WriteLockOn" state.

Figure 4-73: Setting write protection using a workflow's state

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 202

 Script "lockrecursive":

//!Beanshell

import de.espirit.firstspirit.common.gui.*;

import de.espirit.firstspirit.ui.operations.RequestOperation;

import de.espirit.firstspirit.agency.OperationAgent;

// set recursive lock

se = context.getStoreElement();

se.setLock(true);

text = "Subtree locked";

 requestOperation =

context.requireSpecialist(OperationAgent.TYPE).getOperation(RequestOperation

.TYPE);

 requestOperation.setKind(RequestOperation.Kind.INFO);

 requestOperation.addOk();

 requestOperation.perform(text);

// reset recursive lock

se.setLock(false);

// non recursive lock, normal state during workflow

se.setLock(true, false);

context.doTransition("->WriteLockOn");

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 203

4.10.2 Example: "RecursiveRelease" workflow

This workflow for recursive release consists of the workflow and the corresponding

"serverrelease" script.

Figure 4-74: "RecursiveRelease" example workflow

The element, where the workflow was started and all dependent elements, is to be released

recursively in the workflow.

Server-side release, which is used within the "serverrelease" script, controls the release and the

internal setting of write protection for the affected element. If elements are found that already are

provided with write protection, the server cannot carry out the server-side release. These

affected elements can be retrieved via the return value of the server-side release (only in test

mode):

handle.getProgress(true).getLockFailedElements()

Accordingly, no recursive write protection has to be set for server-side release using the script.

So that the release can be made, however, no write protection may be set by the workflow.

Therefore, write protection on the element is first removed using the script:

 se.setLock(false, false);

Then server-side release is carried out by calling the method:

AccessUtil.release(IDProvider releaseStartNode, boolean checkOnly, boolean

releaseParentPath, boolean recursive, IDProvider.DependentReleaseType

dependentType)

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 204

In the example, the following transition parameters are configured for server-side release:

handle = AccessUtil.release(se, false, false, true,

de.espirit.firstspirit.access.store.IDProvider.DependentReleaseType.DEPENDEN

T_RELEASE_NEW_AND_CHANGED);

An explanation of the transfer parameters used can be found in Chapter 6, page 223.

Return parameters:

ServerActionhandle<? extends ReleaseProgress,Boolean >

The server-side release returns a ServerActionHandle, which contains all information about the

release process.

Within the sample script, the result of the release process is first queried:

handle.getResult();

handle.checkAndThrow();

In connection with this, the errors during the release are examined. If elements cannot be

released, for example because a write protection exists on the element or the processor does not

have the corresponding permissions to release an element, these can be queried via the

methods

progress.getMissingPermissionElements() or

progress.getLockFailedElements():

 progress = handle.getProgress(true);

 notReleased.addAll(progress.getMissingPermissionElements());

 notReleased.addAll(progress.getLockFailedElements());

The script error handling shows the editor the elements which could not be released:

if (!notReleased.isEmpty()) {

text = "The following elements could not be released: " +

notReleased;

 requestOperation =

context.requireSpecialist(OperationAgent.TYPE).getOperation(RequestOperation

.TYPE);

 requestOperation.setKind(RequestOperation.Kind.ERROR);

 requestOperation.addOk();

 requestOperation.perform(text);

}

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 205

Figure 4-75: Error message – Unreleased elements

 The error message is shown in test mode only ("checkOnly").

Script "serverdelete":

//!Beanshell

import de.espirit.firstspirit.common.gui.*;

import de.espirit.firstspirit.access.*;

import de.espirit.firstspirit.access.store.*;

import de.espirit.firstspirit.ui.operations.RequestOperation;

import de.espirit.firstspirit.agency.OperationAgent;

se = context.getStoreElement();

try {

 se.setLock(false, false);

 handle = AccessUtil.release(se, false, false, true,

de.espirit.firstspirit.access.store.IDProvider.DependentReleaseType.DEPENDEN

T_RELEASE_NEW_AND_CHANGED);

 handle.getResult();

 handle.checkAndThrow();

 Set notReleased = new HashSet();

 progress = handle.getProgress(true);

 notReleased.addAll(progress.getMissingPermissionElements());

 notReleased.addAll(progress.getLockFailedElements());

 if (!notReleased.isEmpty()) {

 text = "The following elements could not be released: " +

notReleased;

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 206

 requestOperation =

context.requireSpecialist(OperationAgent.TYPE).getOperation(RequestOperation

.TYPE);

 requestOperation.setKind(RequestOperation.Kind.ERROR);

 requestOperation.addOk();

 requestOperation.perform(text);

 }

 se.refresh();

 context.getGuiHost().gotoTreeNode(se);

 se.setLock(true, false);

 context.doTransition("->End");

} catch (Exception ex) {

 text = "Error while releasing: " + ex;

 requestOperation =

context.requireSpecialist(OperationAgent.TYPE).getOperation(RequestOperation

.TYPE);

 requestOperation.setKind(RequestOperation.Kind.ERROR);

 requestOperation.addOk();

 requestOperation.perform(text);

 context.getSession().put("error", ex.toString());

 context.doTransition("->Error");

}

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 207

4.11 Multiple workflow selection

In FirstSpirit, many dialogs have the option to select and edit elements multiple times. A multiple

selection is, for example, possible within the tree view in the FirstSpirit JavaClient (see Figure

4-76). With it, multiple elements can be marked on which a certain action (such as moving,

copying, deleting) can also be run.

It is possible to select multiple items at once by pressing the SHIFT or CTRL key at the same

time. Moreover, the key combination STRG + A can be used to select all visible elements of a

store area (within the tree view) or all elements within a table (for example, within the task list).

The multiple selection of elements within the tree view is limited to the current store area. In other

words, for example, if an element is marked in the page store, then afterward, no other element

from a different store area can be selected.

 If the key combination CTRL + A is used within the tree view of the FirstSpirit

JavaClient, only the currently visible (expanded) elements of the tree view are marked. If,

for example, a folder in the page store is not expanded, the pages under it are not a part

of the selection.

4.11.1 Multiple workflow selection

The selection of multiple workflows enables starting and switching a workflow for a quantity of

objects.

To do so, the desired objects can be marked within the tree view. In connection with this, the

context menu is opened as usual and the desired workflow is selected.

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 208

Figure 4-76: Starting a workflow on multiple elements

4.11.2 Requirements for starting and advancement

Starting or advancing a workflow can only happen if all elements have the same status of the

workflow or, until now, no workflow has been started on the selected elements (see Figure 4-76).

During multiple element selection, for every element, it is determined which workflows and which

transitions of a workflow can be shown via the context menu. In this, for example, it is taken into

account whether:

 a workflow was already started on the element,

 the user has the required permissions to start the workflow on this element,

 a workflow may be started on this element,

 a workflow was already started on the elements, but the elements did not reach the same

state as the workflow.

If these requirements are not fulfilled for even one element of the multiple selection, the context

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 209

menu delivers the evaluation "not available" for all selected elements.

Figure 4-77: Context menu – not available

In this case, the multiple selection should be canceled, the individual elements checked again

and reselected where necessary.

4.11.3 Multiple selection via the task list

Alongside the multiple selection via the tree view, workflows started once can also be moved

forward via the task list (see Figure 4-78) or via the "Workflows" overview in the template store

(see Chapter 4.1, page 127).

The task list provides all tasks not yet completed ("open tasks") and all started tasks ("initiated

tasks") within a table view. Alongside the name of the workflow, the current state of the

respective instance of the workflow is shown here.

Figure 4-78: Multiple selection via the task list

Within the tabular task list, multiple tasks can be selected. As long as these tasks have the same

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 210

workflows and the same status and the user has the required permissions to run the workflow for

the selected elements, the possible actions are shown in the lower area of the task list.

The tasks can thus be advanced simultaneously. Unlike when starting via the tree view, multiple

elements from different administrative areas can be marked and switched simultaneously in the

task list.

4.11.4 Multiple selection via the "Workflows" overview

Alongside the task list, within the template store there is an additional overview on the

"Workflows" node over all previously started tasks (see Chapter 4.1, page 127). Differently than

in the task list, the tasks can be filtered here according to specific search criteria and also shown

according to already concluded tasks (see Chapter 4.1.1, page 129).

Within the overview, multiple tasks can be selected. Directly advancing the workflow is not

possible here; however, clicking the "Edit" button opens the task list (see Chapter 4.1.2, page

131). The elements previously marked in the task list are selected directly and can be advanced

there (see Chapter 4.11.3, page 209).

Alongside editing, the overview can close multiple selected tasks (see Chapter 4.1.3, page 132).

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 211

5 Tracking changes via revision-metadata

FirstSpirit provides an option for tracking changes via the FirstSpirit Access API. Access to the

revision metadata is possible via certain API functions (see Chapter 5.2, page 213). Revision

metadata contains information on the type (which changes took place?) and the scope (which

elements were changed?) of a change to the project. The information which is made available via

the revision metadata is highly granular. With changes to content, it can be determined, for

example, which properties of an element were changed, for example whether the content was

changed in a certain editing language, whether a child element was added or removed or

whether certain attributes, such as permissions to the corresponding element, were changed.

Via the extended revision information, all changes that were made from the time of a certain

revision to the time of a certain revision within a project can be determined.

Access to this information is possible via the FirstSpirit Access API, for example by BeanShell

Script.

The following chapters present methods in order to obtain one or more revisions of a project

which are to be examined based on changes (see Chapter 5.1, page 212) and methods to

determine the corresponding information on the changes (see Chapter 5.2, page 213).

Independent of respective change type, different metadata information is available (see Chapter

5.2.1, page 213).

Additionally, examples of using track changes are described in the project.

The first example determines all the database changes which took place since the last released

revision of a project (see Chapter 5.3, page 215).

The second example determines changes to the content that took place between a to-be-defined

start revision and a to-be-defined end revision in the project (see Chapter 5.4, page 219).

All code excerpts in this chapter involve fragments, which are insufficient to put together the

entire script!

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 212

5.1 Get revision

FirstSpirit works with a revision-based repository. With it, special administration of chronological

development of data is used. This is revision management.

A revision can be presented as a type of "Snapshot" across the entire repository at a certain

point in time. In contrast to a version, which is usually only related to a single object, during a

revision, the total state of all objects in the repository are listed.

Revisions are listed with sequential numbering (revision ID), where there is always exactly one

current revision for the whole repository. If a repository is edited, all changes carried out are

linked to a new revision number. The revision number is the last current revision number of the

entire repository, increased by one. All unchanged objects retain their old revision numbers. If an

object is changed, it is not overwritten in the repository, but rather inserted as a new object (with

a higher revision number).

In order to determine in what time frame certain changes took place within the program, first the

corresponding revision for the repository has to be retrieved.

The revision can be retrieved directly via the project. In doing so, either the desired unique

revision ID, such as:

project.getRevision(revisionId);

or the date of the desired revision were transferred, such as:

project.getRevision(context.getStartTime());

The transitioned date does not have to be assigned to a unique revision. Any desired data value

can be transferred. If at this date a revision exists, it is returned; otherwise the methods return

the next lowest revision.

A selection of revisions within a certain time frame can be made available via the method:

project.getRevisions(Revision from, Revision to, int maxCount,

Filter<Revision> filter);

made available. Two revisions are transferred. The first revision ("from") defines the lower

revision limit and the second revision ("to") defines the upper revision limit. Along with both of

these revisions, all revisions which have a higher revision ID than the lower revision limit and a

lower revision ID than the upper revision limit are returned.

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 213

The respective most current version can be retrieved via:

getRevision(new Date());

via:

start = project.getRevision(context.getStartTime());

end = project.getRevision(new Date());

revisions = project.getRevisions(start, end, 0, null);

Optionally, the parameter "maxCount" can be passed, which limits the number of the returned

revisions to a highest value, and – likewise optionally – provides a filter for further limitation.

5.2 Determining changes to a revision

Via the revisions (see Chapter 5.1, page 212), in connection with the metadata, additional

information on the changes can be retrieved:

revision.getMetaData();

The metadata administers different information which is dependent on the type of the changes

respectively (see Chapter 5.2.1, page 213). In the process, language-dependent content

changes to an element are taken into account as well as structural changes (such as a move) or

a change to the element attributes (such as name, permission definition, etc.) (see Chapter 5.2.2,

page 214).

5.2.1 Determining the type of change

The changes that have taken place in a revision can be retrieved via:

metaData.getOperation();

via:

The provided revision operation (RevisionOperation) provides information on the type of

change (RevisionOperation.OperationType), for example:

operation.getType();

In this context, different types of changes are available for different project contents.

For contents of type IDProvider, the following types of changes are possible:

 CREATE an object has been newly created in the project

 MODIFY An object has been modified in the project

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 214

 MOVE An object has been moved in the project

 DELETE An object has been deleted in the project

 RELEASE An object has been released in the project

 SERVER_RELEASE An object has been released on the server

The corresponding revision operation (for example, ModifyOperation) provides an object of

type BasicElementInfo with additional information on the respective object (for example, the

UniqueIdentifier).

For contents of type Entity, the following types of changes are possible:

 CONTENT_COMMIT Database contents have been modified

The corresponding revision operation (for example, ContentOperation) returns an object of

type EntityInfo with additional information on the respective data records (for example, the ID

of the data record or the ID of the associated database schema).

5.2.2 Determining changed elements

Depending on the respective change operation, additional information on changes can be called

up, such as which data records have been released in the project (for operation type:

CONTENT_COMMIT):

operation.getReleasedEntities();

or, for example, which contents have been newly created in the project (for operation type:

CREATE):

operation.getCreatedElement()

Additional methods are in the examples in the two following chapters (see Chapter 5.3 and

Chapter 5.4).

For an overview of all available methods, see documentation on the FirstSpirit Access API 5.

5
 Via the FirstSpirit Online Documentation in the Template development – FirstSpirit API area

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 215

5.3 Changes since the last deployment

The changes in the project carried out since the time of the deployment are to be shown in the

first example. The following example involves a project in which the reports on the FirstSpirit

content store can be managed. An overview of the changes to the data records is to be made

available each time a project is deployed. A post-deployment script is first created in the

deployment schedules to determine the changes.

Figure 5-1: Configuration of the post-deployment script

The script first determines the ID of the revision which was current at the time of the last

deployment of the project:

task = context.getTask();

lastExecutionRevisionId = (Long) context.getVariable(task.getName() + ".revision");

if (lastExecutionRevisionId != null) {

 context.logInfo("revision of last execution=" + lastExecutionRevisionId);

 revId = lastExecutionRevisionId.longValue();}

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 216

Subsequently, all revisions of the project since the last deployment are retrieved. The revision

with the just-determined revision ID is retrieved as the lower revision limit ("startRev"). The

current revision at the time of deployment is determined as the upper revision limit:

startRev = project.getRevision(revId);

endRev = project.getRevision(context.getStartTime());

context.logInfo("startRev=" + startRev.id + ", endRev=" + endRev.id);

if (startRev.id == endRev.id) {

 context.logInfo("no changes detected");

}

revisions = project.getRevisions(startRev, endRev, 0, null);

All of the determined revisions are then examined for changes in a loop:

checkChanges(revisions) {

 for (revision : revisions) {

 metaData = revision.getMetaData();

 operation = metaData.getOperation();

 if (operation != null) {

 type = operation.getType();

 switch (type) {

 case RevisionOperation.OperationType.CONTENT_COMMIT:

 ..

 ..

 break;

 }

 }

 }

In the process, only changes to database content – in other words, of operation type

CONTENT_COMMIT – are to be taken into account, and only the newly created and changed

data records of a specific database table.

All newly generated and released data records are first determined via:

createdEntities = operation.getCreatedEntities();

releasedEntities = operation.getReleasedEntities();

 This selection is then restricted to a specific database table (here: MyEntityTypName):

ENTITY_TYPE = "MyEntityTypName";

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 217

if (ENTITY_TYPE.equals(created.getEntityTypeName())){

..

}

if (ENTITY_TYPE.equals(released.getEntityTypeName())) {

..

}

Related:

case RevisionOperation.OperationType.CONTENT_COMMIT:

 createdEntities = operation.getCreatedEntities();

 for (created : createdEntities) {

 if (ENTITY_TYPE.equals(created.getEntityTypeName())) {

 createdCertificates.put(created.getEntityId(), revision);

 context.logInfo("\t created entity " + created.getEntityId() + " in

revision " + getRevisionString(revision));

 }

 }

 releasedEntities = operation.getReleasedEntities();

 for (released : releasedEntities) {

 if (ENTITY_TYPE.equals(released.getEntityTypeName())) {

 releasedCertificates.put(released.getEntityId(), revision);

 context.logInfo("\t released entity " + released.getEntityId() + " in

revision " + getRevisionString(revision));

 }

 }

 break;

The required information (e.g. review numbers) is retrieved using the IDs of the data records

determined to be changed and released ("created" and "released") and then saved for further

use.

context.setProperty("created", createdList);

context.setProperty("updated", updatedList);

In the process, the values saved via context.setProperty(..) are only persistent within the

current schedule; this means they can continue to be used in a subsequent action in the

schedule with context.getProperty(..). In this example, the contents continue to be used

in the following "Mail" action (see Figure 5-1) in the e-mail template:

Hello,

$CMS_SET(created, #context.getProperty("created"))$$CMS_SET(updated,

#context.getProperty("updated"))$

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 218

new(created != null)$($CMS_VALUE(created.size)$)$CMS_END_IF$ and

modified$CMS_IF(updated != null)$($CMS_VALUE(updated.size)$)CMS_END_IF

certificates have been published on

http://www.gutachten-online.de

$CMS_IF(created.size > 0)$New certificates:

=====================

$CMS_FOR(entity, created)$ * $CMS_VALUE(entity.Gutachtennr)$

($CMS_VALUE(entity.Datum.format("dd.MM.yy"))$) - $CMS_VALUE(entity.Kennzeichen)$

$CMS_END_FOR$$CMS_END_IF$

$CMS_IF(updated.size > 0)$Updated certificates:

=====================

$CMS_FOR(entity, updated)$ * $CMS_VALUE(entity.Gutachtennr)$

($CMS_VALUE(entity.Datum.format("dd.MM.yy"))$) - $CMS_VALUE(entity.Kennzeichen)$

$CMS_END_FOR$$CMS_END_IF$

--

This is an automatically generated e-mail which is sent when new certificates are

published.

If you have any questions, please contact info@gutachten-online.de

The template now generates an e-mail when carrying out a deployment schedule with the

generated and modified contents:

Example (e-mail):

Hello,

new(4) and modified(2) certificates have been published on

http://www.gutachten-online.de

New certificates:

=====================

 * AZ33048/D (10.08.10) - DO-WZ 1234

 * AZ45134/D (10.08.10) - DO-XY 4321

 * AZ46200/D (11.08.10) - EN-AA 1111

 * AZ50261/D (13.08.10) - BO-YZ 5566

Updated certificates:

=====================

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 219

 * AZ44356/D (10.08.10) - DO-ZZ 3388

 * AZ47709/D (05.05.08) - D-YY 9999

--

This is an automatically generated e-mail which is sent when new certificates are

published.

If you have any questions, please contact info@gutachten-online.de

Content saved via context.setVariable(..) also continues to be persistent while running

the current schedule (in contrast to saving content via context.setProperty(..)). This

option is used in the example in order to save the revision at the time of the current schedule:

context.setVariable(task.getName() + ".revision",

new Long(endRev.getId()));

When starting the next schedule, this information can then be used to retrieve the revision ID

which was current at the time of the last deployment of the project:

lastExecutionRevisionId = (Long) context.getVariable(task.getName() + ".revision");

The complete script and the templates described here can be requested as needed via the

FirstSpirit help desk.

5.4 Changes between two revisions

In the second example, the revisions can be selected conveniently via a GUI. To do so, a new

script has to be created in the project's template store first.

Input components for selecting a start and an end date for the desired revision limits can be

configured in the form area of the script:

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 220

Figure 5-2: GUI for selecting the revision limits

The XML file for configuring the form area can be requested via the FirstSpirit help desk as

needed.

Similarly to the first example, the corresponding revisions can then be retrieved using the

selected data:

data = context.showForm();

if (data != null) {

 context.logInfo("data=" + data);

 from = data.get(context.getProject().getMasterLanguage(),

 "from").get();

 to = data.get(context.getProject().getMasterLanguage(),

 "enddate").get();

 if (from != null) {

 context.logInfo(from + " -- " + to);

 start = project.getRevision(from);

 end = project.getRevision(to);

 context.logInfo("startRev=" + start.id + ", endRev=" + end.id);

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 221

 if (start.id <= end.id) {

 revisions = project.getRevisions(start, end, 0, null);

 } else {

 revisions = project.getRevisions(end, start, 0, null);

 }

 context.logInfo("found '" + revisions.size() + "' revisions -> first=" +

revisions.get(0) + ", last=" + revisions.get(revisions.size() - 1));

 checkChanges(revisions);

 }}

In checkChanges (see Chapter 5.3, page215), the changes that took place in this revision are

found. In this example, changes to project content of operation types DELETE and CREATE

(within the page store) are taken into account. In addition, changes to the project's database

content are determined.

Changes due to removing elements in the page store:

case RevisionOperation.OperationType.DELETE:

 deleteRoot = operation.getDeleteRootElement();

 if (deleteRoot.getStoreType() == Store.Type.PAGESTORE) {

 // include only pagestore

 context.logInfo("found delete in pagestore (deleted node=" +

 deleteRoot.getUid() + ") in revision=" +

 getRevisionString(revision));

 }

 break;

Changes due to adding elements in the project:

case RevisionOperation.OperationType.CREATE:

 created = operation.getCreatedElement();

 parent = operation.getParent();

 context.logInfo("found created element in store '" +

 created.getStoreType() + "' (created node=" +

 created.getUid() + ", parent node=" + parent.getUid() + ") in

 revision=" + getRevisionString(revision));

 break;

Changes due to creating, deleting, changing or releasing database content:

case RevisionOperation.OperationType.CONTENT_COMMIT:

 created = operation.getCreatedEntities();

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 222

 changed = operation.getChangedEntities();

 deleted = operation.getDeletedEntities();

 released = operation.getReleasedEntities();

 context.logInfo("found content changes in revision=" +

 getRevisionString(revision));

 context.logInfo("\t created entities(" + created.size() + ") "

 + created);

 context.logInfo("\t changed entities(" + changed.size() + ") "

 + changed);

 context.logInfo("\t deleted entities(" + deleted.size() + ") "

 + deleted);

 context.logInfo("\t released entities(" + released.size() + ")

 " + released);

 break;

The script is output via the Java console:

..

INFO 20.05.2008 15:44:50.317

startRev=6804, endRev=7677

found created element in store 'PAGESTORE' (created node=Testpage_131,

parent node=Test_6C22873) in revision=7335

 - Thu May 15 16:02:51 CEST 2008 (importStoreElement) - Admin – CREATE

..

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 223

6 Server-side release

In addition to release via a workflow, all objects in FirstSpirit can be released server-side via the

Access API. To do so, there are methods of defining the different release settings for an object.

In this way, the specific release can be used to release additional objects dependent on the

current object, such as the complete parent chain and child elements of the object to be

released.

In general, a distinction is made among the following release options:

 Standard release (see Chapter 6.1, page 224):

Release for the object to be released, including additional, defined release options for the

default case. These predefined release options are different depending on the object. In this

way, a page in the page store is released via the default release options, including the

subordinated sections and the parent elements that have never been released. In contrast,

the default release of a page reference in the site store only takes the page reference itself

into account. The default release options cannot be changed.

 Specific release (see Chapter 6.2, page 224):

Release for the object to be released, including optional release options established by the

user. The different release options can be combined with each other in any way to realize a

comprehensive release within a short time. However, the release of all objects involved in the

release process is may be undesirable in certain circumstances and therefore should be

carried out with caution.

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 224

6.1 Default release

The release of the current object (for example, page or folder of the page store), including

defined, object-dependent release options for the default case, is carried out using this option.

Direct release of an object is carried out directly using the following API method:

AccessUtil.release(IDProvider toRelease, boolean checkOnly)

Transition parameters:

toRelease: Element to be released

checkOnly: If the value true is passed, the default release is just tested. The objects to be

released are not transferred to the release state. Instead, for example, the standard release is

run in order to discover errors prior to the actual release of an object.

Return parameters:

ServerActionhandle<? extends ReleaseProgress,Boolean >

The server-side release returns a ServerActionHandle, which contains all information on the

release process and, for example, contains the status of the release or the log info.

6.2 Specific release

The specific release takes even more (dependent) objects into account in the release process,

depending on the release parameters defined.

 Ensure accessibility (parent chain): Starting at the selected object, all new (never

released), higher-level nodes are also released (see Chapter 6.2.4, page 231). This option

makes sense, for example, if a new page within a new folder was created in the page store

and both are to be released together. In contrast to recursive release, other new pages below

the folder would not be released. While the combination of this option with the "recursive

release" option remains limited to the current store (see Chapter 6.2.5, page 233), it also has

an effect on the parent chain of the dependent objects and, thus, on other stores in

combination with the "Dependent release" option (see Chapter 6.2.6, page 234).

 Recursive release: Depending on the object selected, all subordinate nodes are also

released. This selection makes sense, for example, if within a folder in the page store many

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 225

pages were changed and now all changes are to be released together. This option remains

limited to the current store area (see Chapter 6.2.1, page 227).

 Only release new dependent objects: Starting from the selected object, all objects that are

dependent on the selected object (for example, a media file used in an image input

component) and that have not yet been released (newly created objects) are also released. If

this release option is combined with other options (for example, the release of the parent

chain), the dependent release also has an effect on other objects and stores included in the

release process.

 Release new and changed dependent objects: Starting from the selected object, all

objects that are dependent on the selected object (for example, a media file used in an image

input component) are also released. Objects that have never been released (newly created

objects) and objects that have been reedited after being successfully released (changed

objects) are taken into account in the process. If this release option is combined with other

options (for example, the release of the parent chain), the dependent release also has an

effect on other objects and stores included in the release process.

Specific release of an object is carried out using the following API method:

AccessUtil.release(IDProvider releaseStartNode, boolean checkOnly,

boolean releaseParentPath, boolean recursive, IDProvider.DependentReleaseType

dependentType)

Transition parameters:

releaseStartNode: Start nodes for the release

checkOnly: If the value true is passed, the specific release is just tested. The objects to be

released are not transferred to the release state. Instead, the defined release options are run in

order to discover errors before the real release, for instance.

releaseParentPath: If the value true is passed, the complete parent chain of the object to be

released is determined and all objects that have never been released before are also released. If

the option releaseParentPath=false is set, the parent chain is not released; the elements to be

released are, however, added to the release child list of the parent node. The following applies

here:

 With changed parent nodes: The object to be released can be accessed in release state. The

parent element, however, is not released.

 With new parent nodes: Because the parent node was never released, the object to be

released in the release state cannot be reached. That can lead to invalid references in the

release state (see Chapter 6.2.4 and Chapter 6.2.5).

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 226

recursive: If the value true is passed, all child elements of the object to be released are

recursively determined and likewise released. If the value false is passed, the child elements

are not taken into account during release (see Chapter 6.2.1, Chapter 6.2.3 and Chapter 6.2.5).

dependentType: Objects dependent on the object to be released are determined and also

released using this parameter. If, for example, a media file is referenced on a page, this media

file can also be released directly during specific release of the page. The following dependencies

can be taken into account (see Chapter 6.2.2, Chapter 6.2.3 and Chapter 6.2.6):

 DEPENDENT_RELEASE_NEW_AND_CHANGED: New and modified dependent objects are taken into

account.

 DEPENDENT_RELEASE_NEW_ONLY: Only newly created (not yet released objects) are taken into

account

 NO_DEPENDENT_RELEASE: Dependent objects are not taken into account and have to be

released separately if necessary (default setting).

The different release options can be combined with each other in any way to realize a

comprehensive release within a short time. However, the release of all objects involved in the

release process is may be undesirable in certain circumstances and therefore should be carried

out with caution.

The server-side release will therefore be explained in the following chapters based on some

examples.

Return parameters:

ServerActionhandle<? extends ReleaseProgress,Boolean >

The server-side release returns a ServerActionHandle, which contains all information about the

release process.

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 227

6.2.1 Recursive release

Server-side release – Recursive release

Site Store

Site Store Root

SS Folder

Folder 1

Ref 1

Folder 2

Ref 2

Start node of

the release
1

release
recursively

Figure 6-1: Server-based release – recursive

For calling AccessUtil.release(...) the following parameters were set:

releaseStartNode: Folder 1

releaseParentPath: false

boolean recursive: true

DependentReleaseType: NO_DEPENDENT_RELEASE

The selected start node for the release is the "Folder 1" menu level.

Recursive release: At the start point of the "Folder 1" release, the option recursive is evaluated.

The recursive release has an effect solely on the child elements of the release start point. Thus

the "Ref 1", "Folder 2" and "Ref 2" child elements are released by the option in the example from

Figure 6-1.

Recursive releases of additional dependent elements are not run, even in combination with other

release options. The recursive release thus does not have an effect on the release of child

elements of dependent objects in other stores.

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 228

6.2.2 Dependent release

Server-side release: Dependent release

Media Store

Media Store Root

MS Folder 1

MS Folder 2

Pict 1

Pict 2

Pict 3

Pict 4

MS Folder 3

Site Store

Site Store Root

SS Folder

Folder 1

Ref 1

Folder 2

Ref 2

Start node of

the release
1

new

new

new

changed

Folder 2 references
Pict 2 for the menu

Folder 1 references
Pict 4 for the menu

dependent
release

Figure 6-2: Server-side release – only new or new and modified releases

For calling AccessUtil.release(...) the following parameters were set:

releaseStartNode: Folder 1

releaseParentPath: false

boolean recursive: false

DependentReleaseType:

DEPENDENT_RELEASE_NEW_AND_CHANGED||DEPENDENT_RELEASE_NEW_ONLY

The selected start node for the release is the "Folder 1" menu level.

Dependent release: The options DEPENDENT_RELEASE_NEW_ONLY and

DEPENDENT_RELEASE_NEW_AND_CHANGED have an effect on basically all dependent objects in the

page store, the site store and the media store. This release option thus does not just affect start

nodes, but rather all objects that are taken into account during the release process. All outgoing

references in the "Folder 1" menu level are examined and released by the option in the example

from Figure 6-2. If only the dependent release is activated (without recursive release), only "Pict

4" would be conditionally released (see Figure 6-2); if additional release options are activated,

the release can be substantially more extensive, however (see Chapter 6.2.3, page 229, Chapter

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 229

6.2.6, page 234 and Chapter 6.2.7, page 236).

 All outgoing references for the dependent release are only completely taken into

account in one direction. If all dependent objects are to be included in the release

process, then the release has to be carried out in a certain order (see Chapter 6.2.8, page

238).

6.2.3 Dependent release with recursive release

Server-side release: Release recursive + new and changed

Page Store

Media Store

Media Store Root

Page Store Root

PS Folder

MS Folder 1

MS Folder 2

Page 1

Pict 1

Pict 2

Pict 3

Pict 4

MS Folder 3

Page 2

Page 1 references Pict
1 and Pict 3 via a
picture input
component

Site Store

Site Store Root

SS Folder

Folder 1

Ref 1

Folder 2

Ref 2

Ref 1 references Page 1

Start node of

the release
1

recursive
release

dependent
release

new

new

new

changed

dependent
release

Folder 2 references
Pict 2 for the menu

Folder 1 references
Pict 4 for the menu

Meta:
MS Folder in FILE

dependent
release

dependent
release

Figure 6-3: Server-side release – releasing recursively and dependently

For calling AccessUtil.release(...) the following parameters were set:

releaseStartNode: Folder 1

releaseParentPath: false

boolean recursive: true

DependentReleaseType:

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 230

DEPENDENT_RELEASE_NEW_AND_CHANGED||DEPENDENT_RELEASE_NEW_ONLY

The selected start node for the release is the "Folder 1" menu level.

Dependent release and recursive release: If the options DEPENDENT_RELEASE_NEW_ONLY or

DEPENDENT_RELEASE_NEW_AND_CHANGED are combined with the recursive option, the dependent

release has an effect on all objects below the start node. Thus, in the example from Figure 6-3,

both the outgoing references of the "Folder 1" menu level (see Chapter 6.2.2, page 228) and the

outgoing references from the subordinate child objects are examined:

 Relating to the example, "Ref 1" underneath "Folder 1" is also examined, which has a

reference in the page store. The page reference "Ref 1" is released due to recursive release;

page "Page 1" is also released due to dependent release.

 The "Folder_2" menu level, which has become a part of the release process via the recursive

release option, has a reference to a media file in media store. The folder "Folder 2" and the

subordinate page reference "Ref 2" are released due to recursive release. The referenced

media file "Pict 2" is released due to dependent release.

 The page "Page 1", which was released dependently, also has outgoing references in media

store. The media referenced, "Pict 1" and "Pict 3", are likewise released dependently.

Additional dependent or recursive objects are no longer taken into account, as they are not

covered by any of the release options.

 All outgoing references for the dependent release are only completely taken into

account in one direction. If all dependent objects are to be included in the release

process, then the release has to be carried out in a certain order (see Chapter 6.2.8, page

238).

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 231

6.2.4 Ensuring accessibility (parent chain)

Server-side release: Release parent chain

Page Store

Page Store Root

PS Folder

Page 1

Page 2

Site Store

Site Store Root

SS Folder

Folder 1

Ref 1

Folder 2

Ref 2

Ref 1 references Page 1

Start node of

the release
1

Release parent
chain

new

new

changed

new

Figure 6-4: Server-side release – release parent chain

For calling AccessUtil.release(...) the following parameters were set:

releaseStartNode: Ref 1

releaseParentPath: true

boolean recursive: false

DependentReleaseType: NO_DEPENDENT_RELEASE

The selected start node for the release is page reference "Ref 1".

Ensuring accessibility (parent chain): Starting from the start node of the release "Ref 1", the

complete parent chain of the object up to the root node of the store is considered. Through the

option releaseParentPath, all nodes of the parent chain are released which were not yet ever

released. Concretely, this means that objects which were already released once (changed

objects) are not released through the option releaseParentPath, not even if they have been

changed by an addition, for example of a page reference (see Figure 6-4).

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 232

If the option releaseParentPath=false is set, the parent chain is not released; the elements to

be released are, however, added to the release child list of the parent node. The following

applies here:

 With changed parent nodes: The object to be released can be accessed in release state. The

parent element, however, is not released.

 With new parent nodes: Because the parent node was never released, the object to be

released in the release state cannot be reached. This can lead to invalid references in the

release state.

Background: If a page reference is to be released even though the editor has no permission to

release within the higher menu level, the page reference should still be taken over in the release

state. Possible content changes within the menu level (for example, additional references),

should, however, not be released with the releaseParentPath option (see Figure 6-5).

Server-side release: Release parent chain

Site Store

Site Store Root

SS Folder

Folder 1

Ref 1

Folder 2

Ref 2

new

changed

new

changed
Editor B:
has permissions for
creating and releasing in
Folder 1

Ref 2 is added to the
release child list –
No release of the
menu level

Editor A:
has permissions for
creating and releasing in
Folder 2
No permission for releasing
in Folder 1

Release
parent chain

new

Figure 6-5: Server-side release – release parent chain (child release list)

In the example from Figure 6-5, through a release of page reference "Ref 2" from "Editor A", the

newly created page reference and the newly created menu level "Folder 2" would be released.

Menu level "Folder 1" is not released. So that the new menu level "Folder 2" (and with it the

page reference "Ref 2") is reachable in a released state, "Folder 2" is added with the option

releaseParentPath to the release child list of menu level "Folder 1". With that, page reference

"Ref 2" can be reached within the release state, but not the newly created page reference "Ref

1". If "Editor B" now releases page reference "Ref 1", this is also added to the release child list of

the menu levels "Folder 1". Because "Folder 1" is already reachable as a changed object via the

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 233

release child list of the likewise changed folder "SS Folder", the release is concluded with this.

Both menu levels ("Folder 1" and "SS Folder") are not released via the option, because it does

not involve newly created objects.

6.2.5 Ensure accessibility (parent chain) and recursive release

Server-side release: Release parent chain + recursive

Page Store

Media Store

Media Store Root

Page Store Root

PS Folder

MS Folder 1

MS Folder 2

Page 1

Pict 1

Pict 2

Pict 3

Pict 4

MS Folder 3

Page 2

Page 1 references Pict
1 and Pict 3 via a
picture input
component

Site Store

Site Store Root

SS Folder

Folder 1

Ref 1

Folder 2

Ref 2

Ref 1 references Page 1

Start node of

the release
1

release parent
chain

new

new

new

changed

Folder 1 references
Pict 4 for the menu

Meta:
MS Folder in FILE

changed

new

added to
release child
list

new

changed

new

changed

Release
recursive

Figure 6-6: Server-side release – parent chain and recursive release

For calling AccessUtil.release(...) the following parameters were set:

releaseStartNode: Ref 1

releaseParentPath: true

boolean recursive: true

DependentReleaseType: NO_DEPENDENT_RELEASE

The selected start node for the release is page reference "Ref 1".

Ensuring accessibility (parent chain) and recursive release: Starting from the start node of the

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 234

release "Ref 1", the complete parent chain of the object up to the root node of the store is

considered. Through the option releaseParentPath, all nodes of the parent chain are released

which were not yet ever released (compare to Chapter 6.2.4, page 231). Additionally, all child

elements of the start point are recursively released (compare to Chapter 6.2.1, page 227). Based

on the example in Figure 6-6, it is easy to recognize that this release is limited to the site store,

because no dependencies are taken into account here (in contrast to Figure 6-7). During this

release it is to be noted that defective references may arise if one of the objects referenced in the

site store was newly created, this in the example, "Page 1" and the media "Pict 1" and "Pict 4".

The current configuration in the example (compare to Figure 6-6) will thus lead to an error within

the release, because the page referenced, "Page 1", was never released. If the references

indicate objects that were already released once ("changed"), the respective last released

versions of the objects are referenced. In this case, the release from the example could be

successfully run.

6.2.6 Ensure accessibility (parent chain) and dependent release

Server-side release: Release parent chain + new and changed objects

Page Store

Media Store

Media Store Root

Page Store Root

PS Folder

MS Folder 1

MS Folder 2

Page 1

Pict 1

Pict 2

Pict 3

Pict 4

MS Folder 3

Page 2

Page 1 references Pict
1 and Pict 3 via a
picture input
component

Site Store

Site Store Root

SS Folder

Folder 1

Ref 1

Folder 2

Ref 2

Ref 1 references Page 1

Start node of

the release
1

release parent
chain

new

new

new

changed

dependent
release

release
parent
chain

Folder 1 references
Pict 4 for the menu

Meta:
MS Folder in FILE

dependent
release

dependent
release

changed

new

added to
release child
list

new

changed

added to
release child
list

new

changed

added to
release child
list

Figure 6-7: Server-side release – release parent chain and dependent objects

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 235

For calling AccessUtil.release(...) the following parameters were set:

releaseStartNode: Ref 1

releaseParentPath: true

boolean recursive: false

DependentReleaseType:

DEPENDENT_RELEASE_NEW_AND_CHANGED||DEPENDENT_RELEASE_NEW_ONLY

The selected start node for the release is page reference "Ref 1".

Ensure accessibility (parent chain) and dependent release: If the options

DEPENDENT_RELEASE_NEW_ONLY or DEPENDENT_RELEASE_NEW_AND_CHANGED are combined with the

option releaseParentPath, the dependent release affects the current start node and the release

of never before released elements of the parent chain. For the release of a page reference, for

example, this means that the page referenced there is released. The whole parent chain is now

run through for the referenced page as well, and a search is run for elements that were never

released. These elements are likewise released. The same applies to dependent objects in the

media store.

 For the page reference "Ref 1", the entire parent chain is run through. There, all never

released objects are released, in other words, in the example, the new menu level "Folder 1"

is released, but not the changed menu level "SS Folder".

 The menu level "Folder 1" has an outgoing reference in the media store. Through the

dependent release, the medium "Pict 4" is also released.

 For the "Pict 4" medium, now, in turn, the entire parent chain is run through and all never

released objects are released. In the example, only the new media folder "MS Folder 3" is

released.

 During release of page reference "Ref 1", the page referenced, "Page 1", is released.

 For page "Page 1", now, in turn, the entire parent chain is run through and all never released

objects are released. In the example, no object is affected, because the parent node "PS

Folder" was already released once. Dependent objects of the "PS Folder" folder are therefore

not taken into account during the dependent release.

 However, "Page 1" that was released dependently still has outgoing references in the media

store. The media referenced, "Pict 1" and "Pict 3", are likewise released dependently.

 For both media, the parent chain is now likewise examined. Because the common parent

node "MS Folder 2" had only changed, no release is run here.

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 236

 All outgoing references for the dependent release are only completely taken into

account in one direction. If all dependent objects are to be contained in the release

process, the release thus has to be carried out in a certain order (see Chapter 6.2.8, page

238).

6.2.7 Ensure accessibility (parent chain), recursive and dependent release

Server-side release: Release parent chain + recursive + new and changed objects

Page Store

Media Store

Media Store Root

Page Store Root

PS Folder

MS Folder 1

MS Folder 2

Page 1

Pict 1

Pict 2

Pict 3

Pict 4

MS Folder 3

Page 2

Page 1 references Pict
1 and Pict 3 via a
picture input
component

Site Store

Site Store Root

SS Folder

Folder 1

Ref 1

Folder 2

Ref 2

Ref 1 references Page 1

Start node of

the release
1

release parent
chain

Release
recursive

dependent
release

release
parent chain

new

new

new

dependent
release

release
parent chain

Folder 2 references
Pict 2 for the menu

Folder 1 references
Pict 4 for the menu

Meta:
MS Folder in FILE

dependent
release

release parent
chain

dependent
release

new

new

new

new

new

new

new

changed

Figure6-8: Server-side release including all options

For calling AccessUtil.release(...) the following parameters were set:

releaseStartNode: Folder 1

releaseParentPath: true

boolean recursive: true

DependentReleaseType:

DEPENDENT_RELEASE_NEW_AND_CHANGED||DEPENDENT_RELEASE_NEW_ONLY

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 237

The selected start node for the release is the "Folder 1" menu level.

Ensure accessibility (parent chain), release recursively and dependently: The most

comprehensive release is executed if all release options are combined with one another. In this

case, all never-before released elements of the parent chain as well as elements beneath the

start node are released. In addition, the dependent objects of all nodes affected by the release

process are released; the entire parent chain is examined and released there as well. The

recursive release has no effect on the dependent objects, unlike the release of the parent chain.

Based on the example in Figure6-8, it is clear that the release has an effect on nearly all objects

shown – only "Page 2" is not affected:

 At the release start point "Folder 1", the option recursive is evaluated. The recursive release

has an effect solely on the child elements of the release start point. In the example from

Figure6-8, through the option, the child elements Ref 1, Folder 2 and Ref 2 are released.

 All outgoing references of the released objects are released. In the example, this is the

objects "Pict 4" (via the reference within the menu level "Folder 1"), "Page 1" (via the page

reference "Ref 1"), "Pict 2" (via the reference within the menu level "Folder 2")

 From these released objects, the outgoing edges are again examined and released. In the

example, these are the media "Pict 1" and "Pict 3" (via the reference within page "Page 1").

 The complete parent chains are examined for all released elements, and all never-released

parent nodes are released. In the example, this is the "SS Folder" (parent element start

node), "PS Folder" (parent element "Page 1"), "MS Folder 2" (parent element "Pict 1" and

"Pict 2"), "MS Folder 3" (parent element "Pict 4").

 Now, the dependent objects of the released parent nodes are released. In the example, this

is "MS Folder 1" (via the reference in "PS Folder"). Differently than with the release option

releaseParentPath, "MS Folder 1" is then also released if it was only "changed", in other

words, was already released once.

 All outgoing references for the dependent release are only completely taken into

account in one direction. If all dependent objects are to be contained in the release

process, the release thus has to be carried out in a certain order (see Chapter 6.2.8, page

238).

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 238

6.2.8 Order for the release

All outgoing references for the dependent release are only completely taken into account in one

direction, in order to eliminate cyclical dependencies during the release.

 Objects from page and media stores, which are referenced in the content, structure

or content store, are taken into account during the dependent release.

The reverse direction (site / media store→ page / site / content store) does not function.

 Objects from remote projects are not taken into account during dependent release.

If all dependent objects are contained in the release process, the following order has to be

maintained:

 Release in the site store contains outgoing references to the content and the media store

 Release in the page store contains outgoing references to the media store

The following are not taken into account:

 Release in the page store contains no outgoing references to the site store.

 Release in the media store contains no outgoing references to the site store or the page

store.

Other cases in which dependent objects are shown in the reference graph but are not released

during the dependent release.

 Page→Page reference: Page with an FS_REFERENCE component, in which a page

reference is referenced.

 Only the page is released, not the dependent page reference.

 Page→Medium: Page with the page template in which a medium reference is hard-coded.

For example: $CMS_REF(media:"XXX")$ in the HTML channel.

 Only the page is released, not the dependent medium.

 Medium→Media file: In a CSS file (file parsing: yes), an additional hard-coded reference to a

media file (for example, a picture) is made. Both media are not yet released.

 If the CSS file is released ("Specific release -> Release dependent objects"), the medium

referenced is not released with it.

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 239

 Page with LINK/DOM editor→Page reference: Both referenced objects are not yet released.

 The medium referenced (image) was also released, but the page reference referenced

was not.

 Page→Data records: Page with the CONTENTLIST/FS_LIST/... component in which data

records are referenced.

 CS object is not released with it.

 Under certain circumstances, there can be cyclical dependencies that cannot be

released automatically and therefore have to be triggered manually.

Example: There are 2 pages in the page store ("Page 1" and "Page 2"), each with one

section and a section reference to the other page's section:

-- Page 1

 -- Section A

 -- Section reference on section B of page 2

-- Page 2

 -- Section B

 -- Section reference to section A of page 1

If the section references are not yet released, neither page 1 nor page 2 can be released

automatically in this configuration. In order to release the pages, first one of the section

references has to be deleted in order to display the cyclical dependency, for example,

"Section reference on section B of page 2". Then page 2 can be released. Then the

section reference has to be restored, after which page 1 can also be released.

There are some cases in which the dependent objects are shown in reference graphs but are not

released during the dependent release.

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 240

7 Code completion for forms

In order to support template developers better during form creation, with FirstSpirit Version 5.0, a

code completion program has been introduced on the form tab. Using this code completion, all

available FirstSpirit input components and all corresponding parameters along with available

values are shown at the press of a button and inserted at the insert mark on the form tab, for

example:

Figure 7-1: Auto completion on the form tab

To do so, the insert mark has to be positioned within a <CMS_MODULE> tag.

 You can look up tags and parameters for the input components, data and design

elements with the respective values and their syntax and meaning in the FirstSpirit Online

Documentation, Chapter "Template development" / "Forms".

7.1.1 Inserting the input component tags

In order to determine input component tags (FS_... and CMS_...), a pointy bracket has to be

opened (<) and the cursor positioned after it. The tags are then shown in a list, if <Ctrl> and the

space bar are held down at the same time. The desired tag can then be applied using the

keyboard (cursor button up and down and <Enter> or the mouse (double click or click and

<Enter>) on the form tab. The opening and closing tag and mandatory parameters (usually

name) are inserted in the process, for example, when selecting FS_BUTTON:

<FS_BUTTON name=""></FS_BUTTON>

The cursor is then located between the quotation marks of the name parameter.

FirstSpirit™ Manual for Developers (Basics)

FirstSpirit 5.0  DEVB50DE_FirstSpirit_DeveloperDocumentationBasics  1.16  RELEASED  2013-05-15 241

The number of tags shown can be limited by entering the initial letter(s) of the desired input

components after the pointy bracket, for example <C for the input components beginning with

"CMS_" or <F for the input components beginning with "FS_".

 Crossed-out entries on the list are old and should not be used.

7.1.2 Inputting tags, parameters and key terms

In order to be able to show and select an input component's available tags, parameters and key

terms, the cursor has to be positioned as follows depending on form syntax:

 In opening tags: In order to show parameters within an open tag, there has to be an blank

space behind the cursor.

 Between opening and closing tags: In order to show tags between opening and closing

tags, an opening pointed bracket has to be behind the cursor (<).

 In quotation marks: In order to show FirstSpirit preset values ("key terms") for a parameter,

the cursor has to be positioned inside the quotation marks.

Only tags, parameters and key terms that are available for the selected tag or parameter are

ever shown. Tags or parameters already used for the form that can only be used once are no

longer shown in the list.

If the desired tags, parameters and key terms are already known, the first letter(s) can be

entered. With <Ctrl> + space bar, the number of entries to be selected is reduced and and the

entry is directly inserted. Mandatory parameters are also inserted directly to the extent possible.

 Crossed-out entries on the list are old and should not be used.

	1 Introduction
	1.1 Topics of this documentation
	1.2 Classification in the complete documentation
	1.3 General terms
	1.3.1 Templates
	1.3.2 New input components
	1.3.3 Content Store
	1.3.4 Workflows
	1.3.5 Integrated preview
	1.3.6 Content Highlighting & EasyEdit
	1.3.7 Centralized error correction and system reporting

	2 FirstSpirit JavaClient template store
	2.1 General
	2.2 General template store context menus
	2.2.1 New
	2.2.2 Editing on/off
	2.2.3 Reverting changes
	2.2.4 Cut
	2.2.5 Copy
	2.2.6 Paste
	2.2.7 Rename
	2.2.8 Delete
	2.2.8.1 Deleting objects in use

	2.3 Special template store context menus
	2.3.1 Update
	2.3.2 Export
	2.3.2.1 Exporting folders
	2.3.2.2 Exporting templates
	2.3.2.3 Exporting style and table format templates, link templates and scripts
	2.3.2.4 Exporting schemata
	2.3.2.5 Exporting table templates and queries
	2.3.2.6 Exporting workflows

	2.3.3 Import
	2.3.3.1 Importing style and table format templates
	2.3.3.2 Importing schemata
	2.3.3.3 Importing workflows

	2.3.4 Restoring deleted objects
	2.3.5 Edit externally

	2.4 Template store administrative context menus
	2.4.1 Version history
	2.4.2 Starting a workflow
	2.4.3 Running a script
	2.4.4 Search in templates
	2.4.5 Tools – Change permissions
	2.4.6 Tools – Delete write protection
	2.4.7 Tools – Select/remove preview graphic
	2.4.8 Tools – Display properties
	2.4.9 Tools – Display uses
	2.4.10 Tools – Apply template changes
	2.4.11 Tools – Cancel editing
	2.4.12 Tools – Change reference name
	2.4.13 Tools – Show dependencies
	2.4.14 Tools – Create copy of this workflow

	2.5 Page templates
	2.5.1 Preview tab
	2.5.2 Properties tab
	2.5.3 Form tab
	2.5.4 Template sets tab
	2.5.5 Rules tab
	2.5.6 Snippet tab

	2.6 Section templates
	2.6.1 Preview, Properties, Form, Template sets, Rules and Snippet tabs

	2.7 Format templates
	2.7.1 Properties tab
	2.7.2 Template sets tab

	2.8 Style templates
	2.8.1 Introduction: Inline tables
	2.8.2 Creating a style template
	2.8.3 Form area of a style template
	2.8.3.1 Preventing layout editing for editors

	2.8.4 Preassigning layout attributes
	2.8.5 Presentation channel of a style template
	2.8.6 Linking with standard table format templates
	2.8.7 Examples
	2.8.7.1 Example: Text input component for entering a background color
	2.8.7.2 Example: Input component for entering a text color
	2.8.7.3 Example: Input component for entering text alignment

	2.9 Table format templates
	2.9.1 Creating and editing display rules
	2.9.2 Evaluation order
	2.9.3 Inserting an inline table in the DOM editor

	2.10 Link templates
	2.10.1 Standard link types
	2.10.2 Generic link editors

	2.11 Scripts
	2.11.1 Properties tab
	2.11.2 Form tab
	2.11.3 Template sets tab

	2.12 Database schemata
	2.12.1 New: Create schema
	2.12.2 New: Creating a schema from a database
	2.12.3 The FirstSpirit schema editor
	2.12.4 Table templates
	2.12.4.1 Table templates – Preview, properties and form tabs
	2.12.4.2 Table templates – Mapping tab
	2.12.4.3 Table templates – Template sets tab

	2.12.5 Queries
	2.12.5.1 Query – Conditions tab
	2.12.5.2 Query – Parameter tab
	2.12.5.3 Query – Result tab
	2.12.5.4 Query – Result (release) tab

	2.13 Workflows

	3 Content sources in FirstSpirit
	3.1 Terms
	3.2 Standard layer
	3.3 DBA layer
	3.4 Content sources in FirstSpirit JavaClient

	4 Workflows
	4.1 Overview
	4.1.1 Task search (filtered overview)
	4.1.2 Editing tasks
	4.1.3 Closing tasks

	4.2 Modeling workflows
	4.2.1 Creating a workflow
	4.2.2 Workflow editor tool bar
	4.2.3 Elements of the graphical workflow editor
	4.2.3.1 State/status
	4.2.3.2 Activity
	4.2.3.3 Transition

	4.2.4 Keyboard shortcuts in the workflow editor
	4.2.5 Operating assistance for the editor
	4.2.6 Rules of modeling
	4.2.7 Examples for modeling rules
	4.2.8 Print preview for workflow models

	4.3 Error handling in workflows
	4.3.1 General error handling
	4.3.2 Error state
	4.3.3 Example: "Error" workflow

	4.4 Form support for workflows (form)
	4.4.1 Example: "GUI" workflow

	4.5 Properties of a workflow (configuration)
	4.5.1 General properties
	4.5.2 Display logic for workflows
	4.5.3 Properties of a state
	4.5.3.1 General tab
	4.5.3.2 Color coding tab

	4.5.4 Properties of an activity
	4.5.4.1 General tab
	4.5.4.2 E-mail tab

	4.5.5 Properties of a transition
	4.5.5.1 General tab
	4.5.5.2 Permissions tab
	4.5.5.3 E-mail tab

	4.6 Permission configuration for workflows
	4.6.1 General permission configuration using the template store
	4.6.2 Changing or locking editor preselection
	4.6.2.1 Manual editor (for each action)
	4.6.2.2 Automatic editor using permissions

	4.6.3 Context-dependent permissions for starting a workflow
	4.6.4 Context-dependent permissions for switching a workflow
	4.6.5 Effects on the permissions configuration

	4.7 Write protection within workflows
	4.7.1 General
	4.7.2 Write protection when creating and moving
	4.7.3 Write protection within scripts

	4.8 Use of scripts in workflows
	4.8.1 Automatic activities and scripts
	4.8.2 Manual activities and scripts
	4.8.3 Workflow context
	4.8.4 Example: Output of messages in workflows
	4.8.5 Example: Persistent content within workflows

	4.9 Deleting via a workflow
	4.9.1 Deleting via a workflow in the JavaClient
	4.9.2 Deleting via a workflow in the WebClient
	4.9.3 Permissions configuration
	4.9.4 Example: "Delete" workflow
	4.9.5 Example: "ContentDeleteDemo" workflow

	4.10 Workflows with a complex function
	4.10.1 Example: "RecursiveLock" workflow
	4.10.2 Example: "RecursiveRelease" workflow

	4.11 Multiple workflow selection
	4.11.1 Multiple workflow selection
	4.11.2 Requirements for starting and advancement
	4.11.3 Multiple selection via the task list
	4.11.4 Multiple selection via the "Workflows" overview

	5 Tracking changes via revision-metadata
	5.1 Get revision
	5.2 Determining changes to a revision
	5.2.1 Determining the type of change
	5.2.2 Determining changed elements

	5.3 Changes since the last deployment
	5.4 Changes between two revisions

	6 Server-side release
	6.1 Default release
	6.2 Specific release
	6.2.1 Recursive release
	6.2.2 Dependent release
	6.2.3 Dependent release with recursive release
	6.2.4 Ensuring accessibility (parent chain)
	6.2.5 Ensure accessibility (parent chain) and recursive release
	6.2.6 Ensure accessibility (parent chain) and dependent release
	6.2.7 Ensure accessibility (parent chain), recursive and dependent release
	6.2.8 Order for the release

	7 Code completion for forms
	7.1.1 Inserting the input component tags
	7.1.2 Inputting tags, parameters and key terms

