

FirstSpirit Manual for Developers
(Part 1: Basics)
FirstSpirit Version 4.0, 4.1 and 4.2

Version 1.31

Status RELEASED

Date 2011-09-02

Department Techn. Documentation

Author/ Authors B.Ehle

Copyright 2011 e-Spirit AG

File DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics

Barcelonaweg 14
44269 Dortmund | Germany

T +49 231 . 286 61-30
F +49 231 . 286 61-59

 info@e-spirit.de
 www.e-spirit.de

e-Spirit AG

http://www.e-spirit.de/
mailto:info@e-spirit.de
http://www.e-spirit.de/

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 1 1.31

Table of contents

1 ...10 Introduction

1.1 ... 10 Topics covered in this documentation

1.2 .. 12 Position within the overall documentation

1.3 ... 13 General terms

1.3.1 .. 13 Templates

1.3.2

... 14

New input components (Status: Under development) (from

V4.2)

1.3.3 ... 16 Content Store

1.3.4 .. 17 Workflows

1.3.5 ... 19 Integrated preview (from V4.2)

1.3.6 .. 21 Content Highlighting (from V4.2)

222 Template Store of the FirstSpirit JavaClient

2.1 .. 22 General information

2.2 ... 23 General Template Store context menus

2.2.1 ... 24 New

2.2.2 .. 40 Lock/Unlock (Edit Mode On/Off)

2.2.3 .. 41 Reset Changes

2.2.4 ... 41 Cut

2.2.5 .. 42 Copy

2.2.6 ... 42 Paste

2.2.7 ... 43 Rename

2.2.8 ... 44 Delete

2.3 .. 47 Special context menus of the Template Store

2.3.1 .. 47 Refresh this store

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 2 1.31

2.3.2 .. 48 Create update

2.3.3 .. 53 Install update

2.3.4 ... 59 Export

2.3.5 .. 62 Import

2.3.6 .. 67 Restore deleted objects

2.3.7 ... 69 Edit extern

2.4 71 Administrative context menus of the Template Store

2.4.1 ... 72 Version history

2.4.2 .. 72 Start Workflow

2.4.3 .. 73 Execute Script

2.4.4 ... 73 Search in templates

2.4.5 ... 73 Extras – Change Permissions

2.4.6 .. 73 Extras – Reset write lock

2.4.7 ... 73 Extras – Select preview image

2.4.8 .. 74 Extras – Show properties (from V4.2)

2.4.9 ... 76 Extras – Show usages

2.4.10 .. 76 Extras – Accept template changes

2.4.11 ... 77 Extras – Cancel editing

2.4.12 77 Extras – Convert link template (from V4.2)

2.4.13 .. 78 Extras – Change reference name

2.4.14 78 Extras – Display dependencies (from V4.1)

2.4.15 80 Extras – Create a copy of this workflow

2.5 .. 81 Page templates

2.5.1 ... 81 Preview tab

2.5.2 ... 83 Properties tab

2.5.3 .. 86 Form tab

2.5.4 ... 87 Template sets tabs

2.5.5 Restricting the content areas for page templates (up to and

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 3 1.31

including V4.1) .. 87

2.6 .. 89 Section templates

2.6.1 ... 89 Preview tab

2.6.2 ... 90 Properties tab

2.6.3 .. 90 Form tab

2.6.4 ... 90 Template sets tabs

2.7 ... 91 Format templates

2.7.1 ... 92 Properties tab

2.7.2 .. 94 Template Sets tabs

2.8 .. 95 Style templates (from V4.1)

2.8.1 ... 95 Introduction: Inline tables (from V4.1)

2.8.2 .. 96 Create style template (from V4.1)

2.8.3 96 Form area of a style template (from V4.1)

2.8.4 99 Pre-configuration of the layout attributes (from V4.1)

2.8.5 100 Output channel of a style template (from V4.1)

2.8.6 101 Linking with standard table format templates (from V4.1)

2.8.7 .. 102 Examples (from V4.1)

2.9 ... 106 Table format templates (from V4.1)

2.9.1 108 Creating and editing display rules (from V4.1)

2.9.2 ... 112 Evaluation order (from V4.1)

2.9.3 113 Insert inline tables in the DOM Editor (from V4.1)

2.10 .. 114 Link templates

2.10.1 ... 115 Standard link types

2.10.2 .. 115 Link configuration – Properties tab

2.10.3 .. 116 Link configuration – Configuration tab

2.10.4 .. 116 Link templates – Properties tab

2.10.5 .. 117 Link templates – Template sets tabs

2.10.6 .. 118 Generic link editors (from V4.2)

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 4 1.31

2.11 ... 120 Scripts

2.11.1 ... 121 Properties tab

2.11.2 .. 123 Form tab

2.11.3 ... 124 Template sets tabs

2.12 ... 125 Database schemes

2.12.1 .. 126 The FirstSpirit schema editor

2.12.2 ... 132 Table templates – Preview tab

2.12.3 ... 133 Table templates – Properties tab

2.12.4 ... 133 Table templates – Form tab

2.12.5 . 133 Table templates – Mapping tab (up to and including V4.0)

2.12.6 135 Table templates – Mapping tab (from V4.1)

2.12.7 135 Table templates – Template sets tabs

2.12.8 ... 136 Query – Conditions tab

2.12.9 .. 138 Query – Parameter tab

2.12.10 .. 138 Query – Result tab

2.13 .. 139 Workflows

3 ..140 Data sources in FirstSpirit

3.1 .. 141 Terms

3.2 ... 143 Multiproject layers

3.2.1 143 Multiproject layer in FirstSpirit Version 3.1

3.2.2 145 Multiproject layer in FirstSpirit Version 4.0

3.3 ... 147 Single project layers

3.4 148 Layer types and their names from FirstSpirit Version 4.2

3.5 149 Data (content) sources in the FirstSpirit JavaClient

3.6 ... 151 Template update on data (content) sources

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 5 1.31

4 ..152 Workflows

4.1 .. 152 Overview

4.1.1 154 Search for tasks (filtered overview) (from V4.1)

4.1.2 ... 156 Edit tasks

4.1.3 ... 159 Close tasks

4.2 ... 160 Modelling workflows

4.2.1 ... 160 Create a workflow

4.2.2 ... 161 Toolbar of the workflow editor

4.2.3 162 Elements of the graphic workflow editor

4.2.4 164 Keyboard shortcuts in the Workflow Editor

4.2.5 ... 164 Editor accessibility features

4.2.6 ... 165 Modelling rules

4.2.7 ... 165 Examples of modelling rules

4.2.8 ... 168 Print preview for workflow models

4.3 .. 169 Error handling within workflows

4.3.1 .. 169 General error handling

4.3.2 .. 169 Error status (from V4.1)

4.3.3 172 Example: Workflow "Error" (from V4.1)

4.4 ... 174 Form support for workflows (form)

4.4.1 ... 176 Example: Workflow "GUI"

4.5 ... 178 Properties of a workflow (configuration)

4.5.1 .. 178 General properties

4.5.2 ... 179 Show logic for workflows (from V4.1)

4.5.3 ... 181 Properties of a status

4.5.4 ... 184 Properties of an activity

4.5.5 ... 189 Properties of a transition

4.6 .. 194 Permissions configuration for workflows

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 6 1.31

4.6.1

... 194

General rights (permissions) configuration via the Template

Store

4.6.2 195 Change or block modifier preselection

4.6.3 199 Context-dependent permissions for starting a workflow

4.6.4 ... 201 Context-dependent permissions for switching a workflow

4.6.5 203 Effects of the permissions configuration

4.7 ... 208 Write protection within workflows

4.7.1 .. 208 General information

4.7.2 208 Write lock in case of creating and moving objects

4.7.3 ... 209 Write lock within scripts

4.8 ... 210 Using scripts in workflows

4.8.1 .. 210 Automatic activities and scripts

4.8.2 ... 211 Manual activities and scripts

4.8.3 ... 211 Workflow context

4.8.4 213 Example: Issue of messages in workflows

4.8.5 216 Example: Persistent content within workflows

4.9 .. 218 Delete via a workflow (from V4.1)

4.9.1 .. 218 Introduction (from V4.1)

4.9.2 218 Delete via a workflow in the JavaClient (from V4.1)

4.9.3 219 Delete via a workflow in the WebClient (from V4.1)

4.9.4 220 Permissions configuration (from V4.1)

4.9.5 223 Example: Workflow "Delete" (from V4.1)

4.9.6 226 Example: Workflow "ContentDeleteDemo" (from V4.1)

4.10 ... 229 Workflows with complex functions

4.10.1 ... 229 Example: "RecursiveLock" workflow

4.10.2 232 Example: "RecursiveRelease" workflow

4.11 ... 236 Multiple selection of workflows (from V4.1)

4.11.1 236 General information on multiple selection in FirstSpirit

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 7 1.31

4.11.2 237 Multiple selection of workflows (from V4.1)

4.11.3

... 238

Requirements for starting and advancing workflows (from

V4.1)

4.11.4 238 Multiple selection via the task list (from V4.1)

4.11.5 239 Multiple selection via the "workflows" overview (from V4.1)

5 ..241 Document Groups

5.1 .. 241 Introduction

5.1.1 .. 241 Objective

5.1.2 .. 241 Concept

5.2 ... 242 Configuration

5.2.1 .. 242 Check licence file

5.3 244 Using document groups in the FirstSpirit JavaClient

5.3.1 ... 244 Create new document groups

5.3.2 ... 244 Define properties

5.3.3 246 Manage content of the document groups

5.3.4 247 Template settings for document groups

5.3.5 249 Presentation channels for generating document groups

5.4 .. 250 Template development

5.4.1 .. 250 System objects

5.4.2 .. 252 Context variables

5.4.3 .. 253 Start and end template

5.5 ... 254 Application examples

5.5.1 .. 254 Example: Chapter headings

5.5.2 ... 255 Example: Table of contents

5.5.3 .. 257 Example: Jump to table of contents

5.5.4 ... 258 Example: Local page references

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 8 1.31

6 .259 Tracking Changes using Revision Metadata (from V4.1)

6.1 ... 259 Introduction (from V4.1)

6.2 .. 260 Get revisions (from V4.1)

6.3 261 Determine changes within a revision (from V4.1)

6.3.1 .. 261 Determine change type (from V4.1)

6.3.2 262 Determine changed elements (from V4.1)

6.4 .. 263 Changes since the last deployment (from V4.1)

6.5 .. 268 Changes between two revisions (from V4.1)

7 ..272 Server-Side Release

7.1 ... 272 Standard release

7.2 .. 273 Specific release

7.2.1 ... 276 Recursive release

7.2.2 ... 277 Dependent release

7.2.3 279 Dependent release with recursive release

7.2.4 .. 281 Ensure accessibility (parent chain)

7.2.5 284 Ensure accessibility (parent chain) and release recursively

7.2.6

.. 286

Ensure accessibility (parent chain) and dependently

release

7.2.7

.. 288

Ensure accessibility (parent chain), release recursively and

dependently

7.2.8 .. 290 Order for the release

8 ...292 WebEdit

8.1 ... 292 Requirements for the use of WebEdit

8.1.1 293 Use of WebEdit without adjusting the templates

8.1.2

... 293

Use of WebEdit with adjustment of the templates

(recommended)

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 9 1.31

8.2 ... 295 Functional scope of WebEdit

8.2.1 ... 298 New in Version 4.1

8.2.2 ... 299 New in Version 4.2

8.2.3 ... 300 Restrictions

8.2.4 303 Implementing WebEdit input components

8.2.5 304 Implementing WebEdit design elements

8.3 ... 305 Easy-Edit (from V4.2)

8.4 .. 307 WebEdit format templates

8.4.1 ... 308 WEBeditBarIncludeJS

8.4.2 ... 309 WEBeditEditAttribute

8.4.3 .. 309 WEBeditEditContent

8.4.4 ... 310 WEBeditEditSectionAttributes

8.4.5 .. 310 WEBeditScripts

8.4.6 ... 312 WEBeditSelectPicture

8.4.7 .. 312 WEBeditIncludeJS

8.4.8 ... 312 WEBeditQuickBar

8.4.9 .. 314 WEBeditSwitch

8.4.10 .. 314 WEBeditSwitch2

8.5 ... 316 Quick Edit

8.5.1 316 Use of Quick Edit in FirstSpirit projects

8.5.2 317 General functions of Quick Edit at page level

8.5.3 .. 317 Integrating the Quick Edit buttons

8.5.4 .. 317 Hiding Quick Edit bar buttons

8.5.5 .. 318 Orientation of the Quick Edit bar

8.5.6 ... 318 Drop down the Quick Edit bar

8.5.7 .. 318 Highlighting page areas

8.5.8 .. 320 Workflow recommendations

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 10

1 Introduction

The aim of this manual is to describe the implementation of FirstSpirit projects from

the developer's perspective. The structure of the documentation has been chosen to

give the most comprehensive overview possible of the FirstSpirit mechanisms

relevant for the developer and the respective purposes (see Chapter 1.1 page 10).

Several areas required, especially for template development, are already explained

in detail in the FirstSpirit Online Documentation. Chapter 1.3 gives an explanation of

general terms used (from page 13) as an introduction to the FirstSpirit concept from

a template development view.

 New functions not released until FirstSpirit Version 4.1 are shown in
this document in the new Look & Feel, existing functions (apart from a few
exceptions) have, for the time being at least, been shown with the old Look &
Feel.

1.1 Topics covered in this documentation

This document describes the relevant functions and aspects for template

development in FirstSpirit. The layout is roughly based on the user interface of the

FirstSpirit JavaClient.

Chapter 2 describes the Template Store of the FirstSpirit JavaClient with all the

available functions (see Chapter 2 from page 22).

FirstSpirit has efficient mechanisms for linking databases (content). Chapter 3 deals

with the layer types available in FirstSpirit for the database link and gives several

general recommendations on how to handle data sources (content) in FirstSpirit (see

Chapter 3 page 140).

Workflows are sequences of tasks which are worked through in a fixed, predefined

structure. They can be used, for example, to model release processes. Chapter 4

explains the workflow editor used in FirstSpirit, including all configuration options

(see Chapter 4 from page 152).

In certain application cases it may be desirable to collate several FirstSpirit pages to

form a single document, for example, if a PDF is to be created from several pages of

the Page Store. The document groups concept used in FirstSpirit for this

1.31

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 11 1.31

requirement and all configuration options as well as specific application examples

are explained in Chapter 5 (see Chapter 5 from page 241).

FirstSpirit provides a change tracking option via the FirstSpirit Access-API. Chapter

6 describes access to the metadata of a revision via specific API functions. The

revision metadata contains information about the type (what changes have taken

place?) and the scope (which elements were changed?) of a change in the project

(see Chapter 6 page 259).

Apart from release via a workflow, all objects in FirstSpirit can be released on the

server side via the Access API. Chapter 7 shows the methods for defining the

different release settings for an object (see Chapter 7 page 272).

WebEdit was developed in addition to JavaClient and enables the editor to quickly

and directly edit website content. The default specified functions and the appearance

of the preview pages which the editor edits in WebEdit can be modified by the

template developer. Chapter 8 shows the requirements for the use of WebEdit, the

functional scope and the options for template development as well as the Easy-Edit

functionality (see Chapter 8 page 292).

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 12

1.2 Position within the overall documentation

Several areas required, especially for template development, are already

documented in detail in the FirstSpirit Online Documentation. How the developer

documentation fits into the overall documentation is illustrated in Figure 1-1.

Figure 1-1: Position of the developer documentation within the overall documentation

Basic knowledge of the Manual for Editors and the Manual for Administrators is

assumed and is necessary as a minimum to understand the following chapters. A

detailed description of individual template components and the interfaces is given in

the FirstSpirit Online Documentation.

Due to its size and scope, the documentation for developers is divided into this

manual, which explains the basic aspects of template development and a Developer

Manual for Components, which describes special aspects of the development of

modules and components for FirstSpirit.

The Manual for Developers (basics) covers, among other things, the following

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 13 1.31

aspects:

 The context menus and editing options with the FirstSpirit Template Store (see

Chapter 2 from page 22)

 Terms and concepts for working with data sources (content) in FirstSpirit (see

Chapter 3 page 140).

 The creation of workflows (see Chapter 4 page 152).

 The configuration and use of document groups (see Chapter 5 page 241).

 Access to revision metadata, e.g. for tracking changes (see Chapter 6 page

259).

 Information on server-side release (see Chapter 7 page 272).

 Information about template development in WebEdit (see Chapter 8 page 292).

The Developer Manual for Components deals with, among other things, the following

aspects:

 Installation and configuration of modules

 Structure of modules and components

 The FirstSpirit GUI object model GOM

 The FirstSpirit Security Architecture

 Example listings

Knowledge of the following is also helpful to understand the chapters which describe

extensions and adjustments of FirstSpirit:

 Programming in Java / BeanShell

 Technology of relational databases

1.3 General terms

1.3.1 Templates

Templates form the basis of each internet presence. The complete layout of the

website is taken into account in them (among other things the Corporate Design and

Corporate Identity). Templates are required to join the content entered in the Page

Store and the media integrated in the Media Store with the structure deposited in the

Site Store to form a complete presentation when the website is generated.

The basic principles of template development are taught in detailed step-by-step

instructions in the FirstSpirit Online Documentation. The creation of the first

templates is explained by way of a simple example. The example refers to the

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 14 1.31

startpage of the demo project FIRSTools, the output language is HTML (see

FirstSpirit Online Documentation / Chapter Templates (basics) / Step-by-step).

Different types of templates are available to the developer in FirstSpirit:

 Page templates create the basic framework of a page. Page templates are used

to specify where, e.g. logos and navigations are positioned, whether a page is to

consist of frames or not and similar general settings. In addition, the page

templates define in which places an editor can insert content.

 Section Templates are used to insert content in this basic framework. Section

templates are divided into individually specified input fields with which the editor

maintains the editorial content of the section (in the Page Store).

 Mapping is used to define rules with which links can be made between page and

section templates, e.g. to obtain a print view for a page.

 Format templates are used to define formatting which can subsequently be

used in the DOM-Editor input element in the Page Store.

 Link templates are used to specify in detail the appearance of links within a

FirstSpirit project. The template developers define all input fields with which the

editors can enter all the necessary content and the display of the link on the

HTML page.

All types of templates are maintained and managed in the so-called "Template

Store" of FirstSpirit.

1.3.2 New input components (Status: Under development) (from V4.2)

Change to the input component model: FirstSpirit Version 4.2 marks the start of

fundamental revision and consolidation of FirstSpirit's input component model (cf.

"FirstSpirit Roadmap 2009-2012"). Within the scope of these activities, a whole

range of input components previously implemented separately will be brought

together. It is planned to bring together the following input component groups:

 single value input components: links to other FirstSpirit objects, e.g.

CMS_INPUT_FILE, CMS_INPUT_PICTURE, CMS_INPUT_PAGEREF etc.

 set-valued input components: CMS_INPUT_CONTENTLIST, CMS_

INPUT_TABLIST, CMS_INPUT_CONTENTAREALIST, CMS_INPUT_LINKLIST

This is an extensive consolidation project in which compatibility and migration

aspects also play an important role. This is why the implementation is in two phases:

 With FirstSpirit Version 4.2 a new generation of input components will be

gradually introduced with the name prefix "FS_" instead of "CMS_INPUT_".

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 15 1.31

These new input components will be gradually added within the scope of

continued development of FirstSpirit and will be adjusted to clients' needs.

 The new input components cannot be officially released until FirstSpirit Version

5.0. This process is necessary, as release of the components in Version 4.2

would already bindingly specify the parameter assignment and API. This would

make flexible further development of the components, taking into account

customers' interests, no longer possible.

Status – Under development: As the official release will not take place until

FirstSpirit Version 5.0, the input components ("FS_") can already be used in

FirstSpirit Version 4.2, but in Version 4.2 their status is "under development". In

specific terms, this status means:

 The input component is supported within the scope of the usual quality

assurance and debugging.

 The persistence format will be kept compatible during the continued

development, i.e. once data has been entered, it can continue to be imported.

However, there is no downwards compatibility with FirstSpirit Version 4.1.

 The aim is not to make too many changes to the user prompting. However, as

especially optimisation of the user prompting, is the objective of the iterative

procedure, editorially relevant changes may well occur

 The aim is to keep the parameter assignment of the input component compatible.

Should this not be possible, a corresponding announcement will be made within

the scope of the "FirstSpirit Release Notes".

 The API of the input components will change during the course of the

development. If possible (and meaningful) the API changes will be compatible.

However, incompatible changes are possible and will also be announced within

the scope of the "FirstSpirit Release Notes".

 As release of the "FS_" components is not planned until FirstSpirit Version 5.0

with WebEdit 5.0, support for these component in WebEdit 4.2 will be very

rudimentary. An exception here is all new input components which are necessary

for the migration to generic link editors.

The implications for use in productive projects are: Use of the components is

possible, if the project developers dispense with use of the API and they are willing

to potentially subsequently adjust the parameter assignment of the input

components. The editorial users should be prepared for changes in the user

prompting. Should this be unacceptable, use of the new input components should be

dispensed with in Version 4.2.

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 16 1.31

For detailed information about the new input components please see also FirstSpirit

Online Documentation1.

1.3.3 Content Store

The Content Store is used for entering and managing highly structured databases,

which are to be used or maintained in FirstSpirit. Such databases are, e.g. product

catalogues and address lists. These databases are not only highly structured but are

also subject to frequent changes. Such data is usually kept in databases. The

Content Store data is saved in a relational database system supported by FirstSpirit.

Layout, content and structure should continue to be separated for entering data in

the Content Store. To ensure this, both the structure of the data and the layout for

the corresponding data entry screen are defined in the Schemata area (in the

Template Store). This layout is then used to manage the content in database tables

in the Content Store. These databases can then be inserted into the structure of the

website in the Site Store.

In an initial step, a graphic editor is used to create a database schema (content

schema) in the Template Store. This schema can either be created on the basis of

an existing database structure and then, if necessary, adjusted in the schema editor,

or it can be generated as an empty schema, and then organised with the help of the

schema editor. The tables and relations of a data model must then be depicted in

this schema. The input elements for the table columns are then defined in the table

templates and queries for the databases are formulated.

The responsible editors maintain the databases in the Content Store. To this end,

database tables are created based on the settings in the Template Store and are

filled with content via the configured input elements.

To display the structured content on a website, the database table is inserted as

content on a page of the Page Store. This page is then referenced in the Site Store.

Settings for the display of Content Store data can be made on this page reference.

For example, if a specific section of the database table only is to be displayed, the

queries defined in the Template Store can be opened at this point.

All Content Store menus are described in the "Documentation for Editors

(JavaClient)".

1 ../Template development/Forms/Input components (new)

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 17

For details of the concept of working with "Schemata, table templates, views of a

database" see Chapter 3 page 140.

1.3.4 Workflows

A workflow is a sequence of tasks which are worked through in a fixed, specified

structure. The tasks serve to transfer an object, for example a page from the Page

Store, from its initial state (e.g. "Page changed") into an end state (e.g. "Changed

Page checked and released"). Both due dates and authorised groups of people can

be specified for the tasks to be executed between these two states.

The workflows can be displayed in the Template Store with the help of a graphic

editor. The workflow editor's task is to describe the workflow as abstractly and

completely as possible. The graphically created model can then be used as the basis

of support for the user when performing the work process.

The structure (sequence of the tasks) and properties (e.g. context-free) of a workflow

and the definition of the authorised persons of groups who are allowed to switch or

forward a workflow from one task to the following task are defined within the

Template Store (see Chapter 4 page 152).

One example of a FirstSpirit workflow is the frequently used release process. The

task of the release process is to ensure that a new article or contribution created by

the editor or a change to the content is subjected to a check before the "Live

Transmission". The release process can vary depending on which workflows are

already established or are to be established within the company.

Figure 1-2: Example of a "simple" release

In this example, the chief editor is responsible for checking the contributions of the

editors. Deployment (publication) is not possible until the chief editor has checked

the changes (see Figure 1-2).

1.31

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 18

Figure 1-3: Example: Release with "factual and legal" check

In this example the check for deployment of certain contributions is divided into a

"factual" (i.e. as regards content) and a "legal" (i.e. juridicial) substep (see Figure

1-3). These substeps are usually carried out by different people. In this case, the

workflow also ensures that the legal check is not carried out until after the content

check so that any necessary content corrections also run through this checking step.

Should a correction be necessary under legal aspects, in this case the model

assumes that renewed content checking is not necessary (although this could

definitely be necessary in other types of applications).

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 19 1.31

Important aspects when using workflows are, among other things:

 Assignment of workflows to "logical" sub-areas:

Example: In the Media Store, workflow "B" and "C" only is possible in area

"A", while in the Site Store the workflow "E" must be used.

 Assignment of users/groups and workflows:

Example: Workflow "B" may only be carried out by user group "G".

 Defining rights (permissions) in workflows:

Example: Transition to "Juridical check" status can only be carried out by the

group "lawyers".

 Defining data fields which can (or must) be filled by the user on running

through the workflow:

Example: Insertion of a "legal check note“ in the corresponding form field by

the person checking.

For further information on creating workflows see Chapter 4, page 152 ff.

1.3.5 Integrated preview (from V4.2)

From FirstSpirit Version 4.2 the JavaClient offers a direct WYSIWYG preview by

means of the function “Integrated preview“ (menu “View“ / “Display integrated

preview“).A template developer can use the integrated preview to check changes in

the output channel of the templates (e.g. HTML or XSL-FO) directly in the preview

window, as each time the template is saved, the (configured) preview page is

automatically updated.

In addition, an integrated form preview is available within the Template Store. If the

form area of a template is selected, a live view of the edited form appears in the

preview area with the defined retrieval values of the input components (see Figure

1-4).

The integrated preview can be optionally displayed on the right next to the

workspace or, if smaller monitors are used, in an external window.

All input fields can be directly edited within the integrated form preview. To do this,

the template must not be locked to prevent editing.

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 20

 The editing option is merely a tool for the template developer. In
addition, for example, it is also possible to directly check whether a defined
remote configuration provides the required results for an input component.
However, the content entered is not saved in the form view. Default values
cannot be defined in the form preview.

The default values for the input components can be defined using the "Default

Values" button in the "Properties" tab of a template (see Chapter 2.5.2 page 83 and

Chapter 2.6.2 page 90). The language-dependent default values are displayed in the

preview window immediately after saving the properties.

Figure 1-4: Preview of the form area in the Template Store

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 21

1.3.6 Content Highlighting (from V4.2)

The "Content Highlighting" function was introduced to make it easier for editors to

search for content and to navigate in JavaClient.

Existing FirstSpirit projects do not have to be migrated. Content Highlighting is an

additional function, i.e. existing projects can initially continue to be used as usual

without adjustments (and therefore without Content Highlighting).

Analogous to use of Easy-Edit (see Chapter 8.3 page , the templates of a project

must be adjusted first for use of the “Content Highlighting" function. Special format

templates and a CSS stylesheet are used for this; these are already included in the

FirstSpirit scope of supply. The format templates must be added to the page, section

and/or table templates in which the Content Highlighting function is to be used.

A precise description of the format templates and of the stylesheet is given in the

FirstSpirit Online Documentation2.

 The technologies used for the "Content Highlighting" function intervene
in the HTML source code of a FirstSpirit project far more than the functions
used to date. As the JavaScript share here is smaller than, for example,
when using "Easy-Edit", conflicts should occur far less often. Nevertheless, it
is not possible to guarantee that "Content Highlighting" can be used without
changes to the project HTML. Particularly "pixel-precise" layouts in
conjunction with CHTML can cause problems here, as several additional
pixels are required in the HTML environment due to the framing of the
highlighted content.

2 FirstSpirit Online Documentation – Chapter: ../Advanced topics/Content Highlighting

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 22

2 Template Store of the FirstSpirit JavaClient

2.1 General information

Templates form the basis of each internet presence. The complete layout of the

website is taken into account in them (among other things the Corporate Design and

Corporate Identity). Templates are required to join the content entered in the Page

Store and the media integrated in the Media Store with the structure deposited in the

Site Store to form a complete presentation when the website is generated.

Different types of templates can be defined and edited in the Template Store.

 Page templates (see Chapter 2.5 page 81).

 Section templates (see Chapter 2.6 page 89).

 Format templates (see Chapter 2.7 page 91).

 Style templates (see Chapter 2.8 page 95).

 Table format templates (see Chapter 2.9 page 106).

 Link templates (see Chapter 2.10 page 114).

In addition, other edit options are available for:

 Scripts (see Chapter 2.11 page 120).

 Database Schemata (see Chapter 2.12 page 125).

 Workflows (see Chapter 2.13 page 139).

Move using "Drag & Drop": Folders and templates can be moved within the

Template Store with the help of the mouse using "Drag & Drop" (identified by a small

rectangle on the mouse pointer).

Copy using "Drag & Drop": Further, it is also possible to copy folders and

Templates in the Template Store using the mouse and by pressing the Ctrl key at the

same time (indicated by a small plus symbol on the mouse pointer).

1.31

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 23

 The user must have the necessary permissions to "Drag & Drop"
(move, copy) from nodes into the Template Store. Otherwise objects cannot
be moved or copied by “Drag & Drop”.

 In FirstSpirit Version 4.2 some new “Drag & Drop“ options have been
implemented. They can also be used in the Template Store. For detailed
information please see FirstSpirit Manual for Editors (JavaClient) and
FirstSpirit Release Notes Version 4.2.

2.2 General Template Store context menus

Figure 2-1: General Template Store context menu

The Template Store context menus are described in the following chapters:

Structuring the context menus (general, specific, administrative):

All context menus are structured in the same way:

 the top part contains general functions (see this chapter)

it contains the following menu items:

- New (see Chapter 2.2.1 page 24)

- Edit on/off (see Chapter 2.2.2 page 40)

- Reset Changes (see Chapter 2.2.3 page 41)

- Cut (see Chapter 2.2.4 page 41)

- Copy (see Chapter 2.2.5 page 42)

- Paste (see Chapter 2.2.6 page 42)

- Rename (see Chapter 2.2.7 page 43)

- Delete (see Chapter 2.2.8 page 44)

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 24 1.31

 the middle part contains specific functions for the selected nodes (see Chapter

2.3 page 47).

 the bottom area contains functions which are usually only required by project

administrators. These cannot normally be carried out by the normal user and are

therefore in most cases disabled (see point 3) (see Chapter 2.4 page 71).

Opening a context menu: To open a context menu, an object, for example a folder or

a template, is selected in the tree view in the left-hand half of the screen and is then

right-clicked (i.e. right-hand mouse key is pressed) to open the context menu for this

node. The required menu item can be selected by clicking the left-hand mouse key

(left-click).

Disabled menu items are "grey". In this case the function is not available to the user.

Possible reasons for this are:

 the object is currently being edited by another template developer

 the status of the current object

 the user does not have the necessary permissions to execute a specific

action.

2.2.1 New

New objects can be inserted in the project using the "New" context menu entry or the

"New" icon in the toolbar. The selection available depends on the object type on

which the context menu or function was opened:

 Create template (see Chapter 2.2.1.1 page 25)

 Create folder (see Chapter 2.2.1.2 page 26).

 Create format template (see Chapter 2.2.1.3 page 27).

 Create table format template (see Chapter 2.2.1.4 page 27).

 Create style template (see Chapter 2.2.1.5 page 28).

 Create link configuration (see Chapter 2.2.1.6 page 28).

 Create link template (see Chapter 2.2.1.7 page 30).

 Create new script (see Chapter 2.2.1.8 page 30).

 Create schema (see Chapter 2.2.1.9 page 31).

 Create schema from database (see Chapter 2.2.1.10 page 35).

 Create table templates (see Chapter 2.2.1.11 page 37).

 Create query (see Chapter 2.2.1.12 page 38).

 Create new workflow (see Chapter 2.2.1.13 page 40).

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 25

2.2.1.1 New: Create template

This function can be used on the following elements of the Template Store:

 Root nodes and folders of the page templates, section templates and format

templates

 on link configurations

Figure 2-2: Add new template

The following entries are necessary to create a new page, section, format or link

template:

Display name: The language-dependent display name can be individually defined

for all project languages. If the language-dependent display of the tree view is

enabled in the JavaClient (Menus Extras / Tree View), the display names entered

here are displayed depending on the selected project language. Unlike unique

reference names, the language-dependent names can be changed at any time.

Reference name: A unique name for the new template is given in the "Reference

name" field. The field for entering the reference name is automatically filled when the

template is created. To this end, the display name entered (for the master language),

without spaces and special characters, is copied into the field. The user can change

the reference name on creating the template; after the template has been created

however, it is no longer possible to change the reference name as otherwise all

relations within the project would be lost. The reference name can be used to create

a unique relation to the template within a project. For example, the unique reference

name is used within the input components (in the form area) to establish relations to

templates (cf. FirstSpirit Online Documentation, e.g. to input components

CMS_INPUT_DOM or CMS_INPUT_OBJECTCHOOSER). If a reference name

already assigned within a name space is entered here, FirstSpirit automatically

replaces it with a unique name, mostly by appending a number. (Invalid special

characters are also automatically replaced.)

Example: A page template called template already exists. If a new section template

called template is created, it would then automatically be saved under the reference

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 26

name template_1.

The reference name of a template can be determined in the "Properties" tab (see

Chapter 2.5.2 page 83).

 A reference name of a template should not be changed after a
template has been created, otherwise all relations within the project would be
lost!

 Click the button to insert the new template in the directory tree, from where it

can be further edited.

 Click the button to cancel the action. A new template is not created.

2.2.1.2 New: Create folder

For improved clarity, it is helpful to create all elements of the Template store in

meaningful folder structures. This function enables new folders to be created.

This function can be used on the following elements of the Template Store:

 Root nodes and folders of the page templates, section templates, format

templates, scripts, database schemata (content schemata) and workflows, from

FirstSpirit Version 4.2 also link templates

A new folder is created in a similar way to a template (see Chapter 2.2.1.1 page 25).

Reference name: A name for the new template must be entered in the "Reference

Name" field. Unlike the reference name of templates (cf. Chapter 2.2.1.1), the folder

name given here does not have to be unique.

1.31

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 27

2.2.1.3 New: Create format template

This function can be used on the following elements of the Template Store:

 Root node, folders and other format templates of the format template node

A new format template is created in a similar way to a template (see Chapter 2.2.1.1

page 25).

Reference name: A unique name for the new template must be entered in the

"Reference Name" field (cf Chapter 2.2.1.1). The name of the format template can

be viewed in the "Abbreviation" field of the "Properties" tab (see Chapter 2.7.1 page

92). The internally used abbreviation of the format template (e.g.: "b" for "Bold") must

be unique within the whole project and may not contain any special characters.

Therefore, the entry of invalid special characters is suppressed when a new format

template is created. The abbreviation is needed in the form area of the page or

section template to specify the valid format templates for the input component. The

corresponding XML tag name is formed from the abbreviation, e.g. for the "Bold"

format template (see also FirstSpirit Online Documentation – Area Template

development / Format templates).

If a name is entered which has already been assigned within a name space,

FirstSpirit automatically replaces the name with a unique name, mostly by appending

a number.

 A unique name or the abbreviation of a format template cannot be
changed after the template has been created, otherwise all relations within
the project would be lost!

A detailed description of reference and display names is given in Chapter 2.2.1.1

page 25.

2.2.1.4 New: Create table format template (from V4.1)

 This function is released for FirstSpirit Version 4.1 and higher only.
Screenshots are therefore displayed in the new "LightGray" Look & Feel. The
display in the "Classic" Look & Feel can differ slightly.

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 28

This function can be used on the following elements of the Template Store:

 Root node and folders of the formal templates node

A new table format template is created in a similar way to a template (see Chapter

2.2.1.1 page 25).

Reference name: A unique name for the new template must be entered in the

"Reference Name" field (cf Chapter 2.2.1.1).

A detailed description of reference and display names is given in Chapter 2.2.1.1

page 25.

2.2.1.5 New: Create style template (from V4.1)

 This function is released for FirstSpirit Version 4.1 and higher only.
Screenshots are therefore displayed in the new "LightGray" Look & Feel. The
display in the "Classic" Look & Feel can differ slightly.

This function can be used on the following elements of the Template Store:

 Root node and folders of the formal templates node

A new style template is created in a similar way to a template (see Chapter 2.2.1.1

page 25).

Reference name: A unique name for the new template must be entered in the

"Reference name" field (cf Chapter 2.2.1.1).

A detailed description of reference and display names is given in Chapter 2.2.1.1

page 25.

2.2.1.6 New: Create link configuration

This function can be used on the following elements of the Template Store:

 Root node of the link templates

Any number of instances of standard link types (internal link, external link, link to a

Content Store element) can be created below the root node of the link templates.

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 29

These instances are called link configurations. Link configurations affect all link

templates located below them (cf. Chapter 2.2.1.7). The following information is

required to create a link configuration:

Figure 2-3: Create link configuration

Display name: The language-dependent display name can be individually defined

for all project languages (cf. Chapter 2.2.1.1).

Reference name: A unique name for the new link configuration must be entered in

the "Reference name" field (cf Chapter 2.2.1.1).

A detailed description of reference and display names is given in Chapter 2.2.1.1

page 25.

Link type: In FirstSpirit, a differentiation is made between three standard types of

link (see Chapter 2.10.1 page 115).

An instance (or link configuration) of the respective standard link type can be created

by selecting a standard link type from the list. The possibility of defining several

instances (link configurations) of a link type enables different link configurations to be

defined for different input components in the form area of a page or section template.

In this way, internal links entered, for example, by the editor within the DOM editor

input component, can be configured and displayed differently to links entered, for

example, within the link list input component.

 From FirstSpirit Version 4.2 also “Generic link editors“ can be created
(see Chapter 2.10.6 page 118). For this purpose, the link type “genericLink“
must be selected.

 Click the button to insert the new link configuration in the tree view, from

1.31

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 30

where it can be further edited.

 Click the button to cancel the action. A new link configuration is not

created.

2.2.1.7 New: Create link template

This function can be used on the following elements of the Template Store:

 On link configurations in the link templates node

A new link template is created in a similar way to a template (see Chapter 2.2.1.1

page 25).

The link template is only used to define the output of the editorial content. The

configuration of the link template, i.e., for example the input fields made availalbe to

an editor for creating a new link, is defined in the respective higher level link

configuration (instance of a link type) (see Chapter 2.10 page 114).

A detailed description of reference and display names is given in Chapter 2.2.1.1

page 25.

 From FirstSpirit Version 4.2 also “Generic link editors“ can be created
by means of this context menu entry (see Chapter 2.10.6 page 118).

2.2.1.8 New: Create new script

This function can be used on the following elements of the Template Store:

 Root node, folders and other scripts in the "Scripts" node

A new script is created in a similar way to a template (see Chapter 2.2.1.1 page 25).

A detailed description of reference and display names is given in Chapter 2.2.1.1

page 25.

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 31

2.2.1.9 New: Create new schema

A database schema (content schema) is used to define which data is saved in a

database and in what form and how this data is related to each other. The graphic

editor in the FirstSpirit JavaClient can be used to model database tables with the

corresponding columns and the relations between the individual tables (see Chapter

2.12.1 page 126).

The creation of a new schema in the JavaClient – apart from adding a schema node

below the "Database schemes" root node – creates a new database or a new

database schema, configured for the project concerned, in the database. For

example, if the project administrator has configured the "Standard database" for the

project, the "New – Create new schema" context menu is used to create a new

database within the standard database (Derby). (The performance depends on the

configuration of the database layer – see "FirstSpirit Manual for Administrators"

regarding the "No Schema Sync" setting). The editor obtains access to the database

via the corresponding tables in the Content Store of FirstSpirit and can enter content

in the relevant tables, which are written in the database (provided the project

administrator has not defined the database as being "write protected") (see Chapter

3.5 page 149).

If a new schema for a data source (content) is created in FirstSpirit, it should be

decided in advance in which database this should be stored in productive use and

which permissions the DBMS account used by FirstSpirit should have in productive

use. Subsequent conversion of the layer type is not easily possible (cf. "FirstSpirit

Manual for Administrators"). In case of doubt, a separate MultiProjectLayer should

be created in the project for each FirstSpirit schema (see Chapter 3.2.2 page 145).

 In general, we recommend the development always be carried out in
an environment corresponding to productive use. In particular, the Derby
DBMS contained in FirstSpirit is not suitable for productive use and should
therefore be used for tests only.

 Especially when using an Oracle database, saving database schemes
and changes to a schema can take some time in version 4.2R4 and higher.

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 32

Figure 2-4: Creating a new schema

A new, empty database (see Figure 2-4 "Database_1") and a schema (see Figure

2-4 "Schema") is created using the "New – Create new schema" context menu. To

this end, the name of the database layer must be given within the JavaClient (see

Figure 2-5 "Database layer") or (if there is no layer) a new (standard) layer must be

created (see Figure 2-6). The new schema created can be given any name (in

conformity with database) – but it must be unique within the whole project.

This function can be used on the following elements of the Template Store:

 Root node and folders in the "Database schemes" node

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 33

The following input is required to create a new schema:

Figure 2-5: Create new schema

Unique name: A name for the new schema must be entered in the "Unique name"

field. This reference name can be used to create a unique relation to the schema

within a project. If a reference name already assigned within a name space is

entered here, FirstSpirit automatically replaces it with a unique name, mostly by

appending a number. (Invalid special characters are also replaced by FirstSpirit.)

 The reference name of a schema cannot be changed after it has been
created, otherwise all relations within the project would be lost!

The "unique name" defined for a schema within a FirstSpirit project is not the
same as the physical name of the schema in the database. The physical
name is automatically issued depending on the database – for example, in
accordance with the following pattern for the standard database (Derby):
derby_projectID_schemaID

Database layer: An existing database layer of a database in which the individual

database tables for this schema are to be saved must be selected in the "Database

layer" field. So-called "Single project layers" and (optional) "Multiproject layers" are

available to choose from:

 Multiproject layer: A multiproject layer must be selected if the intention is to work

directly on an existing database schema (cf. Figure 2-8). This layer can be used

in several FirstSpirit projects, which all write in the same database or read

content from it. Only one of the projects involved should have permission to write

to the database to ensure overlapping does not occur during use of a multiproject

layer (see Chapter 3.2 page 143).

 Single project layer: If a single project layer is selected, a separate schema or

database is created for the respective project (during the first Sync) when the

schema is created. In this case, overlapping on writing the content is not possible

(see Chapter 3.3 page 147).

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 34

 In FirstSpirit Version 4.2 the naming of the layer types has been
changed. The functionality is retained – existing projects need not to be
changed. For further information see Chapter 3.4 page 148.

 Please contact the project or system administrator if you have any
questions about the database.

If no database layer is available yet for the project, a new layer can be created

directly using the "Create new schema" dialog. Then, instead of a database layer (cf.

Figure 2-5), the "New layer (Derby)" entry is displayed in the "Database layer" drop-

down list. When the dialog is confirmed, the new layer (see Figure 2-4) is created in

addition to the schema or database.

Figure 2-6: Create schema – if no layer is available

 Click the button to insert the new, empty schema in the tree view and create

a schema or database in the configured DBMS. The schema can be further edited

with the help of the graphic editor.

 Click the button to cancel the action. A new schema is not created.

A new schema can also be created by importing an export file from another

FirstSpirit project (see Chapter 2.3.5.1 page 64).

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 35

2.2.1.10 New: Create schema from db

This function can be used to copy an already existing schema from an (external)

database into the new schema node.

Instead of creating an empty schema node (cf. Chapter 2.2.1.9), a new schema node

is therefore created in the FirstSpirit project on the basis of a database's existing

tables and relations. The new schema is created from a database using the "Create

schema from database" context menu entry (cf. Chapter 2.2.1.9).

 The structure and content of an external database may not be
changed. Unlike internal databases, read access only is possible for external
databases, not write access. To this end, the project administrator must
enable the "No schema sync" and "Read only" restrictions. In this case the
content can be read out of an external schema and created in the FirstSpirit
JavaClient as a new schema node. Table templates can then be used to
display (but not to change) the content in the Content Store.

For further information, see "FirstSpirit Manual for Administrators".

The creation of a new schema from an existing database in the JavaClient inserts a

new schema node below the "Database schemes" root node. At the same time, the

system tries to automatically copy available tables and content from an existing

database or from an existing database schema into the graphic schema editor (for

details of "Restrictions", see "FirstSpirit Manual for Administrators"). For example, if

the project administrator has configured an external Oracle database for the project,

a schema based on the external database is created via the "New – Create schema

from db" context menu. The corresponding tables are also copied. Depending on the

database configuration, the editor is given read access to the database via the

Content Store and can read out and generate content from the relevant tables (for

details of concept, see Chapter 3.6 page 151):

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 36

Figure 2-7: Create a schema from an external database

This function can be used on the following elements of the Template Store:

 Root node and folders in the "Database schemes" node

The following input is required to create a new schema:

Figure 2-8: Create schema from database

Name of the database schema: The name for the database schema must be

entered in this field. Unlike the creation of a new, empty schema (cf. Chapter

2.2.1.9), the name cannot be freely selected; instead it must be exactly the same as

the physical name of the database schema (or the database).

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 37

 If a name is chosen which does not exist in the database concerned,
an empty schema node is created. In this case it is not possible to copy any
content (e.g. tables) from the selected database.

Database layer: An existing database layer must be selected in this field (see

Chapter 2.2.1.9 page 31).

 In FirstSpirit Version 4.2 the naming of the layer types has been
changed. The functionality is retained – existing projects need not to be
changed. For further information see Chapter 3.4 page 148.

 Selection of an external database is only available if the project
administrator has configured access to an external database for the project in
the project properties.
Please contact the project or system administrator if you have any questions
about the database.

 Click the button to insert the new schema and the corresponding tables in the

tree view and further edit it with the help of the graphic editor.

 Click the button to cancel the action. A schema is not created.

A schema can also be created by importing an export file from another FirstSpirit

project (see Chapter 2.3.5.1 page 64).

2.2.1.11 New: Create new table template

A table template must be created below the schema for each table entered in the

database model. These table templates are used to define the input components via

which the editor can subsequently enter data in the corresponding tables and where

in the database this data is to be saved (see Chapter 3.6 page 151)).

This function can be used on the following elements of the Template Store:

 Schema node and other table templates in the "Database schemes" node

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 38

The following input is required to create a new table template:

Figure 2-9: Create new table template

Table: The combobox can be used to select the table of the database schema (see

Chapter 2.12.1 page 126) for which the table template is to be created.

 If the schema does not contain any tables the combobox is empty. It is
then not possible to create a table template.

Display name: The language-dependent display name can be individually defined

for all project languages (cf. Chapter 2.2.1.1).

Reference name: A unique name for the new table template must be entered in the

"Reference name" field. This reference name can be used to establish a unique

relation to the table template within a project, for example, a new table can be

created within the Content Store on the basis of this table template.

A detailed description of reference and display names is given in Chapter 2.2.1.1

page 25.

 Click the button to insert the new table template in the tree view and display it

in the graphic editor, where it can be further edited.

 Click the button to cancel the action. A new table template is not created.

2.2.1.12 New: Create new query

Several queries can be created for each content schema to limit the number of data

records for subsequent output. The conditions a data record must fulfil in order to be

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 39

included in the results list are specified in these queries.

This function can be used on the following elements of the Template Store:

 Schema node and other queries in the "Database schemes" node

The following input is required to create a new query:

Figure 2-10: Create new query

For a description of the input fields, see Chapter 2.2.1.1 page 25.

 Click the button to insert the new query in the tree view, where it can be

further edited.

 Click the button to cancel the action. A new query is not created.

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 40

2.2.1.13 New: Create new workflow

This function can be used on the following elements of the Template Store:

 Root node, folders and other workflows in the "Workflows" node

The following input is required to create a new workflow:

Figure 2-11: Create new workflow

For a description of the input fields, see Chapter 2.2.1.1 page 25.

 Click the button to insert the new workflow in the tree view; it can then be

further edited within the graphic editor.

 Click the button to cancel the action. A new workflow is not created.

2.2.2 Lock/Unlock (Edit Mode On/Off)

To make changes to an object, it is first necessary to switch on edit mode (i.e. lock

the object). This prevents simultaneous editing by another user and prevents

conflicts which could occur if an element is simultaneously changed.

New objects can be blocked to prevent editing by using the "Edit on/off" context

menu entry or the "Edit on/off" icon in the toolbar.

 After the required changes have been made, edit mode must be
switched back off again (i.e. the object unlocked) to release the relevant
object for editing by other users. When edit mode is quit all the changes
made are automatically saved.

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 41

This function can be used on the following elements of the Template Store:

 Page and section templates

 Format, table format and style templates

 Link configurations and link templates

 Scripts

 Database Schemata

 Table templates

 Queries

 Workflows

2.2.3 Reset Changes

This function can be used to undo changes made during the current editing and

which have not yet been saved. A confirmation prompt appears before the reset so

that content cannot be inadvertently deleted.

The function is only active if edit mode is enabled on an object (cf. Chapter 2.2.2).

This function can be used on the following elements of the Template Store:

 Page and section templates

 Format (exception: system format templates), table format and style templates

 Link configurations and link templates

 Scripts

 Database Schemata

 Table templates

 Queries

 Workflows

2.2.4 Cut

This function can be used to cut out an object in the current tree position and place it

in the temporary memory (clipboard).

 The "Cut" function is not carried out until the cut object is inserted
again (paste). If a cut object is not inserted again (pasted), it is retained in the
original tree position, i.e. it is not deleted.

The Paste function (see Chapter 2.2.6) can then be used to insert these objects in

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 42 1.31

another place.

This function can be used on the following elements of the Template Store:

 All folders of the Template Store

 Page and section templates

 Format (exception: System format templates and folders, which contain system

format templates), table format and style templates

 Scripts

 Database Schemata

 Table templates

 Queries

 Workflows

2.2.5 Copy

This function is used to create a copy of the current object and store it in the

temporary memory (clipboard). The Paste function (see Chapter 2.2.6) can then be

used to insert these objects in another place.

This function can be used on the following elements of the Template Store:

 All folders of the Template Store

 Page and section templates

 Format, table format and style templates

 Scripts

 Database Schemata

 Table templates

 Queries

 Workflows

2.2.6 Paste

This function is used to paste (insert) the content of the temporary memory

(clipboard) in the current position of the tree structure. This function is only active if

there is data in the temporary memory (on the clipboard) which may be inserted in

the current position.

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 43

 Objects may only be pasted in the areas provided. For example, it is
not possible to insert a section template under the page templates node. In
this case, the "Paste" entry is disabled.

This function can be used on the following elements of the Template Store:

 All root nodes of the Template Store

 All folders of the Template Store

 Database schemata (for table templates only)

2.2.7 Rename

This function can be used to change the language-dependent display name of the

current object in the tree structure of the FirstSpirit JavaClient. After the function has

been called a window opens with the display name to date; this can now be

changed.

Figure 2-12: Rename

 Unique reference names may not be changed, as otherwise the
relations to this object in the project would be lost (e.g. reference names of
section or page templates). In this case the "Reference name" field is
disabled and cannot be edited. Folders do not have unique reference names.
This name can therefore be renamed at any time).

This function can be used on the following elements of the Template Store:

 All folders of the Template Store

 Page and section templates

 Format, table format and style templates

 Link templates and link configurations

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 44

 Scripts

 Database Schemata

 Table templates

 Queries

 Workflows

2.2.8 Delete

This function can be used to delete the currently marked (selected) object or the

currently selected sub-tree. Inadvertent deletion is prevented by a confirmation

prompt.

The "Delete Objects" function is available on the following elements:

 Page templates (for details of deleting section restrictions, see Chapter 2.2.8.1)

 Section templates (see Chapter 2.2.8.2)

 Format (system format templates cannot be deleted), table format and style

templates

 Link configurations and link templates

 Scripts

 Workflows

 Database schemata, queries and table templates

The "Delete sub-trees" function is available on the following elements:

 All folders of the Template Store

For further information on deleting objects and sub-trees, see FirstSpirit Manual for

Editors, Chapter 3.2.8 "Delete".

2.2.8.1 Special case: Deletion of section restrictions

 If all section restrictions below a page template are deleted, there are
no longer any restrictions for the creation of sections within a page. Under
certain circumstances the layout of the page can be damaged at the same
time, for example, because sections are created which are not suitable for
the page's layout.

Restrictions for the use of section templates can be defined within a page template.

These restrictions cannot be deleted using the context menu. They are deleted by

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 45

selecting the restriction below the page template and then clicking .

2.2.8.2 Deleting section templates (use as section restriction)

Section templates which are still being used as a section restriction within a page

template can also be deleted. In this case, the existing uses of the template are

displayed to the user before it is deleted:

Figure 2-13: Delete object

 Click the button to open the "The object is being referenced" dialog in

which the objects are displayed which are still using the object to be deleted (see

Figure 2-14). If the section template is still being used as a section restriction within a

page template, the corresponding page template is displayed here.

Figure 2-14: The object is being referenced

 Click the button to delete the section template despite the existing uses

within the project. Below the page template, the section restriction is marked with

 as labelling within the tree view.

Unlike page templates which do not have any section restriction (all section

1.31

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 46

templates can be used here), a page template with a "DELETED" restriction

continues to be usable to a limited extent only. This means:

 After deleting the section template (the only template restriction), NO other

section templates can be selected for the corresponding page in the Page

Store.

 Only when the "DELETED" restriction below the page template is removed

also (see Chapter 2.2.8.1), is there no longer any restriction. Then ALL

section templates can be selected for the corresponding page in the Page

Store.

 This function is available for project and server administrators only.

 From FirstSpirit Version 4.2 section restrictions are defined using the
“Properties“ tab of a page template (see Chapter 2.5.2 page 83).

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 47

2.3 Special context menus of the Template Store

Figure 2-15: Special context menus – Page templates (root)

Special functions for the respective object are available in the middle part of the

context menu. The functions are therefore highly dependent on the type of object

selected.

Following menu items are available – depending on the selected object:

 Refresh this store (only root node Template Store, see Chapter 2.3.1 page 47)

 Create update (only root node Template Store, see Chapter 2.3.2 page 48)

 Install update (only root node Template Store, see Chapter 2.3.3 page 53)

 Export (see Chapter 2.3.4 page 59)

 Import (see Chapter 2.3.5 page 62)

 Restore deleted objects (see Chapter 2.3.6 page 67)

 Edit extern (see Chapter 2.3.7 apge 69)

2.3.1 Refresh this store

This function can be used on the following elements of the Template Store:

 Root node of the Template Store

This menu entry can be used to update (refresh) the view of the Template Store.

This is necessary if several people simultaneously work on and make changes to a

project.

 This function may not be used if an object is currently being edited and
the changes have not yet been saved! Otherwise the changes not yet saved
would be overwritten by the version of the object on the server and would
therefore be lost.

1.31

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 48

2.3.2 Create update

The update functions "Create update" and "Install update" can be used to swap

FirstSpirit templates between a source and a target project. Here a project takes on

the role of the development project. This project is the so-called source project in

which all templates are created, edited and tested. After testing the "Create update"

context menu function is used to create an update file with the required templates.

This can then be installed in the target projects (see Chapter 2.3.3).

The update function is basically comparable to the licence-dependent "PackagePool"

function, but provides a far smaller scope of functions (see FirstSpirit Module

Documentation "PackagePool").

This function can be used on the following elements of the Template Store:

 Root node of the Template Store

 This function is available for project administrators only.

The "Create update" function is used to create a new update version in the source

project. A window opens in which a selection list can be created for the template

update:

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 49

Figure 2-16: Select objects for the template update

 Create selection list (see Chapter 2.3.2.1 page 50).

 Select selection list (see Chapter 2.3.2.2 page 51).

 Delete selection list (see Chapter 2.3.2.3 page 52).

 Select objects (see Chapter 2.3.2.4 page 52).

 Last used objects (see Chapter 2.3.2.5 page 53).

 Click the button to confirm the template selection. A window opens with the

option of filing the packed templates as a Zip file in the local file system. The Zip file

contains all the templates in the selection list.

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 50

Figure 2-17: Create update – Save Zip file

 Click the button to cancel the action. An update file is not created.

2.3.2.1 Create selection list

A new selection list for the template update can be created in the top part of the

"Select objects" dialog box (see Figure 2-16).

 If the icon is clicked the "Create new selection list" dialog opens:

Figure 2-18: Create new selection list for the template update

A description can be added here, under which the selection list is displayed in future

in the "Select objects" dialog (see Figure 2-16).

 Click the button to display the description entered in the selection list in the

"Select objects" dialog (see Figure 2-16). Objects for the update can now be added

to the new selection list (see Chapter 2.3.2.4 page 52).

 Click the button to cancel the action. A new selection list is not created.

1.31

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 51

2.3.2.2 Select selection list

Figure 2-19: Select selection list

If one or several selection lists are already available for updating the templates, they

can be selected using the drop-down list in the top part of the window. The

description entered on creating a new selection list (see Chapter 2.3.2.1 page 50)

should therefore describe, as precisely as possible, which templates are involved or

the intended purpose of the update. The description is also displayed when the

update is installed in the target project (see Figure 2-23).

If an existing selection list was selected, all objects of the selection list are displayed

marked (selected) in the "Select objects" window.

Figure 2-20: Selected objects of a selection list

The selected selection list can be edited. Existing objects can be deleted and new

ones can be added.

If the changes in the selection list are to be retained, they must be saved by clicking

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 52

the button.

2.3.2.3 Delete selection list

 If a selection list is no longer required it can be deleted again by clicking the

button. The description of the selection list is no longer displayed in the "Select

objects" dialog (see Figure 2-16).

A confirmation prompt appears before the list is deleted to ensure content is not

inadvertently deleted.

2.3.2.4 Select objects for the update

The required objects within the tree view can be selected in the "Select objects" area

(see Figure 2-20). (For a multiple selection, the "CTRL" key must be pressed at the

same time.)

The following rules apply:

 If an object is selected in the tree view, the whole parent chain of the object is

also selected. The higher level elements of the parent chain are therefore a part

of the update file.

 If a higher level element is selected, for example a Template Store folder, all

lower level elements are also part of the update file

If the selection in the selection list is to be retained, the list must be saved by clicking

the button.

 It is also possible to select an object for the update without creating a
new selection list (cf. Chapter 2.3.2.1) or selecting an existing selection list
(cf. Chapter 2.3.2.2). In this case, the "empty selection" must be selected in
the "Selection list" drop-down list, the required objects are then selected and

the update is finished by clicking the button.

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 53

2.3.2.5 Last used objects

The "Last used objects" area can be maximised or minimised by clicking the

icon in the bottom part of the window. The most recently used objects are displayed

in this area.

Figure 2-21: Last used objects

2.3.3 Install update

The update functions "Create update" (see Chapter 2.3.2) and "Install updates" can

be used to swap templates between a source and a target project. In this case, the

update files are created in one project (source project), and can then be installed in

one or several other FirstSpirit projects (target projects). The update files can be

copied from the source project using the "Install update" context menu function.

 This function is available for project administrators only.

The "Install update" function is used to load the new update file into the target

project. A window opens in which the computer's file system is displayed. The

required update version can then be selected from the file system.

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 54

Figure 2-22: Install update – Select update file

A window then opens in which detailed information on the selected update version is

displayed:

Figure 2-23: Install update

Description: The name of the selection list in which the update was created in the

target project is displayed here (cf. Chapter 2.3.2). The field remains empty if a

selection list was not saved for the selected objects.

Source project: Here, the project is displayed, in which the update file was created

(cf. Chapter 2.3.2).

Creation date: Date and time at which the update file was created in the source

project.

Force overwriting of existing templates: If this option is selected (i.e. checkbox is

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 55

ticked), an update is performed for all the displayed templates of the target project.

The update is also carried out for templates with a conflict status in the target project

(cf. Chapter 2.3.3.1). On installing the templates, the templates in the target project

with the same name are overwritten and local changes are lost. If the checkbox is

deselected, only updates for which there is no conflict status in the target project are

carried out.

All elements of the selected update file are displayed within the table:

Type: Type of element, for example the template type.

Reference name: Reference name of the element in the source project.

Target template: Shows the name of the template in the target project which is to be

replaced by the content of this template update. The icons can be used to change

the given assignment (mapping) (see Chapter 2.3.3.2).

Status: Status of the template in the target project (for further information, see

Chapter 2.3.3.1).

Path: Relative path of the template in the source project.

Update: If the checkbox is selected, the corresponding template is updated in the

target project when the dialog is confirmed.

 Click this button to load a previously saved template assignment

(mapping) from the source project into the templates in the target project. To this

end, a dialog box for selecting a mapping file (".map") from the user's local file

system opens.

 The loaded mapping must match the current, selected update. If the
mapped (assigned) templates do not exist in the update file, they cannot be
mapped.

 Click this button to save the assignment of the templates (mapping)

from the source project with the templates in the target project. A dialog opens for

selecting a storage location within the user's local file system. The mapping of the

source template to a target template can be saved as a file with a ".map" extension.

 Click this button to confirm the settings from the "Create updates" dialog and

perform the update of the templates in the target project selected using the "Perform

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 56

update" checkbox.

 Click this button to cancel the update of the templates; the settings and

assignments made in the dialog are lost – unless they were previously saved – and

an update is not performed in the target project.

2.3.3.1 Status of the template on updating

When template updates are installed, different statuses are displayed:

New: This status is displayed when a template update is installed for the first time in

the target project. In this case a template with this name does not yet exist in the

target project. There is therefore no entry in the "Target template" column. The

"Update" checkbox is selected for all templates with this status (see Figure 2-24).

Figure 2-24: New status – for the first installation in the target project

Unchanged: "Unchanged" status is displayed when an attempt is made to perform

an update already installed in the target project. This means, this version of the

template already exists in the target project. As an update is not necessary, the

"Update" checkbox is automatically deselected (see Figure 2-25).

Figure 2-25: Unchanged status –template version is already installed

Changed locally: "Changed locally" status is displayed if a template has been

changed in the target project. In this case the local change in the target project would

be overwritten by the update from the source project. The "Update" checkbox is

automatically deselected so that the content in the target project is not inadvertently

deleted. If the update is required, the checkbox must be selected manually (see

Figure 2-26). (The status is displayed even if no status information about the

installed updates is available.)

Update required: "Update required" status is always displayed if a new version of

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 57

the template is created in the source project and the content of the template in the

target project has not been changed locally. This status should the the standard case

for template updates. As an update is necessary and there is no conflict in the target

project, the "Update" checkbox is automatically selected (see Figure 2-26).

Figure 2-26: Changed locally and Update required status

Figure 2-27: Conflict status – on attempting to install an older version

Version conflict: This status arises if an attempt is made to install a template in the

target project which is older than a previously installed version. As an update is

probably not wanted, the "Update" checkbox is automatically deselected. If resetting

to an older version is required, the checkbox must be selected manually (see Figure

2-27).

2.3.3.2 Change mapping to template in the target project

 Click this button to open the "Choose target templates" dialog with a tree view of

the Template Store in the current project (target project). Exactly one target

template in the view can be selected for the template update. The new mapping is

then copied into the "Install updates" table (cf. Figure 2-23).

1.31

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 58

Figure 2-28: Choose target template

Figure 2-29: Mapping if names in source and target project differ

If a target template has been selected whose name is not the same as the name of

the template from the source project the name in the table has a yellow background.

 Changes to the template mapping can be undone by clicking this icon.

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 59

2.3.4 Export

The "Export" context menu entry can be used to group together objects from a

project in a compressed Zip file and save them in the local file system. The export

files can then be used to import the exported content of a project (source project)

into other FirstSpirit projects (target project) (see Chapter 2.3.5 page 62). The

selection available depends on the object type on which the context menu or function

was opened:

 The "Export" context menu available in the FirstSpirit JavaClient is a
client-side function and therefore sets substantial requirements for the main
memory of the client system when large quantities of data are involved. This
function should therefore only be used to export small quantities of data.

This function can be used on the following elements of the Template Store:

 All folders of the Template Store (see Chapter 2.3.4.1 page 59).

 Page and section templates (see Chapter 2.3.4.2 page 59).

 Format templates (not system format templates)(see Chapter 2.3.4.2 page 59)

 Style and table format templates (see Chapter 2.3.4.3 page 60).

 Link templates and link configurations (see Chapter 2.3.4.4 page 60).

 Scripts (see Chapter 2.3.4.5 page 61).

 Database Schemata (see Chapter 2.3.4.6 page 61).

 Table templates (see Chapter 2.3.4.7 page 61).

 Queries (see Chapter 2.3.4.7 page 61).

 Workflows (see Chapter 2.3.4.8 page 62).

When the context menu is opened, an export window opens first for selection of the

required storage location for the export file in the local file system of the workstation.

2.3.4.1 Export folders

Folders can be exported and imported into other FirstSpirit projects for use there.

The directory structure from the target project is retained on exporting.

2.3.4.2 Export templates

Templates can be exported and imported into other FirstSpirit projects for use there.

Use of the update function for templates is recommended if templates are to be

1.31

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 60

frequently exported from a source project and imported into a target project, because

extended information for the mapping and on the update status in the target project

is available (see Chapter 2.3.2 page 48).

2.3.4.3 Export style and table format templates (from V4.1)

 This function is released for FirstSpirit Version 4.1 and higher only.

Link configurations and link templates are exported in a similar way to templates

(see Chapter 2.3.4.2 page 59).

Style and table format templates are closely linked (see also Chapter 2.8 and 2.9

from page 95) and should therefore be exported together wherever possible. This is

best done by grouping them together in one folder, which can be exported as

described in Chapter 2.3.4.1. But style templates can also be easily exported

individually and re-imported at a later date; the style template used as the standard

and the style templates used in the display rules must always be exported together

with table format templates.

2.3.4.4 Export link configurations and link templates

Link configurations and link templates are exported in a similar way to templates

(see Chapter 2.3.4.2 page 59).

Wherever possible, link configurations should always be exported together with the

corresponding link templates. If this is not possible, for example, because new link

templates have been created in the source project, they can also be exported

individually. In this case the template must be imported into the target project on the

node of the matching link configuration. Otherwise an error message is displayed on

importing ("Export data not compatible").

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 61

2.3.4.5 Export scripts

Scripts are exported in a similar way to templates (see Chapter 2.3.4.2 page 59).

2.3.4.6 Export schema

Schemata can be exported and imported into other FirstSpirit projects for use there

(see Chapter 2.3.5.1 page 64).

The following dialog is displayed after the export window in which the required

storage location for the export file can be selected from the local directories of the

workstation has been displayed:

Figure 2-30: Export data on exporting a schema

 Click this button to add the data of the schema of the Content Store of the

current project to the export file. This data is then available to the users of the

second project when the export file is imported into another FirstSpirit project.

 Click this button to add the schema only, but not the data of the schema, from

the Content Store of the current project to the export file. When the export file is

imported into another FirstSpirit project the schema is available to the users of the

second project, but not the data from the Content Store of the first project.

The schema's corresponding table templates are automatically added to the export

file.

2.3.4.7 Export table templates and queries

If a schema is exported, the corresponding table templates (and queries) are

automatically added to the export file. Wherever possible, table templates (and

queries) should always be exported together with the corresponding schema. If this

is not possible, they can also be exported individually.

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 62 1.31

In this case the template (and/or query) must be imported on the matching schema

node in the target project. Otherwise errors can occur in the project, because the

mapping of the table template no longer matches the tables of the schema ("The

referenced table "xy" does not exist").

2.3.4.8 Export workflows

This function can be called using the context menus at folder level and on the

workflow level.

This function can be used to export both individual workflows and folders with all the

subfolders and workflows it contains into the computer's file system. In this way,

workflows can be used at a later date, e.g. in other projects.

To do this, an export window opens in which you can select the required storage

location for the export file in the local directories of the workstation.

If scripts are used within a workflow, they can also be added to the export file. To do

this, the required workflow is selected first in the tree view and then the script with

Ctrl + click the required script. If the "Export" function is now selected in the context

menu, both objects are contained in the Zip file. However, scripts can also be

exported separately at a later date (see Chapter 2.3.4.5 page 61).

2.3.5 Import

The "Import" context menu entry can be used to insert previously exported objects

from a source project into another FirstSpirit project (target project). To do this, the

required Zip file must first be selected from the local file system of the workstation

and imported in a suitable position in the target project.

If the imported content does not match the context of the target project they are – as

far as possible – automatically imported in the correct context of the target project. In

this case the import is performed independently of the object on which the "Import"

context menu was selected. For example, if an attempt is made to import the export

file of a script into the "Workflows" area, the selected script is nevertheless imported

into the target project, however, not into the "Workflows" area but into the correct

"Scripts" area of the target project.

This automatic correction does not happen in all cases. If the system cannot map the

object in the target project to which the import file matches, an error message is

displayed instead.

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 63 1.31

The selection available depends on the object type on which the context menu or

function was opened:

This function can be used on the following elements of the Template Store:

 All folders of the Template Store

 Style and table format templates (see Chapter 2.3.5.1 page 64).

 Link configurations

 Database Schemata (see Chapter 2.3.5.2 page 65).

 Workflows (see Chapter 2.3.5.3 page 67)

This function can be used to import exported page/section templates into the file

system as well as exported folders with all the templates and sub-folders contained

in the selected folder.

To do this, an import window opens in which you can search for the required export

file in the local directories of the workstation.

Mapping of template sets in the target project: When importing a template from a

source project into a target project, FirstSpirit tries to import the content of the

template sets too:

 First it is tried to map the template sets on the basis of the name (name of the

template set in the source project to name of the template set in the target

project). I.e., if the names of the template sets in the source and target project

are identical, the content will be imported into the target project.

 If a mapping by name does not succeed, because the names of the template

sets of the target project differ from those in the source project, it is tried to map

the template sets an the basis of the presentation channel in the next step (name

in the source project to presentation channel in the target project). For example,

a template set with the name „html“ from the source project will be mapped to the

first located presentation channel „HTML“ in the target project (independent from

the name of the channel in the target project).

 If neither mapping by name nor mapping by presentation channel is successful,

the content of the template sets can not be imported from the source project into

the target project and must be entered or copied manually.

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 64

2.3.5.1 Import style and table format templates (from V 4.1)

 This function is released for FirstSpirit Version 4.1 and higher only.
Screenshots are therefore displayed in the new "LightGray" Look & Feel. The
display in the "Classic" Look & Feel can differ slightly.

Style and table format templates can be imported from other FirstSpirit projects. To

do this, an export file of the required templates must be exported first from another

FirstSpirit project (see Chapter 2.3.4.3 page 60).

Style templates can also easily be imported individually. Table format templates

should be imported together with the style templates used (see Chapter 2.8 from

page 95). If these style templates are not exported at the same time, table format

templates can nevertheless be imported, but any references to the style templates

are lost.

To import style and table format templates, the context menu is opened on the

"Format templates" root node or on a folder below this root node and the "Import"

function is selected. After selecting the required export file, the Import dialog

appears:

Figure 2-31: Import table format template

Import elements individually: This function is not available in the Template Store.

Type: Type of the element contained in the export file.

Reference name: Name of the element contained in the export file.

Import: If this checkbox is selected the element concerned is imported into the

target project, if the checkbox is deselected the element is not imported.

 Click this button to selection made within the "Import" column is

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 65

inverted.

 Click this button to confirm the selection in the dialog and the "Select

database layer" dialog opens (see Figure 2-33).

 Click the button to cancel the import.

2.3.5.2 Import schema

Schemata can be imported from other FirstSpirit projects. To do this, an export file of

the required schema must be exported first from another FirstSpirit project (see

Chapter 2.3.4.6 page 61).

The export file of the first FirstSpirit project can now be imported into the second

project. To do this, the context menu is opened on the "Database Schemata" root

node or a folder below this root node and the "Import" function is selected. After

selecting the required export file, the Import dialog appears:

Figure 2-32: Import schema with table templates

Import elements individually: This function is not available in the Template Store.

Type: Type of the element contained in the export file.

Reference name: Name of the element contained in the export file.

Import: If this checkbox is selected, the element concerned (and all subordinate

elements, e.g. table templates) is imported into the target project, if the checkbox is

deselected the element is not imported.

 Click this button to selection made within the "Import" column is

inverted.

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 66

 Click this button to confirm the selection in the dialog and the "Select

database layer" dialog opens (see Figure 2-33).

 Click the button to cancel the import.

Figure 2-33: Import schema

Database: Select the required database layer. All layers enabled for the project by

the project administrator are displayed in the drop-down list.

Import data from schema ‘xy’: If this checkbox is selected, the data entered for this

schema to date in the Content Store of the source project is copied into the target

project. On creating a table in the Content Store of the target project, based on the

imported schema information, the structured data entered to date in the target

project is displayed:

Figure 2-34: Table view of the structured data in the target project

The data can also be changed within the target project, i.e. it is not write-protected.

If the schema only is to be copied, but not the data entered to date for this schema in

the Content Store of the source project, the schema must either be exported in the

source project without data (see Figure 2-30) or the "Import data from schema "xy"

checkbox must be deselected in the target project. In both cases, the data to date

(based on the schema concerned) is ignored during the import, i.e. is protected

against access from the target project.

If the data to date from the source project is to be displayed in the target project, but

changes to the structured data is to be prevented, write protection must be enabled

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 67

on the selected database layer after importing the data.

2.3.5.3 Import workflows

This function can be called using the context menus in the workflows area and at

folder level.

This function can be used to import exported workflows into the file system as well

as exported folders with all the sub-folders and workflows (and any scripts)

contained in the selected folder.

To do this, an import window opens in which you can search for the required export

file in the local directories of the workstation.

 The rights (permissions) configuration may have to be project-
specifically adjusted on importing (see Chapter 4.6 page 194).

2.3.6 Restore deleted objects

The “Restore deleted objects” function can be called for page, section and format

templates and scripts, both at root and at folder level; in addition, it can be called for

database schemata and link templates at schema and link configuration level too; in

the case of workflow it can be called at root level only. If an object has been

mistakenly deleted from the tree structure it can be restored with the help of this

function. After clicking a window opens with the deleted objects:

Figure 2-35: Deleted objects

All objects for which a backup exists are displayed at root level, while at folder level

only the objects located underneath this folder are displayed. The following

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 68

information is given for each object:

Revision: Version number of the deleted object.

deleted on: Date and time when the object was deleted.

UID / Name: The reference name of the deleted object.

ID: The unique ID number of the deleted object.

Number of objects: The number of objects located in the tree structure below the

deleted object. The button can be used to display these in a popup window.

These hierarchically lower level objects are also inserted again by the restore

function.

deleted by: Name of the user who deleted the object.

To restore, it is only necessary to select the required object and press the

button.

Figure 2-36: Restore deleted objects

Check only – do not restore: If this option is selected, the system checks whether

the object can be restored without errors. To this end, the restore action is simulated,

but the deleted object is not restored. A popup window then appears showing

whether the object can be restored or not.

Standard restore: This option is set as a default. If the object is restored with this

option, the restore action is performed directly depending on the object. Therefore,

different options can be selected in the "Specific restore" area, depending on the

object.

1.31

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 69

Specific restore: This option can be selected to manually adjust the standard

restore options.

Specific restore – Restore parent element (if necessary): If this option is

selected, if necessary, the parent element is restored too.

Specific restore – Ignore missing dependent objects: If this option is selected,

the missing references to the selected object are ignored when the object is

restored.

 This option is available to project administrators only.

In the next dialog, the position at which the deleted object is to be added can be

selected.

2.3.7 Edit extern

Figure 2-37: Edit extern function

This function can be called using the context menu on page templates and section

templates and is further divided into several areas: All template sets set in the

server and project configuration for this project are listed, in addition there is a Form

and a DTD area.

If one of the existing editing areas is enabled, the corresponding source file opens in

an external editor. To edit a source file in an external editor, an editor should be

entered in the user settings of the Global Store. In addition, another window appears

in which all the open templates are displayed.

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 70

Figure 2-38: Edit externally

After selecting the templates, changes to the source text are saved by pressing the

"Save and close local copy" button or the "Save local copy" button. In the first case

the editor is then closed. In the same way, changes not yet saved can be undone

using "Cancel local editing".

Autosave: If this tick is set, all changes saved in the external editor are

automatically saved in the FirstSpirit client too.

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 71

2.4 Administrative context menus of the Template Store

Following menu items are available – depending on the selected object:

 Version history (see Chapter 2.3.1 page 47)

 Start Workflow (see Chapter 2.4.2 page 72)

 Execute Script (see Chapter 2.4.3 page 73)

 Search in templates (see Chapter 2.4.4 page 73)

 Extras – Change Permissions (see Chapter 2.4.5 page 73)

 Extras – Reset write lock (see Chapter 2.4.6 page 73)

 Extras – Select preview image (see Chapter 2.4.7 page 73)

 Extras – Show properties (from V4.2) (see Chapter 2.4.8 page 74)

 Extras – Show usages (see Chapter 2.4.9 page 76)

 Extras – Accept template changes (see Chapter 2.4.10 page 76)

 Extras – Cancel editing (see Chapter 2.4.11 page 77)

 Extras – Convert link template (from V4.2) (see Chapter 2.4.12 page 77)

 Extras – Change reference name (see Chapter 2.4.13 page 78)

 Extras – Display dependencies (from V4.1) (see Chapter 2.4.14 page 78)

 Extras – Create a copy of this workflow (see Chapter 2.4.15 page 80)

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 72

2.4.1 Version history

This function can be used to call the version history of each object in the Template

Store.

Figure 2-39: Version history on a page template

General information about FirstSpirit version history and the functions of the dialog in

Figure 2-39 is given in the FirstSpirit Manual for Editors, Chapter 11.10.

In addition to the general revision information available (revision, date, editor,

comment) the right-hand part of the list shows the element of the object at which a

change was made resulting in the issue of a new revision number (e.g. attributes,

child list, preview, output channels). This depends on the objects on which the

version history was opened.

2.4.2 Start Workflow

If workflow is not yet active for the selected object, all workflows defined in the

permissions system for these nodes in the tree structure are listed under this menu

item. The required workflow can be started under this menu item.

If a workflow is already active for the selected object it can be switched to another

workflow action/state under this menu item.

Detailed documentation of workflows is given in Chapter 4 from page 152 and in the

FirstSpirit Manual for Editors, Chapter 12.

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 73

2.4.3 Execute Script

All scripts which can be opened in this position in the JavaClient are listed under this

menu item. Scripts enable pre-programmed actions or calculations to be executed.

Information on script development in FirstSpirit is given in the FirstSpirit Online

Documentation.

2.4.4 Search in templates

This function is identical to the "Search in templates" function in the "Search" menu

of the FirstSpirit menu bar. Further information on this search is given in the

FirstSpirit Manual for Editors, Chapter 3.

2.4.5 Extras – Change Permissions

This function can be used to define the permissions for the current nodes in the tree

structure. It can be opened on all nodes using the context menu.

Detailed documentation on the definition of permissions is given in the FirstSpirit

Manual for Editors, Chapter 13.

 For improved clarity, the entries of the lists in the "Inherited permissions" and

"Permissions defined in this object" areas are automatically sorted alphabetically in

FirstSpirit Version 4.1. Groups are displayed first, then the users.

2.4.6 Extras – Reset write lock

If write protection (write lock) exists for the selected node due to an active workflow

the write lock can be cancelled using this function. (The write lock is indicated by

italic lettering in the tree.) Detailed information on the write lock within workflows is

given in Chapter 4.7 from page 208.

2.4.7 Extras – Select preview image

This function can be opened using the context menu at page/section level. The

respective object must be in Edit mode.

This function can be used to select a preview graphic for the Preview tab of the

respective object. To do this, a file window opens in which you can search for the

required preview graphic in the local directories of the workstation. The graphic file

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 74

must have the extension "gif", "jpg" or "png".

2.4.8 Extras – Show properties (from V4.2)

Using this function the properties of an object including the following information can

be shown. The information can vary according to the object type.

Figure 2-40: Properties of a page template – Editorial

Use the path to show the properties of other objects.

Tab Editorial

Pagename: Display names of the object (language-dependent)

Status: shows the status (e.g. “Not released“, “Released“, “Changed (not released)“)

Revision: shows the revision

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 75

Author: name of the user who has created the object

Created at: Date and time of the object’s creation in the JavaClient

Last save: Date and time of the object’s last saving

Last editor: name of the user who last changed the object

Released by: name of the user who has released the object

Figure 2-41: Properties of a page template – Technical

Tab Technical

Label-Path: Path to the selected object (display names)

Reference name (UID): Reference name (UID) of the object

UID-Path: Path to the selected object (reference names)

ID: ID of the object

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 76 1.31

ID-Path: Path to the selected object (IDs)

Template-Name: Display name of the template

Template-ID: ID of the template

Depending on the object type the link “View template“ is displayed. Use this linkg to

switch directly to the template on which the object bases.

Using the button “OK“ the properties dialogue will be closed. Using the button “Copy

details“ all information of this dialogue can be copied to the clipboard. Use the button

„Generate report“ to generate a HTML page from this information. You can also add

a comment.

2.4.9 Extras – Show usages

This function can be opened using the context menu on page, section and format

templates, scripts and table templates.

It can be used to automatically switch to nodes in other stores based on the object

on which this function was performed. If the multiple uses of the object exist, a new

window opens in which all nodes (e.g. sections from the Page Store) which are

based on the current object are displayed. Double-click one of these entries to

display the corresponding nodes in the directory tree.

2.4.10 Extras – Accept template changes

This function can be used to adopt changes to the definition of the content areas in a

page template for existing pages.

The function is available on page templates in the Template Store only.

For example, if a content area is added within a page template, this change does not

automatically affect an existing page. The "Accept template changes" function can

be used to update the existing pages when a page template is changed. The

function checks the definition of the content areas in the page template against the

template areas of the pages which use this template:

 If content areas are found which are defined in the template but which do not

exist on the existing page, these content areas are added in the page.

 If the reverse is true, i.e. content areas are found which are missing in the

template but exist in the page,

 they are removed from the page if they do not contain any sections.

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 77

 they are kept on the page if they contain sections.

2.4.11 Extras – Cancel editing

This function can be used to cancel edit mode on nodes without saving any changes

made. However, changes which have already been saved using CTRL + S or the

Save function of the toolbar cannot be undone.

2.4.12 Extras – Convert link template (from V4.2)

In FirstSpirit Version 4.2, the configuration options for links are considerably

enhanced by the introduction of generic link editors (see Chapter 2.10.6 page 118).

Whereas static and generic link editors can still be used in parallel in FirstSpirit

Version 4.2, static link editors will no longer be supported from FirstSpirit

Version 5.0. The introduction of "generic link editors" in FirstSpirit Version 4.2

therefore also helps to migrate existing projects to FirstSpirit Version 5.0.

Conversion of the existing link templates to the new, generic link editors is supported

by FirstSpirit. The automatic conversion can be started on the existing link templates

using the context menu (“Extras” – “Convert link template”). With this, the static input

fields used to date are replaced by the new input components in the form area.

Project-specific manual adjustment of the layout may be necessary following the

automatic conversion.

 The migration of the link editors must be fully completed in FirstSpirit
Version 4.2. Otherwise the projects cannot be migrated to FirstSpirit Version
5.0.

 These changes are not downwards compatible. These changes must
be manually reset on downgrading from FirstSpirit Version 4.2 back to
Version 4.1.

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 78

 The changeover to generic link editors changes the internal data
structure of DOM elements. This can potentially lead to problems with
existing scripts. The scripts must be manually adjusted if necessary.

2.4.13 Extras – Change reference name

Using this function the reference name of objects can be changed afterwards.

 The object may have still references in the project. These will become
invalid if the reference name of the object is changed. For this reason, a
warning is shown. If you select “Change nevertheless“ you can change the
reference name of the object in the following dialogue.

2.4.14 Extras – Display dependencies (from V4.1)

Essential functions of FirstSpirit are based on the so-called reference graph of a

project. This had to be calculated for a project for the first time ever in Version 3.1

and since then has been constantly extended and further developed. The reference

graph of a project is used to recognise dependencies within the project and is

therefore an essential component of complex functions, for example, the server-side

release (see Chapter 7 page 272).

From FirstSpirit Version 4.1, project administrators can request visualisation of the

reference graph for an object via the "Extras – Display dependencies" context menu.

This means it is possible to identify the dependencies of an object, even in complex

projects.

 Reference graphs of single data sets of the Content Store can be
displayed using the context menu of the respective data set.

The tabs show the dependencies of the object, in the form of incoming and outgoing

edges, both for the current status and for the most recently released status (see

Figure 2-42).

The display can be changed over to a hierarchical view, which is advisable

especially for complex dependencies (see Figure 2-42). Direct updating on making

changes and zooming within the view is possible using the buttons in the top part of

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 79

the window. The view can also be stored as an image for subsequent use.

Figure 2-42: Displaying dependencies via the reference graph

 From FirstSpirit Version 4.2 format templates used within the input
components CMS_INPUT_DOM and CMS_INPUT_ DOMTABLE can now
also be displayed using the reference graph. This enhancement requires a
change to the FirstSpirit Access API:

For the return type DomEditorValue, a new API interface DomElement has been

introduced. Scripts which use the previously unstable "DomElement "class" must be

adjusted to the new interface:

Example: Generating content in the DOM Editor (to date – unstable):

final DataValue dataValue = data.get("cs_payment_text");

final DomEditorValue editor = (DomEditorValue) dataValue.getEditor();

xmlBuf = new StringBuilder();

xmlBuf.append("<p>myDom</p>");

editor.set(language, DomElement.fromXml(xmlBuf.toString()));

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 80

Example: Generating content in the DOM Editor (from FirstSpirit Version 4.2):

final DataValue dataValue = data.get("cs_payment_text");

final DomEditorValue editor = (DomEditorValue) dataValue.getEditor();

xmlBuf = new StringBuilder();

xmlBuf.append("<p>myDom</p>");

final DomElement domElement = editor.get(language);

domElement.set(xmlBuf.toString());

editor.set(language, domElement);

 The changes are downwards compatible. After adjusting in Version 4.2,
the scripts also function in FirstSpirit Version 4.0 and 4.1.

2.4.15 Extras – Create a copy of this workflow

This function can be opened on workflows. It creates a copy of the selected workflow

below the "Workflows" node.

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 81

2.5 Page templates

Figure 2-43: Tree view Template Store – Page templates

Page templates create the basic framework of a page. Page templates are used to

specify where, e.g. logos and navigations are positioned, whether a page is to

consist of frames or not and similar general settings. In addition, the page templates

define the places at which an editor can insert content.

Tree elements within the page templates:

 Root element of the page templates

 Folders within the page templates node

 Page templates

 Mapping of a section template to a page template

2.5.1 Preview tab

A previously made preview graphic (e.g. a screenshot) can be displayed in the

"Preview" tab to obtain an idea of how a template will be subsequently displayed in

the browser. In this way, each user can immediately recognise which template they

have just selected.

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 82

A graphic can be inserted in this tab in three different ways:

1. Lock the template, then click "Select preview image” from the Template context

menu and select a file of the type: "gif", "jpg" or "png".

2. Lock the template, then select a file of the type "gif", "jpg" or "png" from the file

explorer, drag it to the preview position with the mouse and drop it there.

3. Lock the template, select a link-free graphic (Ctrl key pressed) from a website

(MS IE only), drag to the Preview tab with the mouse and drop it there.

Figure 2-44: Page template – "Preview" tab

The inserted preview image of a page template is also displayed in the Page Store, if

the content area of the corresponding page is enabled.

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 83

2.5.2 Properties tab

The "Properties" tab contains different entries for page and section templates. The

following figure shows the properties of a page template:

Figure 2-45: Page template – "Properties" tab

Unique name: A unique name is given in this field, under which the template is

stored in the file directory (see "Reference name" in Chapter 2.2.1.1 page 25).

Comment: A comment describing the page or section template in greater detail can

be entered here.

File extension – Template set: Name and type of template sets which the project

administrator defined for the current project in the server and project configuration.

Disabled template sets are shown "greyed out" and cannot be edited.

File extension – Replaceable: If the tick is set, this means that the extensions of a

page template given in one of the next two input fields can be overwritten by a

section template.

File extension – Generation: The extension of the template to be used when

generating the page. Double-click the field to edit the extension.

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 84

 This option is no more available from FirstSpirit Version 4.1.

File extension – Target ext.: The extension of the template to be linked to. Double-

click the field to edit the extension.

Preview page: A page from the Site Store in which the template is used can be

selected here. In this way, any changes made to the template can be directly

checked in the Template Store using the preview function.

Hide from selection list: Activating this option prevents an editor from using this

template when creating a new page.

 New functions from FirstSpirit Version 4.2 are listed below:

Formular: From FirstSpirit Version 4.2 the button „Default values“ is also available

on this tab. It can be used to define default values for this template. A dialogue for

pre-define the default values. The language-dependent default values are displayed

directly in the preview area after saving the properties.

Content areas / section restrictions: Content areas are defined on the „Properties“

tab from FirstSpirit Version 4.2:

Figure 2-46: Defining content areas for a page template

Use the icons to add a new content area to the page template, to remove an existing

content area or to resort the list of content areas.

Clicking on a content area you can define section restrictions for this page

template:

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 85

Figure 2-47: Defining section restrictions

To this end, the required section templates can either be allowed or prohibited by

adding them to or removing them from a list (for a content area). For the

corresponding content areas, this means that only the respective selected section

templates are allowed. The definition of section restrictions used to date by using

Drag & Drop to drop section templates onto a content area (see Chapter 2.5.5 page

87), is therefore no longer supported.

Optionally, all section templates can also be allowed for all content areas of a page

template. In this way, each section restriction for the page template is cancelled.

The addition of language-dependent display names for content areas is also new.

Content areas can now be assigned one (or several) language-dependent display

names and a unique reference name..

 Note about automatic adjustment of the project’s templates: FirstSpirit
automatically adjusts existing content areas in the header area of a page
template and the defined section restrictions of a page template to the new
definition in the "Properties" tab. For further notes see FirstSpirit Release
Notes Version 4.2, Chapter 8.1.5.

1.31

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 86

2.5.3 Form tab

Figure 2-48: Page template – "Form" tab

The "Form" tab shows the GUI.XML file. If the template is locked, direct changes can

also be made here.

When the GUI.XML is saved a DTD validation is performed. Well-formedness

violations are fatal, in this case the GUI.XML cannot be saved. Other errors are only

displayed.

 If a preview of the GUI.XML is requested in locked state, then the
changes are automatically saved beforehand. (A new version is not created –
that only takes place when unlocked!)

For details of updating content areas in existing pages (on changing the definition

within the page template) see Chapter 2.4.10 page 76.

The "FirstSpirit Online Documentation" contains a list of all available input elements.

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 87

The input elements are explained with all their attributes and a schematic example

under the menu item Template development – Forms.

2.5.4 Template sets tabs

Figure 2-49: Page template – Template sets tabs

The "Internet", "Book" and "RSS" tabs are template sets which the project

administrator has created in the server and project configuration for this project. The

tabs show the source text of the different template sets for the current template. If

the template is locked, direct changes can be made here.

If a change has been made in the source text, the change is checked for well-

formedness of the CMS_HEADER on saving. If an error occurs, this is immediately

displayed in a new window.

2.5.5 Restricting the content areas for page templates (up to and including V4.1)

By dragging section templates () onto page templates () it is possible that the

respective selected section templates only are then allowed for the content areas of

the corresponding page template.

1.31

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 88

If such a section restriction () is selected, checkboxes appear in the right-hand

window in which the content areas of the page template are listed.

Figure 2-50: Allowed areas

If the corresponding page template is locked, the required content areas can be

enabled or disabled. One or several content areas can be selected for each section

restriction. An editor who inserts a new section in a content area is then only shown

and can only choose from the section templates allowed for this section area. All

other section templates are hidden.

If there are no restrictions for a content area, all section templates are automatically

allowed and are available for an editor to select.

For details of how to delete section restrictions, see Chapter 2.2.8.1.

 From FirstSpirit Version 4.2 content areas are defined via the
“Properties“ tab.

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 89

2.6 Section templates

Figure 2-51: Template Store tree view – Section templates

Section templates are used to insert content, defined in the page templates, in the

basic framework of a page. All input elements which are to hold the dynamic content

of the page (text, tables, pictures, data records,...) are defined within a section

template. Any number of sections can be inserted in each section area of a page. In

most cases, several different section templates are also available for the different

possible content of a page.

 Tree elements within the section templates:

 Root element of the section templates

 Folders within the section templates node

 Section templates

2.6.1 Preview tab

The tab for section templates is identical to the tab for page templates with the same

name and can be edited in the same way.

For information on the "Preview" tab, see Chapter 2.5.1 page 81.

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 90 1.31

2.6.2 Properties tab

The tab for section templates is identical to the tab for page templates with the same

name and can be edited in the same way.

For information on the "Properties" tab, see Chapter 2.5.2 page 83.

The "Hide from selection list" option (cf. Chapter 2.5.2) is not available for section

templates.

2.6.3 Form tab

The tab for section templates is identical to the tab for page templates with the same

name and can be edited in the same way.

For information on the "Form" tab, see Chapter 2.5.3 page 86.

2.6.4 Template sets tabs

The tab for section templates is identical to the tab for page templates with the same

name and can be edited in the same way.

For information on the "Template sets" tab, see Chapter 2.5.4 page 87.

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 91

2.7 Format templates

Figure 2-52: Template Store tree view – Format templates

Format templates are used to define text formatting, which can subsequently be

used in the DOM-Editor and DOM Table input elements in the Page Store. The

standard (default) format templates are: Bold, Italic, LineBreak, Link, Standard and

Underline. These "Default format templates" may not be deleted (see Chapter 2.2.8

page 44).

In addition to these default format templates, template developers can create other

project-specific format templates.

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 92

2.7.1 Properties tab

Figure 2-53: Format template – Properties tab (new Look&Feel)

The basic properties of a format template are defined on the Properties tab. The

individual fields have the following meanings:

Tag: The tag (abbreviation for the format template’s name) is needed in the form

area of the page or section template to specify the valid format templates for the

input component. The corresponding XML tag name is formed from this abbreviation,

e.g. for the "Bold" format template (see also FirstSpirit Online Documentation –

Template development / Format templates area). The name must be unique and

may not contain any special characters; it is automatically issued according to the

unique reference name of the format template. The abbreviation should not be

changed manually to ensure its uniqueness is not put at risk (see Chapter 2.2.1.3

page 27).

 A unique name or the abbreviation of a format template cannot be
changed after the template has been created, otherwise all relations within
the project would be lost!

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 93 1.31

Tooltip The text entered in this field is displayed as Help text when the mouse is

moved over the formatting, for example in the DOM Editor.

Section: If the "Section" checkbox is selected, the whole section is always

formatted. If the checkbox is not selected, the formatting is applied to individual,

selected characters only.

Orientation: If the "Section" checkbox has been selected, the orientation (alignment)

of the text, for example in the DOM Editor, can be specified here.

Show Indentation, defines how the corresponding formatted text is to be displayed.

If this option is selected, all spaces are displayed and the text is no longer

automatically wrapped. If this option is deselected, spaces are displayed in "HTML

Notation".

Quote: Select Yes to apply the complete conversion rules to the individual template

sets (convert part and quote part). If No is selected, the convert part only of the

conversion rules is applied to the individual template sets.

The "Edit preview" field can be used to define other formats only displayed in the

editor.

Font: A font in which the text is to be shown can be selected here. (This font must

be installed on each client computer, otherwise a similar font is used.)

Style: Here you can select whether the text is to be displayed in the DOM Editor as

bold, italic or underlined text.

Colour: A colour for the displayed text can be selected here.

Size: The size in which a text is to be displayed in the DOM Editor is determined

here. Relative information (+2, -1, etc.) is also possible.

Border colour: A colour selection for a border within the input component can be

made here.

Background colour: A colour selection for the background within the input

component can be made here.

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 94

2.7.2 Template Sets tabs

Figure 2-54: Format template – Template Sets tabs

Conversion: One of the conversion rules configured in the server properties in the

server and project configuration can be selected here.

Template: The HTML code which the required formatting generates for the text on

the website is entered here. The #content expression stands for the text entered in

the DOM Editor (for details of outputting formatted texts via the #content system

object, see "FirstSpirit Online Documentation").

 The selected conversion rule is only used for outputting the input
components CMS_INPUT_DOM or CMS_INPUT_DOMTABLE via the
#content system object, e.g. via $CMS_VALUE(#content)$.

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 95

2.8 Style templates (from V4.1)

 This function is released for FirstSpirit Version 4.1 and higher only.
Screenshots are therefore displayed in the new "LightGray" Look & Feel. The
display in the "Classic" Look & Feel can differ slightly.

Figure 2-55: Template Store tree view – Style templates

2.8.1 Introduction: Inline tables (from V4.1)

So-called "inline tables" can be integrated in the text flow by extending the DOM

Editor input component (CMS_INPUT_DOM input component). Any number of layout

design options can be made available to the editor, down to cell level.

The table layout is determined on the one hand by table format templates (see

Chapter 2.9 page 106), and on the other hand by style templates (from Chapter 2.8.2

page 96). Style templates are used to define table layout features, i.e. background

colour, text orientation (alignment), font, line break control, borders and border

margins.

Each table format template can have exactly one standard style template mapped to

it (for the whole table) and several other style templates for separate display of

individual cells of the table (see Chapter 2.9.1 page 108). The style templates define

the layout of the individual table cells, e.g. the background colour ("bgcolor"), the

alignment of text in the cell ("align") or the colour of the text within the cell ("color").

Therefore, a style template must be created first before the inline tables can be used

in the DOM Editor (see Chapter 2.8.2 page 96).

For an improved clarity, style and table format templates should be grouped together

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 96

in one folder (e.g. "Tables").

Inline table icons:

 Folder

 Table format template

 Style template

 From FirstSpirit Version 4.2 the inline tables functionality is available in
WebEdit too. However, the cell propoerties can not be edited. This means,
the related button is always disabled in WebEdit.

2.8.2 Create style template (from V4.1)

Style templates are created in the "Format templates" area. To do this, the New –

Create style template function is selected in the context menu. A reference name

for the style template must be entered in the window that opens. Entry of a display

name is optional.

Figure 2-56: New – Create style template

Click to create the new style template. The form area of a style template can

be used to create input components which affect the properties of the layout, e.g.

background colour, text alignment, font, line break control, border and border

margins (see Chapter 2.8.3 page 96).

2.8.3 Form area of a style template (from V4.1)

Unlike other format templates, style templates have a "Form" tab. Input components

for maintaining layout attributes can be created within the form area of a style

template:

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 97

Figure 2-57: Form area of a style template

Several predefined layout attributes (with reserved identifiers) have a direct effect on

the display of the table within the DOM Editor:

 bgcolor: defines the background colour of a table cell

(for an example, see Chapter 2.8.7.1 page 102)

 color: defines the font colour of a text within the table cell

(for an example, see Chapter 2.8.7.2 page 103)

 align: defines the alignment of a text within the table cell

(for an example, see Chapter 2.8.7.3 page 104)

 The predefined identifiers may not be changed. The attributes in the
input component must always be given with name=“Identifier", e.g.
<CMS_INPUT_TEXT name="bgcolor" .../>

Of course, apart from these standard attributes, other freely defined attributes can be

entered using the input components of the form area, e.g. CSS attributes (for an

example, see Chapter 2.8.7.4 page 105).

Supported input components for maintaining the layout attributes:

 CMS_INPUT_TEXT / CMS_INPUT_TEXTAREA: Text field for entering a value, e.g.

for the background colour.

 (For an example, see Chapter 2.8.7.1 page 102)

 CMS_INPUT_COMBOBOX: Selection from a pre-defined set of values, e.g. for

entering a background colour or an alignment

(For an example, see Chapter 2.8.7.2 page 103)

 CMS_INPUT_RADIOBUTTON: Selection from a pre-defined set of values, e.g. for

entering a background colour or an alignment

(For an example, see Chapter 2.8.7.3 page 104)

1.31

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 98

 CMS_INPUT_TOGGLE: Selection between two possible values (e.g. On/Off,

right/left)

(For an example, see Chapter 2.8.7.4 page 105)

 CMS_INPUT_NUMBER: Indication of a numerical value (e.g. a value for the

background colour of a cell)

 The following applies to all input components used within the form area
of a style template: the components should be defined independent of
language (useLanguages="no"). In this case, the language-dependency of
the component is covered by the language selection within the DOM Editor
instance, which is edited by the editor.

 Other input components for maintaining layout attributes (in style
templates) are not currently supported.

2.8.3.1 Prevent layout editing for editors (from V4.1)

Maintenance of layout attributes can be prevented for editors. To do this, the

following attribute must be defined within the input component: hidden="yes". The

effect of the hidden="yes" attribute is that the input component is only visible

within the Template Store, but not during maintenance of the table in the Page Store.

The template developer can therefore use the attribute to prevent editing of the

layout by the editor and can instead specify defined values for the layout, for

example, for the background colour of the cells (see Chapter 2.8.4 page 99).

If the hidden="yes" attribute is defined (for all input components of the style

template), it is not possible for the editor to change the layout properties of a table

cell in the Page Store. In this case the corresponding "Cell properties" button is

inactive.

If, on the other hand, individual components are "visible" (hidden="no") and others

are "hidden” (hidden="yes"), the "Cell properties" button is active within the DOM

Editor (in the Page Store), but in the following dialog only the "visible" components

are displayed to the editor.

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 99

All components of the style template are only displayed if the template developer has

not defined any restrictions.

Figure 2-58: "Cell properties" button within the DOM Editor

By clicking the button the editor opens a dialog for editing the project-specific layout

attributes (see FirstSpirit Manual for Editors).

2.8.4 Pre-configuration of the layout attributes (from V4.1)

Retrieval values for the layout attributes can be defined within the Template Store.

Pre-configuration of an input component (e.g. with a colour value) no longer (since

FirstSpirit Version 4.0) takes place by defining the input component but instead is

made within a separate dialog within the Template Store.

After definition of the input components in the form area of the style template has

been completed and saved, the button with the magnifying symbol (preview) can be

used in the "Form" tab to open the maintenance dialog for specifying the pre-

configuration:

Figure 2-59: Style template preview

The template developer can pre-configure the input component within the "Retrieval

Values" dialog. For example, a colour value can be entered in the text field for

"Background Color" (cf. Figure 2-59). This colour value is copied for all table cells

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 100

based on the corresponding style template when an inline table is created in the

DOM Editor.

Depending on the defined value for the hidden attribute within the definition of the

input component, this default selection can be changed by the editor (see Chapter

2.8.3.1 page 98).

If editing is possible (hidden="no"), the editor can overwrite this default selection

on editing a table cell within the DOM Editor (see FirstSpirit Manual for Editors).

 The values in the dialog can only be edited and/or saved if the template
is locked ("Switch to Edit Mode" button)!

 These default values cannot be changed in WebEdit.

2.8.5 Output channel of a style template (from V4.1)

The values entered within the input components can be read out again within an

output channel (e.g. "HTML") of a style template (see Chapter 2.8.4 page 99).

Figure 2-60: "HTML" output channel of a style template

To do this, the name of the input component must be output by means of the

$CMS_VALUE(...)$ instruction:

$CMS_VALUE(if(bgcolor != null, " bgcolor=" + bgcolor, ""))$

or

$CMS_IF(!bgcolor.isEmpty)$$CMS_VALUE(bgcolor)$$CMS_END_IF$

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 101

For further information on outputting variables, see FirstSpirit Online

Documentation3.

2.8.6 Linking with standard table format templates (from V4.1)

The #style system object can be used to link the values of the style template with

the default format templates for the generation (and preview) of tables in the project.

The default format templates for tables provided by FirstSpirit are:

 Table (abbreviation: table): Formatting for tables

 Table cell (abbreviation: td): Formatting for table cells

 Table row (abbreviation: tr): Formatting for table rows

For example, if the #style system object is used within the default format template

td, the value defined within the "Cell properties" dialog by the editor (see FirstSpirit

Manual for Editors) or the values predefined for the style template by the template

developer (see Chapter 2.8.4 page 99), is taken into account in the generation of the

table.

Example of the output in the HTML channel of the default format template td:

<td$CMS_VALUE(#style)$
$CMS_VALUE(if(#cell.rowspan != 0, " rowspan='" + #cell.rowspan +
"'"))$
$CMS_VALUE(if(#cell.colspan != 0, " colspan='" + #cell.colspan +
"'"))$>
$CMS_VALUE(if(#content.isEmpty, " ", #content))$
</td>

 For further information about how to access properties and information
of tables and their content see FirstSpirit Online Documentation, System
objects #cell, #content, #table and #tr in the area Template development /
Template syntax / System objects.

The values of the layout attributes, which were defined by the editor (or the template

developer) in the Cell properties dialog are now taken into account on generating the

table (see Figure 2-61):

3 FirstSpirit Online Documentation in the area: Template Development / Variables

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 102

Figure 2-61: Properties of the table cell

The source text of the table cell is now generated as follows:

<table>

<tr>

<td bgcolor="#ff00ff" align="center" color="#00ddee" rowspan='1'
colspan='1'>This is a text.</td>

..

</tr>

</table>

2.8.7 Examples (from V4.1)

2.8.7.1 Example: Text input component for entering a background colour

Definition of the component in the form area:

<CMS_MODULE>

 <CMS_INPUT_TEXT name="bgcolor" useLanguages="no">

 <LANGINFOS>

 <LANGINFO lang="*" label="Background color:"/>

 </LANGINFOS>

 </CMS_INPUT_TEXT>

</CMS_MODULE>

name="bgcolor": The input component uses the key value "bgcolor" to define a

background colour. This name may not be changed because it is a fixed key value.

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 103

Entering a colour value via the input component:

Figure 2-62: Input component for entering a background colour

For details of how to output the value within the output channel of the style template,

see Chapter 2.8.5 page 100.

2.8.7.2 Example: Input component for entering a font colour

Definition of the component in the form area:

<CMS_MODULE>

 <CMS_INPUT_COMBOBOX name="color" useLanguages="no">

 <ENTRIES>
 <ENTRY value="">
 <LANGINFOS>
 <LANGINFO lang="*" label="default"/>
 </LANGINFOS>
 </ENTRY>
 <ENTRY value="#ee00ff">
 <LANGINFOS>
 <LANGINFO lang="*" label="superior"/>
 </LANGINFOS>
 </ENTRY>
 <ENTRY value="#00ddee">
 <LANGINFOS>
 <LANGINFO lang="*" label="lightGrey"/>
 </LANGINFOS>
 </ENTRY>
 </ENTRIES>
 <LANGINFOS>
 <LANGINFO lang="*" label="Font Color"/>
 </LANGINFOS>

 </CMS_INPUT_COMBOBOX>

</CMS_MODULE>

Selecting a colour value via the input component:

Figure 2-63: Input component for selecting a colour value for the font colour

For details of how to output the value within the output channel of the style template,

see Chapter 2.8.5 page 100.

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 104 1.31

2.8.7.3 Example: Input component for selecting a text alignment

Definition of the component in the form area:

<CMS_MODULE>

 <CMS_INPUT_RADIOBUTTON name="align" useLanguages="no">

 <ENTRIES>

 <ENTRY value="">

 <LANGINFOS>

 <LANGINFO lang="*" label="Left"/>

 </LANGINFOS>

 </ENTRY>

 <ENTRY value="right">

 <LANGINFOS>

 <LANGINFO lang="*" label="Right"/>

 </LANGINFOS>

 </ENTRY>

 <ENTRY value="center">

 <LANGINFOS>

 <LANGINFO lang="*" label="Center"/>

 </LANGINFOS>

 </ENTRY>

 <ENTRY value="block">

 <LANGINFOS>

 <LANGINFO lang="*" label="Block"/>

 </LANGINFOS>

 </ENTRY>

 </ENTRIES>

 <LANGINFOS>

 <LANGINFO lang="*" label="Align:"/>

 </LANGINFOS>

 </CMS_INPUT_RADIOBUTTON>

</CMS_MODULE>

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 105

Selecting a text alignment via the input component:

Figure 2-64: Input component for selecting a text alignment

For details of how to output the value within the output channel of the style template,

see Chapter 2.8.5 page 100.

2.8.7.4 Example: Input component for entering a CSS attribute

Definition of the component in the form area:

<CMS_MODULE>

 <CMS_INPUT_TOGGLE name="ft_css" useLanguages="no">

 <LANGINFOS>

 <LANGINFO lang="*" label="Important:"/>

 </LANGINFOS>

 <On>

 <LANGINFO lang="*" label="Important"/>

 </On>

 <Off>

 <LANGINFO lang="*" label="Not important"/>

 </Off>

 </CMS_INPUT_TOGGLE>

</CMS_MODULE>

Selecting a CSS attribute via the input component:

Figure 2-65: Input component for selecting a CSS attribute

For details of how to output the value within the output channel of the style template,

see Chapter 2.8.5 page 100.

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 106

2.9 Table format templates (from V4.1)

Table format templates are required to create so-called inline tables (see Chapter

2.8.1 page 95). A table format template must be created in the "Format templates"

area for each required table layout.

To do this, the New – Create table format template function is selected in the

context menu. A reference name for the table format template must be entered in the

window that opens. Specification of a display name is optional.

A detailed description of reference and display names is given in Chapter 2.2.1.1

page 25.

Figure 2-66: New – Create table format template

After clicking , the "Properties" tab opens. The size of the table can be defined

here and the style templates created in Chapter 2.8.2 can be assigned.

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 107

Figure 2-67: Table format template

Number of rows: The Minimum and Maximum fields are used to define the

minimum number of rows the table must have or the maximum number it may have.

If the editor subsequently inserts an inline table with this table format template into

the DOM Editor, it is automatically created there with the minimum number of rows

given here. The editor cannot exceed or undershoot these default values when

editing the table. In this case the corresponding buttons are disabled. If, for example,

the minimum number of rows is defined as two rows, the "Remove row"" button is

disabled in the DOM Editor as soon as the table only contains two rows.

Number of columns: The Minimum and Maximum fields are used to define the

minimum number of columns the table must have and the maximum number it may

have. If the editor subsequently inserts an inline table with this table format template

into the DOM Editor, it is automatically created there with the minimum number of

columns given here. The editor cannot exceed or undershoot these default values

when editing the table. In this case the corresponding buttons are disabled. For

example, if the maximum number of columns is defined as being 6 columns, the

"Add Column" button is disabled in the DOM Editor as soon as the table contains six

columns.

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 108

Standard style template: In this field the required style template on which the whole

table is to be based can be selected by clicking the icon. All the available style

templates are displayed in the window that opens.

Figure 2-68: Table format template – Standard style template

The required style template can be selected from the tree structure and the selection

confirmed with .

2.9.1 Creating and editing display rules (from V4.1)

The standard style template defined in the table format template is the basis for the

layout of a table (cf. Figure 2-68). In addition, other layout options for formatting

rows, columns and individual cells can be made available to the editor in the Display

rules area; these overwrite the layout specifications of the standard style template.

These layout options are based on the previously created style templates (see

Chapter 2.8.2 page 96).

The icon is used to create new display rules. After it is clicked the following

window opens:

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 109

Figure 2-69: Table format template – Display rule

Click the icon to select the required style template to be used for the display rule.

All the available style templates are displayed in the window that opens.

Figure 2-70: Table format template – Style template

The required style template can be selected from the tree structure and the selection

confirmed with .

The Row(s) and Columns(s) comboboxes are used to define conditions for

application of the rule and therefore for use of the selected style template. Both

conditions must be fulfilled for the rule to be applied.

ALL: The display rule applies to all rows and columns without restrictions. For

example, if the "ALL Columns" option is selected, the display rule only takes into

account the restriction defined under the "Rows" option and vice versa.

1.31

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 110

 It is not possible to define a display rule which concerns ALL columns
and ALL rows. Such a rule would correspond to the standard style template.

Even: The display rule applies to even rows or columns (starting with the second

row/column).

Odd: The display rule applies to odd rows or columns (starting with the first

row/column).

First: The display rule applies to the first row or column.

Last: The display rule applies to the last row or column.

User-defined: The display rule applies to a specific row or column. If this option is

selected, the number of the required row/column must be entered in the field to the

right of the combobox.

The "Use for" field shows the row(s) and columns(s) to which the selected style

template applies.

Examples:

Figure 2-71: Display rules – Example 1

In this example, the "header" style template is used for the First row in ALL

columns, i.e. in all the cells of the first row.

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 111

Figure 2-72: Display rules – Example 2

In this example, the "checker" style template is used for Even rows in Odd

columns, i.e. in all cells for which both conditions are true.

The settings for the new display rule are saved by clicking . The display rule

then appears in the following list:

Figure 2-73: List of the display rules

Rule type: Indicates whether the rule is valid for rows, columns or cells.

Use for: Indicates to which row(s) and/or column(s) the rule is applied.

Template: Indicates which style template is used.

Editable: This checkbox is selected as a default so that the editor can change the

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 112

properties of the cell(s) to which this display rule applies. If the checkbox is

deselected the editor cannot change the properties of the cell(s) concerned.

Deletable: This checkbox is selected as a default, if it is a rule for rows or columns.

The editor can delete the row(s) or columns to which this display rule applies. If the

checkbox is deselected the editor cannot change the properties of the row(s) or

columns concerned. If the rule applies to a cell the checkbox is selected. It cannot be

deselected, as individual cells cannot be deleted from tables.

Edit preview: This column shows the background colour and text alignment of the

row/column/cell, if corresponding values are defined.

 Edit: Click this icon (or double-click the display rule) to open an existing display

rule for editing.

 One position up: If several display rules exist, this icon can be used to move

them up in the list by one position.

 One position down: If several display rules exist, this icon can be used to move

them down in the list by one position.

 Delete: Click this icon to delete the selected display rule.

The width of the columns of this list can be changed as and when necessary by

clicking the column lines and dragging the line with the mouse pressed.

 If there are several rules in the list they are evaluated from the top
down.

2.9.2 Evaluation order (from V4.1)

The formatting information in table format templates, style templates and display

rules created in chapters 2.8.2 to 2.9.1 are evaluated as follows:

1. First, the display rules in the list (Figure 2-73) are evaluated from the top down.

2. The Standard style template is used on cells to which none of the display rules

apply.

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 113

2.9.3 Insert inline tables in the DOM Editor (from V4.1)

To make inline tables available to the editor in the DOM Editor this type of input

component must be inserted into the required section template. To do this, the

table="yes" parameter must be added to the CMS_INPUT_DOM input

component.

Example:

<CMS_INPUT_DOM name="st_inlinetable" table="yes">

 <LANGINFOS>

 <LANGINFO lang="DE" label="Tabelle"/>

 <LANGINFO lang="*" label="Table"/>

 </LANGINFOS>

</CMS_INPUT_DOM>

The input component can look like the following:

Figure 2-74: DOM Editor with inline table

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 114

2.10 Link templates

Figure 2-75: Template Store tree view – Link templates

Template developers can use link templates to specify the layout of links in detail

within a FirstSpirit project. The editors enter all the necessary content via a screen

mask. Which fields can be filled in the screen mask depends on the configuration of

the link templates (Chapter 2.10.3 page 116). A differentiation is made between

three standard types of link (see Chapter 2.10.1 page 115). Any number of instances

of these three types of link can be created below the "Link Templates" node (Link

configuration). Each instance must have a unique name and correspond to one of

the standard link types.

New Link templates can be created below the link configurations. The configuration

of all link templates below the instance are defined via the instance. The link

template is only used to define output of the editorial content (for details of link

configurations and link templates, see also Chapter 2.2.1.6 page 28 and 2.2.1.7

page 30).

 From FirstSpirit Version 4.2 so-called “Generic link editors“ can be
used in addition. For further information please see Chapter 2.10.6 page 118.

For further information on link templates, see "FirstSpirit Online Documentation".

Tree elements within the link templates:

 Root element of the link templates

 Link configuration

 Link template

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 115

2.10.1 Standard link types

externalLink: for external links, i.e. links to elements outside the project, for

example to an external website.

internalLink: for internal links to an element within the project. This link type can

also be used to implement links to another FirstSpirit project.

contentLink: for links to an element from the project's Content Store.

genericLink (from FirstSpirit Version 4.2): for generic link editors (see Chapter

2.10.6 page 118)

2.10.2 Link configuration – Properties tab

Figure 2-76: Link configuration – "Properties" tab (new Look & Feel)

Unique name: Reference name of the link configuration.

Attributes: Special attributes are available to the template developer for configuring

link templates which they can view for each link type in the "Properties" tab.

For further information on the meaning of the individual attributes, see "FirstSpirit

Online Documentation" – "Configuring a link template" chapter.

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 116

2.10.3 Link configuration – Configuration tab

Figure 2-77: Link configuration – "Configuration" tab (new Look & Feel)

The "Configuration" tab can be used to configure the fields of the input mask for

each instance of a link template type. The configuration is defined in the Editing

window within the opening and closing <CMS_LINK_CONFIG> tags and is valid for

all link templates of the link configuration currently being edited.

The individual fields or selections lists are configured using the definition of

parameters. The parameters are defined within the <CMS_LINK_CONFIG> tags via

<CMS_PARAM> tags.

If a change has been made to the link template configuration, on being saved the

source text is checked for well-formedness of the XML source text. If an error is

discovered during this check, this is indicated to the user in a new window.

For further information on the meaning of the individual attributes, see "FirstSpirit

Online Documentation" – "Configuring a link template" chapter.

2.10.4 Link templates – Properties tab

Figure 2-78: Link template – "Properties" tab (new Look&Feel)

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 117

The unique reference name of the link template is displayed in the "Properties" tab.

The name is automatically formed from the reference name of the link configuration

(cf. Figure 2-77) and the reference name issued by the template developer on

creating the link template, e.g.:

Figure 2-79: Create a link template (new Look&Feel)

This ensures that the link template is unique within the name space. The reference

name may not be changed.

2.10.5 Link templates – Template sets tabs

Figure 2-80: Link template – Template Sets tab

In order for the editorial contents of input components to be visible in the respective

output channel the output must be defined within the templates. The same applies to

the input components for entering and maintaining links. The contents entered by the

editor in the relevant fields of the screen form are output via the link templates.

If a link template is selected in the tree view an Editing window appears in the right-

hand part of the window with one or several tabs for each available output channel.

The template developer must define the corresponding instructions for each output

channel of the link template.

The field content is either output via the instruction $CMS_VALUE(...)$ or the

instruction $CMS_REF(...)$, depending on which input component is involved

For further information on the output of links, see the "FirstSpirit Online

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 118 1.31

Documentation" – "Output of links" chapter.

2.10.6 Generic link editors (from V4.2)

From FirstSpirit Version 4.2, the configuration options are considerably enhanced by

the introduction of generic link editors. The configuration of link templates can then,

analogous to page and section templates, be created by adding input components

into the form area. All input options for the maintenance of links can be reproduced

using the normal form syntax of FirstSpirit.

As part of the introduction of generic link editors, the link templates can now also be

structured in folders.

The conventional input options for links (of the static link editors, see Chapter 2.10.1

to 2.10.5 from page 115) can of course also be generated using the new, generic

editors. Several new input components were introduced with FirstSpirit Version 4.2,

to enable all the functions of the static link editors used to date to be reproduced on

the new generic editors. For example, selection via the "mediaref" field of the static

link editors could not be reproduced on the existing input components of FirstSpirit

Version 4.1. The input components CMS_INPUT_PICTURE and CMS_INPUT_FILE

each only support selection of one reference type, i.e. either pictures or files, but not

both. Therefore, in FirstSpirit Version 4.2, the input component FS_REFERENCE

was introduced, which supports any reference types.

Analogous to this, enhancements to the input component CMS_INPUT_

OBJECTCHOOSER for reproduction of a link on database content, for selection of

datasets from one specific database table and the new input component

FS_DATASET, for selection of datasets from any database tables, were introduced.

Use of the new components is subject to certain limitations, as the components will

not be officially released until FirstSpirit Version 5.0 (see Chapter 1.3.2 page 14).

In FirstSpirit Version 4.2, the new components are mainly used for migration of the

existing static editors. Further use of the components is possible, if the project

developers dispense with use of the API and they are willing to potentially

subsequently adjust the parameter assignment of the input components (see

Chapter 1.3.2 page 14).

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 119

 The new functions and enhancements in FirstSpirit Version 4.2 are
intended to prepare existing projects for the new major release of FirstSpirit
Version 5.0. The new concepts introduced can still be used in FirstSpirit
Version 4.2 in parallel with the functions used to date (in Version 4.1). With
the release of FirstSpirit Version 5.0, individual functions will then no longer
be supported, but will instead be replaced by new, enhanced concepts. An
example is the introduction of generic link editors in FirstSpirit Version 4.2.
These provide greater functional scope and more flexible design options than
the static editors used to date. The static link editors will no longer be
supported from FirstSpirit Version 5.0. The introduction of "generic link
editors" in FirstSpirit Version 4.2 therefore also helps to migrate existing
projects to FirstSpirit Version 5.0.

The distinction between definition (form) and output is supended for generic link

editors. To create a new link template, only a link configuration need to be inserted

(beneath the root node "Link templates" or beneath a folder). Select "genericLink" as

link type.

The “Properties“ tab can appear as follows:

Figure 2-81: Generic link – “Properties“ tab (new Look&Feel)

Every input component can be used on the “Form“ tab.

For further information about the generic link editors see “FirstSpirit Online

Documentation“ – Chapter “Link templates“ / “Generic link editors“.

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 120

 The generic link editors are supported – with restrictions – also in
WebEdit.

2.11 Scripts

Figure 2-82: Template Store tree view – Scripts

Scripts can be used to automate different types of operating sequences or user input

sequences in FirstSpirit. A script is used to describe the sequence to be executed

and if necessary can make changes to FirstSpirit data structures. Scripts enable fast

implementation of functions which are not yet available in FirstSpirit. Further areas of

use are, for example, complex migration scenarios and linking external systems.

The script language supported in FirstSpirit is BeanShell4. The BeanShell syntax is

to a large degree based on JAVA, but offers numerous simplifications, for example,

dynamic instead of static typification of global variables and functions, as well as

(limited) reflexive access to the program itself and many other functions.

Scripting with BeanShell provides a high degree of flexibility for the template

developer. However, working with scripts is not trivial, therefore, before using a script

it is necessary to precisely check whether a corresponding function is already

available in FirstSpirit or not!

4 Further information about this script language is given on the website www.beanshell.org, which also provides a

detailed manual (EN).

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 121

For further information on script development in in BeanShell see "FirstSpirit Online

Documentation"– "Scripting" chapter.

Examples of the use of scripts in workflows (see Chapter 4.8 page 210).

2.11.1 Properties tab

Figure 2-83: Scripts – "Properties" tab (new Look&Feel)

Unique name: Reference name of the script.

Comment: An optional comment describing the scripts in greater detail can be

entered here.

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 122

Script type: The context in which a script is to be executed can be set here:

 Template: The script can be called and executed within a template via

$CMS_RENDER(script:..)$, e.g for rendering specific content for the PDF

output channel:

<of:table table-layout="fixed" width="170mm">

 $CMS_RENDER(script:"fotablecolumns",colWidth:set_cw,colNumbers:set_cn)$

 <of:table-body>

 $CMS_VALUE(#content)$

 </of:table-body>

</of:table>

 Menu: The script can be executed via the "Extras" menu – "Execute Script".

 Context menu: The script can be called and executed via the context menu on a

specific element in the tree view of the FirstSpirit JavaClient.

 Uninterpreted: the script is not checked for BeanShell syntax on saving. As a

result, for example, HTML syntax can also be saved (for example, to display list

elements). These scripts should no longer be used in FirstSpirit Version 4.x. The

corresponding templates should be changed over to format template in projects

which use uninterpreted scripts.

Use on homepage: From FirstSpirit version 4.1 this option can be activated for

scrips of the type “Menu“. This script will then be, depending on the settings made in

the area “View Logic“ (see below), shown on the project home page in the area “My

Actions“ and can be executed directly by one click on the link.

Keyboard shortcut: A unique keyboard shortcut can be defined for scripts in this

field. In this case the script no longer has to be executed via the context menu or the

"Extras" menu but instead can be opened directly via the defined keyboard shortcut.

The cursor must be located within the field to define a new keyboard shortcut. It is

then sufficient to enter the required key combination via the keyboard. The input is

then copied into the input field. Text input is not possible. To change the keyboard

shortcut, position the cursor in the field again and then call the new key combination.

Press the icon to delete a defined keyboard shortcut for the workflow.

 The keyboard shortcuts can only be used for scripts of the type:
"Context menu" or "Menu".

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 123 1.31

View Logic (only for menu/context menu): The view logic can be used to show or

hide scripts depending on specific properties (analogous to the view logic of

workflows, cf. Chapter 4.5.2 page 179). For example, a script of the type "Context

menu“ can only be displayed if the context menu is opened on a page reference in

the Site Store:

//!Beanshell

import de.espirit.firstspirit.access.store.sitestore.PageRef;

e = context.getStoreElement();

if (e instanceof PageRef) {

 context.setProperty("visible", true);

}

Always active: The "Always active" checkbox can be selected if the view logic is to

be disabled. In this case the script is always shown, regardless of the view logic. The

deposited view logic is no longer evaluated, but is retained and can be reactivated by

deselecting the checkbox.

2.11.2 Form tab

Analogous to page and section templates, individual input components can be

defined in the "form" tab which can be invoked at the script run time. The input

component values can be returned to the script for processing (analogous to form

support within workflows, cf. Chapter 4.4 page 174).

The "FirstSpirit Online Documentation" contains a list of all available input elements.

The input elements are explained with all their attributes and a schematic example

under the menu item Template Development – Forms.

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 124

2.11.3 Template sets tabs

Figure 2-84: "Scripts" output channels (new Look&Feel)

The BeanShell source code is defined in the output channels in which the script is to

be executed. By entering the character string //! Beanshell in the first line of the

script, the subsequent source text is interpreted as BeanShell script.

For examples of script development within workflows, see (see Chapter 4.8 page

210).

For general information on script development within FirstSpirit, see "FirstSpirit

Online Documentation".

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 125

2.12 Database schemes

Figure 2-85: Template Store tree view – Database schemes

FirstSpirit has efficient mechanisms for linking databases (see Chapter 3 page 140).

In the Template Store, a graphic schema editor can be used to create and modify

database tables (see Chapter 2.12.1 page 126), define templates for maintaining

and displaying the data records (see Chapter 2.12.2 page 132) and formulating

queries for filtering the data records (see Chapter 2.12.8 page 136). To this end,

FirstSpirit implements a database abstraction layer, which maps the universal

FirstSpirit content type system on the specific database system to be used (see

Chapter 3 page140).

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 126

2.12.1 The FirstSpirit schema editor

A graphic editor for editing a schema in the FirstSpirit JavaClient is available on the

right-hand side of the window, which can be used to create the required database

schema. Depending on the configuration, a schema can use existing database

structures or can create new table structures in an existing database.

The editor is used either via the editor's toolbar or via a context menu which can be

opened in any position of the editor by right-clicking.

Figure 2-86: Database schema editor

Figure 2-86 shows the example of the database schema of the "FIRSTools" test

project's product database. It shows the products (products), product category

(product_category), product group (product_group) and product application ranges

(product_application_range) tables. It also shows, for example, that products and

product groups are linked with each other by a 1:N relationship and products and

product groups are linked by a M:N relationship.

 Especially when using an Oracle database, saving database schemes
and changes to a schema can take some time in version 4.2R4 and higher.

 Create table: this button can be used to insert a new table in the database

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 127

schema. The following window opens:

Figure 2-87: Create table

Table name: A unique name for the database table must be entered in this field.

 Create column; this button can be used to insert a new column in the activated

table. The following window opens:

Figure 2-88: Create column

Name: The column name must be entered in this field. As long as the field is empty,

Name is displayed in red lettering and the new column cannot be saved.

Data type: This combobox can be used to select the required data type of the new

table column.

Boolean: This data type enables two values: true or false. In the schema editor

this data type is given an xs: boolean.

Date: This data type is used for date values. In the schema editor this data type is

given an xs: date.

Double: This data type enables the entry of floating point numbers. In the schema

editor this data type is given an xs: decimal.

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 128

FirstSpirit-Editor: This data type enables DOM editors to be used. The maximum

string length is 65535 characters. In the schema editor this data type is given an

xml.

FirstSpirit-Link: This data type enables links to be used. The maximum string

length is 65535 characters. In the schema editor this data type is given an xml.

Integer: This data type is used for whole numbers. In the schema editor this data

type is given an xs: integer.

Long: This data type is also used for whole numbers, but the value range is larger

than that of the data type integer. In the schema editor this data type is given an

xs:long.

String: This data type is used for character strings. In the schema editor this data

type is given an xs: string. The maximum number of characters allowed can also

be specified for this data type.

Options: The maximum string length for the column type String must be given in this

field. The respective value is displayed in square brackets behind the xs: string.

Generate for all languages: This option is used to enable language-dependent

input of the values by the editor. If the checkbox is selected, an individual column is

generated for each attribute in each language. It is useful if the language of the

attribute terms differs. Product pictures, for example, do not usually have to be

entered on a language-dependent basis. The columns are assigned an appropriate

language abbreviation for each language.

Allow empty value: If this option is selected the editor is allowed to create a new

data record without entering a value in this column. If an empty value is not allowed

(i.e. it is a mandatory input), the column name is displayed in red lettering in the

database schema model.

 Remove column; this function can be used to remove the individual columns of a

table in the database schema. The required column can be selected from the

combobox in the following dialog:

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 129

Figure 2-89: Remove column

 Create foreign key relation; this button can be used to establish a relation

between the activated table and another table.

The creation of a relationship is explained using the example of the product

database shown in Figure 2-86. We want to establish the relationship between the

products and product groups tables: a product group can contain several products,

they therefore have a 1:N relationship.

Therefore, first of all the product group table must be activated and in addition (with

pressed Shift key) the products table is activated (activated tables change their

border colour). If the Create foreign key relation button is now selected the first step

of the process appears in which the type of relationship must be defined. The two

tables are to have a 1:N relationship.

Figure 2-90: Create relationship – Step 1

The second window of the relationship looks like this (however, the appearance can

differ depending on the selection made in the first window):

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 130

Figure 2-91: Create relationship – Step 2

The direction of the connection is already predefined by the order in which the tables

are activated so that 1 element from the product table is connected to N elements

from the products table. If the tables were inadvertently activated in the wrong order,

the Swap source and target button can be used to change over the order. The other

information in this window can usually be accepted as suggested by the system. The

names given in the "Names of connections in object model" area are used

subsequently to follow the databases along their relations.

 Delete elements: this button can be used to delete the activated table from the

database schema. It is deleted immediately, without a confirmation prompt; any data

not saved is lost and cannot be restored.

 Properties: this button can be used to display the name of the activated table.

 Automatic layout; click this button to automatically arrange the displayed tables in

the editor.

 Load saved layout; this button can be used to undo changes to the arrangement

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 131

of the schema's tables. The last saved arrangement is displayed again.

 Zoom in; this button can be used to enlarge the display (zoom in) of the database

schema's elements.

 Zoom out; this button can be used to reduce the display size (zoom out) of the

database schema's elements.

 Normal view; this button can be used to display the elements of the database

schema with their original size again.

 Print: this button can be used to printout the database schema. The following print

preview window opens first:

Figure 2-92: Print preview

View: This combobox can be used to change the preview size of the database

schema. The possible zoom levels are 10%, 25%, 50% and 100%.

Scale: If necessary, the database schema is printed out with a reduced size. The

possible scaling levels are 10%, 25%, 50% and 100%.

Printer setup: Opens the dialog for the printer settings.

Page setup: Opens the dialog for the page settings.

The button is used to start the print job with the current settings.

 Show only usable attributes: if this tick is set, all the attributes of a table which

cannot be filled with content by the editor are hidden.

The context menu can be used to open two other functions in addition to the icon

functions:

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 132

Rename table: This function can be used to issue a new name for an existing table.

A window appears in which an existing table of the database schema can be

selected and a new name can be entered for the table. When renaming it is

necessary to note that the table templates and queries based on this table must be

adjusted.

Figure 2-93: Rename table

Rename column: This function can be used to issue a new name for an existing

column of a table. A window appears in which an existing table and column of the

database schema can be selected and a new name can be entered for the column.

When renaming it is necessary to note that the table templates and queries based on

this column must be adjusted.

Figure 2-94: Rename column

2.12.2 Table templates – Preview tab

The tab for table templates is identical to the tab for page templates with the same

name and can be edited in the same way.

For information on the "Preview" tab, see Chapter 2.5.1 page 81.

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 133

2.12.3 Table templates – Properties tab

The tab for table templates is identical to the tab for page templates with the same

name and can be edited in the same way.

For information on the "Properties" tab, see Chapter 2.5.2 page 83.

The "Hide from selection list" option (cf. Chapter 2.5.2) is not available for table

templates.

2.12.4 Table templates – Form tab

Analogous to the page and section templates (cf. Chapter 2.5.3 page 86), the input

elements for the editor are defined in the form area.

Figure 2-95: Table template – "Form" tab

The "FirstSpirit Online Documentation" contains a list of all available input elements.

The input elements are explained with all their attributes and a schematic example

under the menu item Template development – Forms.

2.12.5 Table templates – Mapping tab (up to and including V4.0)

The input elements and table columns are then linked with each other in the

mapping area (Chapter 2.12.5 page 133).

This area is used to define the input components via which the data records are

inserted in the database tables. Each input component defined (in the Form tab) is

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 134

assigned a table column.

Figure 2-96: Table template – "Mapping" tab (new Look&Feel, view V4.1)

 Figure 2-96 shows all fields and columns available from FirstSpirit
V4.1. They are described in Chapter 2.12.6 page 135. The following fields
and columns are available up to FirstSpirit V4.0:

Variable: This column contains the name of the variables as defined in the table

template form (Chapter 2.12.2 page 132).

Type: The type of input component for the respective variable is given in this

column.

Language dependent: If the input component in the form tab is defined in multiple

languages, this is indicated by a tick in this column.

Column width: This field is used to enter the width of the column in pixels, with

which it is displayed later in the Content Store.

Language (DE/EN): This field is used to select the table column in which the content

of the input element is to be transferred. A separate column exists for each project

language. If the input component is language-independent, the same table column

must be selected here for each language. If input components are language

dependent, a separate table column must exist for each language, into which the

value is transferred.

1.31

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 135

2.12.6 Table templates – Mapping tab (from V4.1)

From FirstSpirit version 4.1 additional configuration options are available in

comparison with them of version 4.0 (see Chapter 2.12.5 page 133). They are

displayed in Figure 2-96.

Connected to table: In this field the table is shown for which the mapping settings

are valid.

Cell height (in rows): Data sets can be displayed in the related Content source (see

FirstSpirit Manual for Editors, Chapter 5) multiline. This combobox can be used to

define how many rows a cell or a data set should have in the data overview

(maximum: 10). In this way, thumbnails of pictures can be displayed in the overview

too.

Allow copy of data record: If this checkbox is activated (default setting) existing

data sets can be copied in the respective Content source by the editor. If the

checkbox is deselected only “empty“ new data sets can be created, the icon is

then disabled.

 Each row of this list corresponds to a column in the data overview of the

related Content source. Clicking on these icons the selected row can be moved one

position up or down, the related column in the data overview will be moved one

position to the left or right. In this way, more important columns can be moved to the

left. The order of the columns can be modified by the editor manually, but when the

view is refreshed the order will be reset to the setting on this tab. In contrast, the

order which is set here does not have any effects on the data entry.

Show in overview: Deselect the checkboxes in this column to hide table columns in

the data overview of the respective Content source, for example to improve the

clarity if there are many columns. In contrast, the order which is set here does not

have any effects on the data entry.

2.12.7 Table templates – Template sets tabs

These tabs are used to specify the subsequent appearance of the individual data

records, entered with the help of this table template, on the website or in other output

channels.

The tab for table templates is identical to the tab for page templates with the same

name and can be edited in the same way.

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 136

For information on the "Template sets" tab, see Chapter 2.5.4 page 87.

2.12.8 Query – Conditions tab

Several queries can be created for each content schema to limit the number of data

records for subsequent output. The conditions a data record must fulfil in order to be

included in the results list are specified in these queries.

In the "Conditions" tab a graphic editor can be used to define the required filter

criteria for a query in so-called "Wizard Mode". Several rules can be defined, which

then affect the display of the matching data records in the "Result" tab.

Figure 2-97: Query – "Conditions" tab (Wizard Mode) (new Look&Feel)

Wizard mode: If this option is disabled, the source code of the selected query is

displayed in an editor and can still be modified if necessary. A query can also be

programmed directly using this editor.

 Tags and parameters which can be used for direct coding of queries
can be looked-up in the FirstSpirit Online Documentation: section "Query part
(QUERY)" in the chapter "Function contentSelect" ("Template development"
/ "Template syntax" / "Functions" / "in the header" / "contentSelect"“).

1.31

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 137

Figure 2-98: "Conditions" tab (no Wizard Mode) (new Look&Feel)

If changes are made to the query which cannot be displayed in Wizard mode, the

query is automatically adjusted (in the editor), as soon as Wizard mode is enabled

again.

Result table: A table from the FirstSpirit schema for which output restrictions are to

be entered can be selected here. Once this selection has been made, this field is

disabled. The selection can only be removed from the whole query using the "Reset"

button (see below).

Add restriction: Press this button to add a new condition. A window opens in which

a specific column of the selected result table can be selected as the new reference.

The restricting condition can then only be defined for this reference. The specific

values which must be fulfilled can be entered in the condition column in the bottom

part of the window. To do this, the required comparative operator for the condition is

selected in the left-hand field. In the right-hand field, either a specific comparable

value can be entered or a parameter identifier can be specified for the comparable

value. This parameter is then queried for each execution so that the specific

comparable value does not have to be defined until the execution.

Reset: All conditions defined to date and query results are removed. A result table

can be selected again. A confirmation prompt appears before the reset so that data

cannot be inadvertently deleted.

Columns AND, rows OR: If this option is selected, the intersection of all column

results is always output. The individual rows of a column condition are connected by

an OR operation.

Columns OR, rows AND: If this option is selected, the collated results of all

columns is output, duplicate data records are skipped. The individual rows of a

column condition are connected by an AND operation.

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 138

2.12.9 Query – Parameter tab

Figure 2-99: Query – "Parameters" tab (new Look&Feel)

All parameters used in this query are listed in this area. If necessary, the parameters

can be set now in the Value column. I.e. the corresponding query parameters are

assigned values. With each execution, these values are then used for the query.

2.12.10 Query – Result tab

The result data records which result due to the conditions in the query and the

values assigned to the query parameters are output in this area.

Figure 2-100: Query – “Result” tab (new Look&Feel)

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 139

2.13 Workflows

Figure 2-101: Template Store tree view – Workflows

A workflow is a sequence of tasks which are worked through in a fixed, specified

structure. Both due dates and authorised groups of people can be defined for the

respective tasks. Workflows integrated in FirstSpirit are the task setting and the

release request.

For details of modelling, configuration and execution of workflows, see Chapter 4

page 152 ff.

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 140 1.31

3 Data sources in FirstSpirit

FirstSpirit has efficient mechanisms for linking databases. Within the editing

environment, the linked databases are called content or data sources. The data

records managed in the content sources can be integrated in the web pages and

seamlessly edited in FirstSpirit, without leaving the editing environment (see Chapter

3.5 page 149).

The linking of databases is available for a large number of databases and is

executed via the JDBC drivers provided by the database manufacturers. Each

database manufacturer implements their own internal structure to manage the data

stored in the database server (DBMS). These internal structures in conjunction with

the security and maintenance requirements of internal company operation have

implications for the form and configuration of the databases' connection with

FirstSpirit.

For further information on linking and configuring databases in FirstSpirit, see

"FirstSpirit Manual for Administrators", Chapter 4.8 "Database connection“.

The following chapters are intended to support the template developer on choosing

the correct connection and to explain the concepts for working with data sources

(content) in the FirstSpirit JavaClient:

Chapter 3.1 defines the terms used, as these can have different meanings within the

area of databases depending on the context.

Chapter 3.2 and 3.3 deal with the layer types used in FirstSpirit for the database

connection. The choice of layer type has diverse effects on subsequent operation,

but cannot be easily changed and should therefore be carefully considered first.

Chapter 3.5 describes the concept of content (data) sources in the FirstSpirit

JavaClient.

General recommendations for updating templates on content are discussed in

Chapter 3.6.

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 141

3.1 Terms

Many misunderstandings arise in dealing with the linking of content (data) sources in

FirstSpirit due to a large number of terms used, some with ambiguous meanings.

The manufacturers of the databases to be linked also tend to use their own

terminologies, which overlap with the FirstSpirit terminology. Therefore the terms

used in this document are clarified first:

Layer: This term is used to describe the connection configuration in FirstSpirit to a

Database Management System (DBMS). In FirstSpirit a layer can be assigned to

several FirstSpirit schemata (see below). From FirstSpirit Version 4.0, the layer types

used are "Multiproject layer" and "SingleProjectLayer":

 Multiproject layer: This layer type contains an explicit definition of the DB schema

used in the layer definition. In this case, all tables of the FirstSpirit schemata

which use this layer are stored in the given DB schema. This layer type behaves

differently under FirstSpirit Version 3.1 (see Chapter 3.2.1 page 143) and

FirstSpirit Version 4.x (see Chapter 3.2.2 page 145). In FirstSpirit Version 4.x, a

MultiProjectLayer should only be assigned to exactly one FirstSpirit schema (see

Chapter 3.2 page 143).

 Single project layer: This layer type is a new introduction in FirstSpirit Version 4.0

and does not contain any explicit definition of the DB schema to be used.

FirstSpirit automatically creates a separate DB schema for each FirstSpirit

schema. The database user given in the layer requires extensive database

permissions for this (see Chapter 3.3 page 147).

 For information about the use of the layer names from FirstSpirit
Version 4.2 see Chapter 3.4 page 148.

FirstSpirit schema: This term describes the structures and templates of data

sources (content) described in FirstSpirit. FirstSpirit schemata (or “schemes”)

therefore contain both tables and their foreign key relationships and the templates for

their generation. The table structure and data records of the FirstSpirit schemata are

deposited in a DBMS within a DB schema (see below) (see Chapter 3.5 page 149).

Exactly one layer is always assigned to each FirstSpirit schema (see Chapter 3.2

page 143 and Chapter 3.3 page 147).

DB schema: This term describes the logical area within the database in which the

tables are filed ("tablespace"). Each table within this area must have a unique name.

1.31

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 142 1.31

The term "database" is also frequently used as a technical term in DBMS. In the

layer configuration, FirstSpirit simply calls this "schema" (plural form “schemes” or

“schemata”).

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 143

3.2 Multiproject layers

The following chapters describe the use of MultiProjectLayers and discuss the

relevant differences between FirstSpirit versions 3.1 and 4.0:

 Use of Multiproject layers in FirstSpirit Version 3.1

(see Chapter 3.2.1 page143)

 Use of Multiproject layers in FirstSpirit Version 4x

(see Chapter 3.2.2 page145)

 For information about the use of the layer names from FirstSpirit
Version 4.2 see Chapter 3.4 page 148.

3.2.1 Multiproject layer in FirstSpirit Version 3.1

In FirstSpirit Version 3.1, there is only one layer type, the so-called Multiproject layer.

In FirstSpirit Version 3.1, this is capable of holding the tables of several FirstSpirit

schemata (including from different projects). A mechanism renames the tables,

ensuring that even tables with the same name from different FirstSpirit schemata do

not result in conflicts within the DB schema. If a name overlap occurs in the table

name in the DB, FirstSpirit Version 3.1 appends a number, which is increased if

overlapping occurs again. A table in the FirstSpirit schema called "category" then

becomes, e.g. "category1" in the DB schema.

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 144

Figure 3-1: Multiproject layer in FirstSpirit Version 3.1

FirstSpirit memorises this assignment in the internally managed schema definition

and can therefore correctly manage the data filed in the data source.

 Despite the convenient mechanisms of the Multiproject layer it is
advisable to explicitly assign a separate DB schema to each FirstSpirit
schema.

But in practice, the FirstSpirit schemata at least of a project are frequently placed on

a single DB schema. The reason for this is often that, unlike the recommended

procedure, database administrator support is not required. With the recommended

procedure, the database administrator must first create the corresponding DB

schema for each FirstSpirit schema in the DBMS.

However, the mechanism of assigning several DB schemata to one

MultiProjectLayer also led to unmanageable and unclear DB schemata in FirstSpirit

Version 3.1 and was therefore not continued in FirstSpirit Version 4.0. Therefore, a

Multiproject layer in FirstSpirit Version 4.x can no longer be assigned to several

FirstSpirit schemata, without provoking conflicts in the database (see Chapter 3.2.2

page 145). In FirstSpirit Version 4.0, the SingleProjectLayer was introduced as a

replacement for the flexible assignment of FirstSpirit schemata to DB schemata (cf.

Chapter 3.3).

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 145

3.2.2 Multiproject layer in FirstSpirit Version 4.0

The so-called Multiproject layer also exists under FirstSpirit Version 4.0. Its name

has been retained from the historical use under FirstSpirit Version 3.1 (cf. Chapter

3.2.1), although the mechanism for avoiding conflicts if tables with the same name

occur in different FirstSpirit schemata no longer exists under FirstSpirit Version 4.0.

As a replacement, the Single project layer was introduced in FirstSpirit Version 4.0

(cf. Chapter 3.3).

 If the Multiproject layer in FirstSpirit Version 4.0 is assigned to several
FirstSpirit schemata, a conflict occurs in the event of tables with the same
name within the FirstSpirit schemata, because these are assigned to the
same table in the DB schema (cf. Figure 3-2).

Figure 3-2: Problematic use of a Multiproject layer

A special case here is the system table "transaction_counter", which is created as a

concealed table for each FirstSpirit schema. Here, FirstSpirit Version 4.0 tries to

remove the aforementioned conflict by transferring the tables into one table.

 We always advise against mixing two FirstSpirit schemata in one DB
schema. Multiproject layers should always be assigned to one FirstSpirit
schema only.

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 146

Correct use of Multiproject layers is shown in Figure 3-3. A separate Multiproject

layer is created for each FirstSpirit schema and therefore a separate DB schema is

filed in the corresponding tables.

Figure 3-3: Correct use of separate Multiproject layers

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 147

3.3 Single project layers

The Single project layer was introduced with FirstSpirit Version 4.0 to enable

FirstSpirit schemata to be created in FirstSpirit Version 4.x without the assistance of

a database administrator.

Unlike the Multiproject layer, with the Single project layer an explicit DB schema is

not given for saving the tables in the layer definition. FirstSpirit creates the DB

schemata belonging to the FirstSpirit schemata independently in the DBMS. The

name of the DB schemata is made up of the schema and project ID (cf. Chapter

2.2.1.9 page 31).

For use of a Single project layer, the user named in the layer requires the necessary

permissions to create DB schemata in the DBMS. In many DBMS this is only

possible with permissions similar to those of a database administrator.

Figure 3-4: Single project layer under FirstSpirit Version 4.0

 For information about the use of the layer names from FirstSpirit
Version 4.2 see Chapter 3.4 page 148.

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 148 1.31

3.4 Layer types and their names from FirstSpirit Version 4.2

The name of the layer types for the database link in FirstSpirit 4.0 led to

misunderstandings during use in the past. Therefore, the name is changed with the

introduction of FirstSpirit Version 4.2. The familiar function is retained – it is not

necessary to adjust existing projects.

Version 4.0 and 4.1 from Version

4.2

Description

Multi project layer Default layer This layer type contains an explicit definition of the DB

schema used in the layer definition. In this case, all

tables of the FirstSpirit schemata which use this layer

are stored in the given DB schema. In a FirstSpirit

project to which default layers only are assigned, a

FirstSpirit user cannot create any new additional

schemata. Only the FirstSpirit administrator can add

further default layers to the project. A default layer

should always be assigned to precisely one FirstSpirit

schema only.

Single project layer DBA layer This layer type is a new introduction in FirstSpirit Version

4.0 and does not contain any explicit definition of the DB

schema to be used. FirstSpirit automatically creates a

separate DB schema for each FirstSpirit schema. With

this, FirstSpirit users are now also able to create further

schemata. However, for most DBMS, this requires

comprehensive DBA rights (DBA = Database

Administrator).

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 149

3.5 Data (content) sources in the FirstSpirit JavaClient

Figure 3-5: Concept – Schemes, table templates, views of databases

FirstSpirit schema: The FirstSpirit JavaClient can be used either to create a new,

empty database schema (content schema) (see Chapter 2.2.1.9 page 31) or to

create a database schema (content schema) from an existing database (see Chapter

2.2.1.10 page 35).

After a new schema has been created, the graphic editor in the FirstSpirit JavaClient

can be used to create the tables required in the selected database and to relate

them to each other (see Chapter 2.12.1 page 126). The columns which are to be

subsequently entered by the editor must be given for each table. A column with the

necessary primary key is automatically generated when the table is created.

Instead of generating an empty schema node (cf. Chapter 2.2.1.9 page 31), a new

schema node can also be created in the FirstSpirit project on the basis of the

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 150 1.31

existing tables and relationships of a database (see Chapter 2.2.1.10 page 35).

Depending on the settings of the project administrator for the configured database,

the changes within a schema in the JavaClient, for example, inserting a table, can be

accepted in the physical database ("Sync") or can be prevented ("no Sync").

Table template: A table template can be created (below the schema node) for each

table modelled within the schema. These table templates are used to define the input

components via which the editor can subsequently enter data in the corresponding

tables and via which input element the editor can accept data of a reference table

(see Chapter 2.12.4 page 133)). The "Mapping" tab can also be used to assign the

content entered via the input component to a database table of the physical

database (see Chapter 2.12.5 page 133). The mapping therefore defines the storage

location of the content in the database. The template sets tab can be used to define

the appearance of the data records for generation in the individual output channels

(see Chapter 2.12.6 page 135).

Queries: In addition, queries can be created for each database schema (see

Chapter 2.12.8 page 136). Restrictions are made in these queries, which are then

used to evaluate the result table. The restrictions made are then taken into account

when the data records of a table are output.

View of a database: Within the Content Store of FirstSpirit, the editors work on a

"view" of the database. To this end, a table is created with a link to the database

table. The data in this table is displayed in tabular form. Depending on the project

administrator's settings for the configured database, the editors can either access

the database content with read access only and output this sorted on a page, for

example as the result of a query ("Content Projection"), or also access with write

access and therefore insert new content in the database. If write access is allowed,

new data records can be inserted or existing data records can be changed. To do

this, the input elements defined in the table template are available to the editor (see

Chapter 2.12.4 page 133).

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 151

3.6 Template update on data (content) sources

The "Template update" function can be used to exchange templates between

FirstSpirit projects (see Chapter 2.3.2 and Chapter 2.3.3). The template update is

capable of both updating the templates and of creating new templates. FirstSpirit

schemata are handled as complete, self-contained template objects. This means

that, apart from the schema definition, all table templates and queries are also

included in the update of a FirstSpirit schema. It is not possible to update individual

parts of these template objects only.

When an existing FirstSpirit schema is updated the template update adopts the layer

definition of the existing FirstSpirit schema. However, if the template update creates

a new FirstSpirit schema, the layer definition of the original project is adopted. This is

the required behaviour in rare cases only.

 We recommend using the export/import function in the context menu to
transfer FirstSpirit schemata from one project into another. In this case you
can explicitly select which layer should be used. In addition, there is also the
option of transferring the data stored in the data source (see Chapter 2.3.4.6
page 61 .

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 152

4 Workflows

A workflow is a sequence of tasks which are worked through in a fixed, specified

structure. Both due dates and authorised groups of people can be defined for the

respective tasks. Workflows integrated in FirstSpirit are the task setting and the

release request.

With the help of a graphic workflow editor, project-specific workflows can be created

in the Template Store (see Chapter 4.2 page 160).

Instances of these workflows can then be started, context-bound, on each element

within the FirstSpirit project or without context via the FirstSpirit menu bar. Each

instance of a workflow must be run through according to the rules defined in the

workflow.

The "Workflows" root node in the Template Store contains an overview of all open or

already closed workflows (instances) within the project (see Chapter 4.1 page 152),

whereby a filtered view is also possible depending on various search criteria (see

Chapter 4.1.1 page 154). Tasks can be edited (see Chapter 4.1.2 page 156) and

closed again (see Chapter 4.1.3 page 159) within the overview.

For further information on starting and passing on workflows, see "FirstSpirit Manual

for Editors", Chapter 12 "Workflows in the FirstSpirit JavaClient“ and "FirstSpirit

Manual for Editors (WebClient)".

4.1 Overview

An overview of all open or already closed workflows (instances) within the project is

displayed on the "Workflows" root node in the Template Store.

 This view has been enhanced to include a search function. Whereas before

it was only possible to display all workflows or tasks on the "Workflows" root nodes in

the Template Store, a filtered view is now possible too (by workflow, element ID,

user, modifier, etc.) (see Chapter 4.1.1 page 154). (This function is not released until

FirstSpirit Version 4.1.)

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 153

Figure 4-1: Workflows overview

 Click the icon to open the task list for editing the task (see Chapter 4.1.2 page

156).

 Click the icon to close the selected task (see Chapter 4.1.3 page 159).

 Click the icon to open the "Search for tasks" dialog for defining a task search

filter (see Chapter 4.1.1 page 154).

 Click the icon to cancel the filtered display and to display the whole view instead

(see Chapter 4.1.1 page 154) .

The (filtered or unfiltered) workflows are listed in the table. The following information

is available for each task:

Workflow: Name of the workflow which has been started.

Status: Status of the current instance of the workflow.

Priority: The current priority defined for editing or dealing with the task.

Initiator: Login name of the modifier who started the workflow.

Start time: Date and time when the workflow was started.

Context: If the workflow was started on an element, for example a page or a

medium, this element is displayed. Double-click the row to switch the context directly

to the corresponding element in the tree view.

ID: If the workflow was started on an element, for example a page or a medium, the

ID of the element is displayed. Double-click the row to switch the context directly to

the corresponding element in the tree view.

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 154

Deadline: If the current task has been scheduled with a fixed date (deadline), the

deadline is displayed here.

If a (context-dependent) task within the table is double-clicked, the focus in the

JavaClient changes directly to the element in the tree view on which the task was

started.

Multiple selections can be made within the table by simultaneously pressing the

SHIFT and CTRL key.

Sort by column content: Click the respective column heading to change the way in

which the entries are sorted in the table. The first time any column heading is clicked

the entries are sorted in ascending order, if it is clicked again they are sorted in

descending order (according to column content). The sort is indicated by an icon

behind the column heading:

Figure 4-2: Sort by column content (ascending order)

A third click cancels the sorting.

4.1.1 Search for tasks (filtered overview) (from V4.1)

 This function is released for FirstSpirit Version 4.1 and higher only.

The search function of workflows in the FirstSpirit JavaClient has been enhanced.

Whereas before it was only possible to display all workflows or tasks on the

"Workflows" root nodes in the Template Store, a filtered view is now possible too (by

workflow, element ID, user, modifier, etc.).

The different filter options can be set using the "Search for tasks" dialog. The dialog

is opened by clicking the icon:

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 155

Figure 4-3: "Search for task" dialog for filtering the view

Open schedules: All "open tasks" are displayed. Open tasks are all those which

have not yet reached the end status (of the workflow).

Closed schedules: All "closed tasks" are displayed. Closed tasks are all those

which have reached the end status (of the workflow).

Number of results: The number of tasks found which match the filter criteria

entered can be limited to a maximum number of results. If more results match the

search criteria than allowed as a maximum, the most up to date results are no longer

shown.

Element ID: Unique ID of the object on which the workflow was started. If it is a

context-less workflow, an empty field is displayed.

Workflow: Name of the workflow which has been started. Depending on the

"Preferred display language" in the "Extras" menu, either the unique reference name

or the language-dependent display name of the workflow is displayed.

Initiator: Login name of the modifier who started the workflow. The search for

substrings is supported. This means the search result does not have to exactly

match the search term. Instead, all results which contain the search term are

displayed.

Status: Status of the current instance of the workflow. The search for substrings is

supported. This means the search result does not have to exactly match the search

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 156

term. Instead, all results which contain the search term are displayed.

Status initiator: Login name of the modifier who switched the current instance of the

workflow to its current status. The search for substrings is supported. This means the

search result does not have to exactly match the search term. Instead, all results

which contain the search term are displayed.

Start date from: The icon can be used to open the date selection component. A

date for the search start date can be entered here. The date on which a workflow

was started is always decisive.

If a start date only is entered, all workflows with the currently given date are sought.

Start date to: The icon can be used to open the date selection component. A

date for the search end date can be entered here. The date on which a workflow was

started is always decisive.

 Click this button to filter the tasks according to the criteria entered. Click the

 icon to cancel the filtered display and to display the whole view instead.

4.1.2 Edit tasks

Click the icon in the "Workflows overview" dialog (see Figure 4-1) to open the

task list. The task selected within the overview is also marked in the tasks list.

Provided the user has the necessary permissions to switch the workflow, the

transitions in the bottom part of the task list are displayed directly.

1.31

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 157

Figure 4-4: Task list

For performance reasons, from 4.2R4, only 25 tasks are initially displayed in the task

list (Ctrl + T or "Tasks" menu / "Tasks list") on the "Open Tasks" and "Initiated

Tasks" tabs. If more tasks exist, they can be shown using the Display older tasks

button.

Coloured markings indicate for example if the logged-in user is selected as editor of

the task directly or because of his group membership (red lettering), if the logged-in

user is not selected as editor (black lettering) or if it is an invalid task (red

background colour).

Invalid tasks, e.g. produced because an object on which a workflow is active is

deleted, are visualised with a red background in the tasks list from 4.2R4. These

cannot be set to the next status, they can only be closed using the "Close task"

button. If the task can be repaired, e.g. the deleted object for which the workflow still

exists is restored, the "Repair task" button appears. This is used to reset the task,

the status colour and write protection.

Multiple selections can be made by simultaneously pressing the SHIFT and the

CTRL key (all tasks can be selected using the key combination CTRL + A). If several

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 158

tasks within the list are selected, they can be passed on together in one step (see

Chapter 4.11.4 page 238).

The task list can also be opened using the "Tasks" menu or by clicking the icon in

the FirstSpirit toolbar.

For further information on the task list, see "FirstSpirit Manual for Editors".

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 159

4.1.3 Close tasks

Under certain conditions, it can be necessary to close an open task although the end

status has not yet been reached. A task can be closed by clicking the icon in the

"Workflows overview" dialog (see Figure 4-1).

The function corresponds to the "Close task" button available within the task list.

Multiple selections can be made by simultaneously pressing the SHIFT and the

CTRL key (all tasks can be selected using the key combination CTRL + A). If several

tasks within the list are selected, they can be deleted together in one step.

Before the tasks are deleted a confirmation prompt appears.

 Closed tasks cannot be restored.

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 160

4.2 Modelling workflows

4.2.1 Create a workflow

New, project-specific workflows are created using the context menu on the

"workflows" root node in the Template Store or on a folder within this node. Click the

"Create new workflow" entry to create a new workflow within the tree view.

A graphic editor for modelling a new workflow opens in the right-hand side of the

Editing window. As a default, a start state is displayed there with a transition to the

first activity of the workflow and an end state.

Figure 4-5: Initial status after creating a new workflow

The workflow can now be modelled within the editor by adding further statuses,

activities and transitions (see Chapter 4.2.3 ff.).

Each workflow must begin with a start state and end with an end state.

The editor is used either via the toolbar (see Chapter 4.2.2 page 161) or via a

context menu, which can be activated in any position of the editor.

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 161

4.2.2 Toolbar of the workflow editor

Figure 4-6: Toolbar of the workflow editor

 Create new activity: A new activity is created by clicking the

icon (or the keyboard shortcut A) in the editor (see Chapter 4.2.3.2 page 163).

 Create new status: A new status is created by clicking the icon

(or the keyboard shortcut S) in the editor (see Chapter 4.2.3.1 page 162).

 A new transition is created by clicking the icon (or the

keyboard shortcut T) in the editor (see Chapter 4.2.3.3 page 163).

 Change properties, click this icon to open the properties window of the activated

workflow element.

 Cut element, click this icon to cut all the selected elements of the workflow editor

and copy it into the temporary memory. (Several elements can be selected by

dragging a frame with the mouse.)

 Copy element, click this icon to copy all the selected elements of the workflow

editor into the temporary memory.

 Paste element, click this icon to paste the elements copied into the temporary

memory into the workflow editor.

 Delete, this icon can be used to remove an element from the workflow process.

 Zoom 1:1; this icon can be used to display all the elements of the workflow editor

in their original size again.

 Zoom in; this icon can be used for enlarged display of the workflow editor's

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 162

elements.

 Zoom out; this icon can be used for reduced size display of the workflow editor's

elements.

 Print, this icon (or the keyboard shortcut Ctrl + P) can be used to print out the

workflow graphic. A window opens for the print settings (see Chapter 4.2.8 page

168).

4.2.3 Elements of the graphic workflow editor

Three different object types are available within the editor, with which the new

workflows can be modelled and configured:

 States or status (see Chapter 4.2.3.1 page 162).

 Activities (see Chapter 4.2.3.2 page 163).

 Transitions (see Chapter 4.2.3.3 page 163).

4.2.3.1 State / Status

Figure 4-7: Status (states) in the workflow editor

States, also called status, are represented by circles. A state is the result of an

(automatic or manual) activity. States indicate the status a workflow can currently

have (i.e. the state it is in).

 A new state is created by clicking the icon (or the keyboard

shortcut S) in the editor. Depending on the configuration, the status can be:

 a start state (has outgoing transitions only),

 an end state (has incoming transitions only)

 or a normal status (has incoming and outgoing transitions).

The display of the different types is highlighted in the editor by a dark border (in start

and end status) (see Figure 4-7).

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 163

4.2.3.2 Activity

Figure 4-8: Activities in the workflow editor

Activities are represented by rectangles. An activity consists of the performance of a

task (e.g. "Check") and the initiation of an action (e.g. clicking the "Direct release"

button).

An activity can either be executed manually by a user, or automatically by a script

(see Chapter 4.5.4 page 184).

Manual activities are identified in the editor by an "M" in the top right-hand corner

(see Figure 4-8 – left-hand activity), automatic activities are identified in the editor by

an "A" in the top right-hand corner (see Figure 4-8 – right-hand activity).

 A new activity is created by clicking the icon (or the keyboard

shortcut A) in the editor. Depending on the configuration, the activity can be

executed:

 Manually (by a modifier)

 Automatically (by a script).

4.2.3.3 Transition

Figure 4-9: Transition in the workflow editor

Transitions are represented by arrows. Transitions form the connection between an

activity and a status. The permissions for a workflow model are defined here.

Cancelling an action results in the previous status (before connecting the transition).

The cancellation does not have to be modelled separately in the workflow.

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 164

 A new transition is created by clicking the icon (or the

keyboard shortcut T) in the editor.

4.2.4 Keyboard shortcuts in the Workflow Editor

A Create a new activity.

T Create a new transition

S Create a new status.

Ctrl + P Request a print preview of the workflow model.

Alt + Enter
Open the Properties dialog box for a selected element

within the workflow model.

Ctrl + Z Undo

Ctrl + Shift + Z Restore

Ctrl + X Cut

Ctrl + C Copy

Ctrl + V Paste

Del Delete

4.2.5 Editor accessibility features

An element is selected by simply clicking it within the editor. This element can be

moved to the required place in the editor by left-clicking and keeping the mouse

button pressed. Incoming and outgoing transitions follow the moved element.

The mouse can be used to drag a border around several elements. In this way,

several elements can be moved, cut or copied simultaneously.

If a status is selected in the workflow editor, the New activity function causes the

new activity to be automatically connected to this status by a transition. Analogous to

this, if an activity is selected, the New status function creates a transition between

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 165 1.31

the activity and the new status.

Transitions are automatically always straight connections from the source to the

target. Control points (knots) can be inserted on a transition, above all to make the

representation of loops clearer. The connection between two control points is a

straight line, but any number of control points can be inserted.

To insert a control point, the transition must be right-clicked at the required position.

If a control point is right-clicked, this control point is removed again.

A control point can be moved to the required position within the editor with a left-click

and by keeping the mouse button pressed.

4.2.6 Modelling rules

 Each workflow has exactly one start state.

 The start state can follow exactly one outgoing transition. As a selection cannot

take place in the start state, the first outgoing transition is always taken into

consideration.

 Transitions represent a targeted (directional) connection between exactly one

source and exactly one target element.

 The source and target element of a transition can only be states and activities,

not other transitions.

 Transitions can always only exist between one state and one activity, never

between two states or two activities.

 States and activities can have any number of incoming and outgoing transitions

(exceptions: start state and end state).

 States and activities should always have one unique (for the workflow) name.

 Transitions may have a name, this must then be unique in relation to its start

element.

 Each workflow as a fixed, defined set of end states; at least one end state must

be defined.

 An end state may not have any outgoing transitions.

4.2.7 Examples of modelling rules

 A state is always followed by an activity. The state and activity are connected

by "transitions" and require a unique name. A name can be allocated for

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 166

transitions, it must then be unique in relation to its start element.

 Figure 4-10: Status and activities modelling rule

 Several activities can take place in a state. Equally, several activities can

lead to a state.

 Figure 4-11: One status, several activities modelling rule

1.31

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 167

 An activity can lead to several states. Equally, several states can initiate one

activity.

 Figure 4-12: Several statuses, one activity modelling rule

 A script can only be attached to one (automatic) activity, whereby the

connection line is not directional.

 Figure 4-13: Activities and scripts modelling rule

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 168

4.2.8 Print preview for workflow models

 A print preview of the modelled workflow can be requested within the

workflow editor by pressing the Print button (or using the keyboard shortcut Ctrl + P)

(see Chapter 4.2.2 page 161). A window opens for the print settings.

Figure 4-14: Print preview

View: The combobox can be used to adjust the percentage size of the pages in the

preview window.

Scale: The combobox can be used to select the percentage size of the workflow

model on the print preview page. If the display is large (does not fit on one page),

several preview pages are displayed.

Printer setup: Click this button to open a window in which the print settings can be

made.

Page setup: Click this button to open a window in which several settings can be

made for the printed pages.

Print: Click this button to start printing.

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 169

 Click this button to cancel printing.

4.3 Error handling within workflows

4.3.1 General error handling

On starting: If an exception occurs when the workflow is started, for example,

because the user does not have permission to connect the transitions of a workflow,

the workflow is not started on the object.

On executing transitions: A different situation exists if the workflow has already been

started and an error or an exception occurs while a transition is being executed. In

this case, the status before executing the transition, i.e. the last "error-free" status is

retained. If an error status is defined within the workflow model, the element is in

error status after the exception occurs (see Chapter 4.3.2 page 169).

4.3.2 Error status (from V4.1)

 This function is released for FirstSpirit Version 4.1 and higher only.
Screenshots are therefore displayed in the new "LightGray" Look & Feel. The
display in the "Classic" Look & Feel can differ slightly.

There are many reasons for the occurrence of exceptions while executing a

workflow, for example an incorrect configuration in the workflow's model or a script

error in an appended script. An optional error station is available within the modelling

of workflows to reliably intercept these errors and to prevent an instance of the

workflow from being in an inconsistent state after connecting a transition.

To this end a normal status is simply added to the model. The type "Error" must now

be enabled in the "Properties" dialog of the status:

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 170

Figure 4-15: Configure error status

 The status is then indicated in the model by a red boundary:

Figure 4-16: Error status in the model

The error status may not be switched via a transition, i.e. analogous to the start

status it has outgoing transitions only. Error handling within the workflow is modelled

via these outgoing transitions (see Figure 4-18).

If an exception now occurs at any point within the workflow, the workflow's instance

immediately reaches the error status.

The error status intercepts all exceptions which occur within the implementation of

the workflow, including those which are not handled within the workflow. Examples of

handled and unhandled exceptions are described in Chapter 4.3.3.

After the error is resolved the workflow can be forwarded to the following status

(according to the workflow model).

The task list provides an overview of all instances of the workflow which have been

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 171

incorrectly executed:

Figure 4-17: Task list showing tasks with error status

The tasks can be sorted by their current status by clicking the table heading "Status".

Each workflow can only have one error status. If a status is defined as an error

status, although an error status already exists in the workflow model, the first status

is automatically reset to "normal" type.

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 172

4.3.3 Example: Workflow "Error" (from V4.1)

Figure 4-18: Example of workflow "Error"

The workflow consists of the "errortest" workflow and the corresponding scripts:

"errorshow", "errortest1" and "errortest2". The workflow is made available for

importing into the Template Store ("Workflows" node) in the form of a compressed

Zip file.

Script: errortest1:

//!Beanshell

throw new IllegalArgumentException("Error test 1");

The first script "errortest1" throws an unhandled IllegalStateException. This

exception is not handled in the workflow; the result is "error" status instead of "end"

status.

Script errortest2:

//!Beanshell

context.gotoErrorState("Error test 2",
new IllegalArgumentException("Error test 2"));

The second script "errortest2" shows the error handling within a script. If an

exception occurs, the instance of a workflow is switched directly to error status via

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 173

context.gotoErrorState(...).

Script errorshow:

import de.espirit.firstspirit.common.gui.*;
import de.espirit.firstspirit.access.*;

errorInfo = context.getTask().getErrorInfo();

if (errorInfo != null) {
 text = new StringBuilder("<html>Error information:
");
 text.append("");
 text.append("User: " + errorInfo.getUserLogin() + " (" +
errorInfo.getUserName() + ")");
 text.append("Comment " + errorInfo.getComment());
 text.append("Activity: " + errorInfo.getErrorActivity());
 text.append("Error: " + errorInfo.getThrowable());
 text.append("ErrorInfo: " + errorInfo.getErrorInfo());
 text.append("");
 CMSDialog.showErrorDialog(text.toString());
} else {
 CMSDialog.showInfoDialog("No error information available.");
}

context.doTransition("->Main");

 An unpublished (untested) API function ("CMSDialog") is used within
the example. But the call can be replaced by the Java Swing class
JOptionPane, e.g.:
JOptionPane.showMessageDialog(null,"Hello " + userName);

The "errorshow" script shows the error information via an error dialog. If an error

occurs, the dialog is automatically opened by the workflow within the scope of the

error handling. The dialog contains relevant information for correcting the error (e.g.

the user who started the workflow, the activity which led to the error, etc.):

Figure 4-19: Dialog with relevant error information

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 174

After showing the dialog, the workflow instance is automatically switched back to

"main" status:

4.4 Form support for workflows (form)

Forms can be used within workflows to enter content. The forms are defined in the

workflow within the "Form" tab:

Figure 4-20: Form tab (workflow model)

During the execution of the workflow, the modifier can enter values using the input

components defined in the form area:

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 175

Figure 4-21: Form within the execution

The stored values can be output again within the workflow at a later date:

Figure 4-22: Information dialog with form content

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 176

4.4.1 Example: Workflow "GUI"

A "guitest" script is executed on the activity to display the forms within the workflow

example.

Figure 4-23: "GUI" workflow example

Script "guitest":

//!Beanshell

import de.espirit.firstspirit.common.gui.*;

import de.espirit.firstspirit.access.editor.*;

se = context.getStoreElement();

context.showActionDialog();

transition = context.getTransitionParameters();

data = context.getData();

if (transition.getTransition() != null) {

 // display selected values

 name = data.get("name").getEditor().get(EditorValue.SOLE_LANGUAGE);

 fruit = data.get("fruit").getEditor().get(EditorValue.SOLE_LANGUAGE);

 vegetable =
data.get("vegetable").getEditor().get(EditorValue.SOLE_LANGUAGE);

 // save selected values

 lastSelection = data.get("lastSelection").getEditor();

 lastSelection.set(EditorValue.SOLE_LANGUAGE, name + ", " + fruit + ", " +
vegetable);

 CMSDialog.showInfoDialog(name + " has selected " + fruit + " and " +
vegetable);

 // do transition

 context.doTransition(transition.getTransition());

} else {

 CMSDialog.showInfoDialog("You have not selected any transition.");

}

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 177

 An unpublished (untested) API function ("CMSDialog") is used within
the example. But the call can be replaced by the Java Swing class
JOptionPane, e.g.:
JOptionPane.showMessageDialog(null,"Hello " + userName);

1.31

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 178

4.5 Properties of a workflow (configuration)

4.5.1 General properties

Figure 4-24: Properties tab (workflow model) (new Look&Feel)

 Keyboard shortcut: In this field, a unique keyboard shortcut can be defined

for each workflow. In this case the workflow no longer has to be started or switched

via the context menu or the "Tasks" menu but instead can be opened directly via the

defined keyboard shortcut. The cursor must be located within the field to define a

new keyboard shortcut. It is then sufficient to enter the required key combination via

the keyboard. The input is then copied into the input field. Text input is not possible.

To change the keyboard shortcut, position the cursor in the field again and then call

the new key combination. Press the "Esc" key to delete a defined keyboard shortcut

for the workflow.

 This function is released for FirstSpirit Version 4.1 and higher only.

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 179

 Keyboard shortcuts can only be used for context-bound workflows.

Workflow usable in WebEdit: If the checkbox is selected the workflow can be

executed not only in the JavaClient, but also in the WebClient.

 NO dialogs can be shown within a script in the WebClient. If, within the
workflow's script, a call of the form:
CMSDialog.showErrorDialog(...) or JOptionPane.showMessageDialog(...) is
used, an error will occur if the workflow is executed in the WebClient.

Workflow without context: If the checkbox is selected, the workflow can be started

without a context on one (or several) objects. The standard "task" workflow can, for

example, be started without context.

Show logic: Show logic can be used to show or hide workflows depending on

specific properties (see Chapter 4.5.2 page 179).

4.5.2 Show logic for workflows (from V4.1)

 This function is released for FirstSpirit Version 4.1 and higher only.

Show logic can be assigned in the "Properties" tab of a workflow in the Template

Store. It can be used to show or hide workflows depending on specific properties.

The show logic relates to the starting of the workflow only (not its visibility within the

Template Store). If the show logic prevents the starting of a workflow, for example at

a specific time for for a specific group, this workflow is no longer displayed via the

context menu (for context-bound workflows) and via the "Tasks – Start Workflow"

menu function (for context-less workflows).

Show logic is realised for a specific project using a BeanShell script. In this way,

specific view options can be stored for each workflow.

Possible applications:

 Workflows may only be executed within a specific period (e.g. Mondays from

8.00 – 9.00 a.m. only)

 Workflows may only be executed by a specific user or a specific group (cf. Figure

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 180

4-24 "Editors" group). This case can also be realised by configuring the

permissions for execution of a workflow, but that is only possible with context-

bound workflows. Viewing and hiding can be realised for context-less workflows

using the view logic.

 Workflows may be viewed for certain elements only, e.g. picture media only.

Depending on the number of picture media, configuring via the permissions to

execute a workflow on the individual elements would be correspondingly

extensive. In this case it is therefore easier to realise this using the workflow's

view logic.

Workflow always active: This checkbox can be selected if the show logic is to be

disabled. In this case the workflow is always shown, regardless of the show logic.

The deposited show logic is no longer evaluated, but is retained and can be

reactivated by deselecting the checkbox.

 If it is a context-bound workflow, in addition to the view logic, the
permission to start the workflow on the element is also evaluated. If the user
does not have permission to start the workflow the workflow is not displayed,
regardless of the show logic.

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 181

4.5.3 Properties of a status

If a status is selected within the workflow editor, the "Properties" window can be

requested by clicking the icon, using the context menu, with the key combination Alt

+ Enter or by double-clicking (see Chapter 4.2.2 page 161). Settings can then be

made for the selected element using the "Common" and "Colour identifier" tabs.

4.5.3.1 Common tab

Figure 4-25: Properties of a status (common)

Name: A unique name for the selected state must be entered in this field (character

limit: <= 40 characters).

Duration: A duration, during which a workflow can remain in the current state before

a message is sent to the responsible users or groups, can be entered here.

Responsible: The responsible users or groups who are to be notified if the duration

is exceeded are listed in this field. Click the icon to open another window in

which the responsible persons can be selected from a list.

For details of group or user selection, see FirstSpirit Manual for Editors, Chapter

13.2.4 "Change authorised groups / users".

Write lock: If this option is enabled, edit mode is locked for the corresponding object

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 182 1.31

for as long as it has this status (see Chapter 4.7 page 208).

Type: The current state can be defined here as a start or end node. Each workflow

requires exactly one Start state and at least one End state (see also Chapter

4.2.3.1 page 162).

 Normal state: Default setting, applies to all states which are not start or end

states.

 Start: Describes the state of an object with which the workflow is started. The

start state is used to select the authorised users who may switch the future status

of a current workflow instance (see Chapter 4.6 page 194)

o Manual editor (per action)

(see Chapter 4.6.2.1 page 198)

o Automatic editor by rights

(see Chapter 4.6.2.2 page 198)

 End: Describes a possible state in which an object can be after the workflow has

finished. It is also possible to define whether the object is to be released as soon

as this end state is reached.

 Error: (from V4.1) This type is used for error states (see Chapter 4.3 page 169).

Description: An explanatory comment on the current state can be entered in this

field. This comment is displayed as a tooltip in the workflow editor.

From FirstSpirit Version 4.2 language-dependent display names and descriptions

can be added by means of the fields Display name and Description. These are the

editing languages (not the project languages). Editing languages are defined for a

project by the project administrator and can then be configured by the editor using

the "Extras – Preferred Display Language" menu. The display name is displayed to

the editor, for example, in the workflow dialogues (labelling of the buttons of the

transition dialogue, Help and History tabs), as entries of the context menu for

starting/switching workflows, the description is used as tooltip and on the Help tab. If

no display name is defined, the unique name will be displayed. If there is no

description, the text of the field Comment is displayed.

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 183

4.5.3.2 Colour Identifier tab

Figure 4-26: Properties of a status (Colour identifier)

The required colour identifier for the current state can be selected in this tab using

the colour schema. The object in the tree structure of the FirstSpirit client (on which

the workflow was started) is highlighted by this colour as soon as the instance of the

workflow has reached the corresponding state.

To make it easier to subsequently find a previously selected colour, all colours which

have already been selected once within the workflow are listed in the left-hand part

of the window.

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 184

4.5.4 Properties of an activity

If an activity is selected within the workflow editor, the "Properties" window can be

requested by clicking the icon, using the context menu, with the key combination Alt

+ Enter or by double-clicking (see Chapter 4.2.2 page 161). Settings can then be

made for the selected element using the "Common" and "E-mail" tabs.

4.5.4.1 Common tab

Figure 4-27: Properties of an activity (common)

Name: A unique name for the selected activity must be entered in this field

(character limit: <= 40 characters).

Script: The combobox can be used to select a script (from the project), which is

executed as soon as this activity is called. Automatic execution must be selected if

the required activity is to be executed by a script (see "Execution").

Execution: Here it is defined whether an activity is to be executed manually by a

user or automatically by the system (cf. Chapter 4.2.3.2 page 163):

 Manual: When a manual activity is executed, a dialog appears, with which the

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 185 1.31

workflow (instance) can be forwarded.

 Automatic: Automatic activities do not expect any user interaction and are

executed as soon as one of the upstream states in the model is reached (i.e. the

action is triggered by the system and not by the user). An automatic action (and

therefore any coupled script) is therefore executed immediately after reaching a

state. The script can automatically execute the necessary check as well as

advancing the workflow (instance).

Description: An optional explanatory comment for this activity can be entered here.

From FirstSpirit Version 4.2 language-dependent display names and descriptions

can be added by means of the fields Display name and Description. These are the

editing languages (not the project languages). Editing languages are defined for a

project by the project administrator and can then be configured by the editor using

the "Extras – Preferred Display Language" menu. The display name is displayed to

the editor, for example, in the workflow dialogues (labelling of the buttons of the

transition dialogue, Help and History tabs), as entries of the context menu for

starting/switching workflows, the description is used as tooltip and on the Help tab. If

no display name is defined, the unique name will be displayed. If there is no

description, the text of the field Comment is displayed.

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 186

4.5.4.2 E-mail tab

Figure 4-28: Properties of an activity (E-mail)

Send e-mail: If the checkbox is selected, an e-mail is sent to the selected recipients

(see "Mailing List"), as soon as the activity has been executed.

Mailing list: Here you can select to which persons an e-mail is to be sent.

 Beneficiary: Persons who are authorised to forward the workflow into the

following status. These permissions are either defined through the permissions to

switch the transition directly within the workflow model (see Chapter 4.5.5.2 page

190) and/or through the permissions to switch a transition on an object, on which

the workflow instance was started.

 Task creator: The user who started the instance of the workflow.

 Last editor: The user who switched the workflow instance into its current status.

 List: Click the icon to open another window in which the required persons or

groups can be selected from a list.

For details of group or user selection, see FirstSpirit Manual for Editors, Chapter

13.2.4 "Change authorised groups / users".

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 187 1.31

 Editor: The person currently editing or working on the workflow.

Title: The text of the Subject line in the e-mail is entered here.

Text: The message to be sent to the recipient is entered in this field. The following %

expressions can be used as wildcards, which are automatically replaced by the

system:

Wildcards for generating context-specific information:

%FIRSTspiritURL% = HTTP connection mode (default mode)

%FIRSTspiritSOCKETURL% = SOCKET connection mode

%PAGESTORE_PREVIEW_URL% = Preview URL of a page from the Page Store

%SITESTORE_PREVIEW_URL% = Preview URL of a page reference from the Site Store

%WF_NAME% = Name of the workflow

%CREATOR% = Creator of the workflow (complete name)

%LAST_USER% = last user (editor)

%LAST_COMMENT% = last comment

%NEXT_USER% = next user (editor)

%PRIORITY% = priority

%DATE% = deadline (only if set)

%HISTORY% = history of the workflow's instance

%WEBeditURL% = WebEdit link on the preview of the page

If the wildcards %FIRSTspiritURL%, %FIRSTspiritRMIURL% or

%FIRSTspiritSOCKETURL% are entered in the "Text" field, a link (which links to the

corresponding node in the project) is generated in the sent e-mail, e.g. for

%FIRSTspiritURL%:

http://myServer:9999/fs4root/start/FIRSTspirit.jsp?app=client&project=QS_akt&name

=vorlage_1&type=Page&id=4394331&host=myServer&port=9999&mode=HTTP

or of %PAGESTORE_PREVIEW_URL%:

http://myServer.espirit.de:9999/fs4preview/preview/4238727/page/DE/current/42387

31/4394331

The other wildcards can be used to generate further context-specific information on

the respective workflow instance, e.g. %HISTORY%:

Mar 9, 2009 8:53:43 AM - Admin, Manual
activity: Release request
Status: Release requested
Comment: UserB : Please release content

http://myserver:9999/fs4root/start/FIRSTspirit.jsp?app=client&project=QS_akt&name=vorlage_1&type=Page&id=4394331&host=myServer&port=9999&mode=HTTP
http://myserver:9999/fs4root/start/FIRSTspirit.jsp?app=client&project=QS_akt&name=vorlage_1&type=Page&id=4394331&host=myServer&port=9999&mode=HTTP
http://myserver.espirit.de:9999/fs4preview/preview/4238727/page/DE/current/4238731/4394331
http://myserver.espirit.de:9999/fs4preview/preview/4238727/page/DE/current/4238731/4394331

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 188

Apart from the JavaClient URL (%FIRSTspiritURL%), a link to a preview page in

WebClient can also be transferred in the text (%WEBeditURL%), e.g.:

http://myServer:9999/WEBedit/Dispatcher?project=333333&id=2222

216&language=DE&guiLanguage=DE&action=ExternalPreview&firstedi

tDir=WEBedit

 The wildcard substitution only works if the JNLP servlet has been
installed on the system.

For further information on the JNLP servlet, see FirstSpirit Manual for Administrators,

Chapter 4.3.1.2 "Area: Server"

1.31

http://myserver:9999/WEBedit/Dispatcher?project=333333&id=2222216&language=DE&guiLanguage=DE&action=ExternalPreview&firsteditDir=WEBedit
http://myserver:9999/WEBedit/Dispatcher?project=333333&id=2222216&language=DE&guiLanguage=DE&action=ExternalPreview&firsteditDir=WEBedit
http://myserver:9999/WEBedit/Dispatcher?project=333333&id=2222216&language=DE&guiLanguage=DE&action=ExternalPreview&firsteditDir=WEBedit

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 189

4.5.5 Properties of a transition

4.5.5.1 Common tab

Figure 4-29: Properties of a transition (Common)

Name: A name for the selected transition can be assigned in this field. This name

must be unique regarding its source (character limit: <= 40 characters).

Source: The source from which the transition starts is automatically displayed in this

field.

Target: The target to which the transition points is automatically displayed in this

field.

Description: An explanatory comment on the current transition can be entered in

this field.

From FirstSpirit Version 4.2 language-dependent display names and descriptions

can be added by means of the fields Display name and Description. These are the

editing languages (not the project languages). Editing languages are defined for a

project by the project administrator and can then be configured by the editor using

the "Extras – Preferred Display Language" menu. The display name is displayed to

the editor, for example, in the workflow dialogues (labelling of the buttons of the

transition dialogue, Help and History tabs), as entries of the context menu for

starting/switching workflows, the description is used as tooltip and on the Help tab. If

no display name is defined, the unique name will be displayed. If there is no

description, the text of the field Comment is displayed.

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 190

4.5.5.2 Permissions tab

Figure 4-30: Properties of a transition (Permissions)

Fixed definition: If this option is selected, the authorised users of this transition are

then specified by a fixed definition. The field lists the responsible users and/or

groups who are allowed to switch this transition. Click the icon after the responsible

persons (fixed definition field) to open another window in which the responsible

persons can be selected from a list of project groups or users.

Permission defined by object from If this option is selected, the authorised users

result from the permissions definition in the tree structure of the FirstSpirit client. This

field can be used to select the permission the user must have on the object under

consideration to be able to perform this transition.

From the instance via If this option is selected, the authorised users result from the

current instance of the workflow. The creator of the instance or the last editor can be

selected from this field. The option "last editor of target activity" is only available on

outgoing transitions of states and can only be used if the workflow contains a loop,

so that an activity can be passed through more than once, for example:

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 191

Figure 4-31: Default workflow "Release"

The activity "check release" in Figure 4-31, for example, would be in this case the

target activity, i.e. an activity to which a status is pointing. If the option "last editor of

target activity" would be selected on the transition "check", only a user who has

effected this transition already once can effect this transition again.

Group exclusion: Groups who are not to be shown in the field "Next editor" of the

workflow dialog "Workflow Action" can be selected here:

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 192

Figure 4-32: Preselection "Next editor"

However, the groups which are selected via the function "Group exclusion" can still

be selected in the above shown dialog (Figure 4-32) using the icon .

Furthermore, the selection of "Group exclusion" has also effects on the sending of

e-mails.

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 193

4.5.5.3 E-mail tab

Figure 4-33: Properties of a transition (E-mail)

Send e-mail: selecting this option causes an e-mail to be sent to the selected

recipient as soon as this transition has been executed.

E-mail transmission and wildcard substitution are carried out analogous to the

description of e-mail transmission in Chapter 4.5.4.2, page 186.

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 194 1.31

4.6 Permissions configuration for workflows

Permissions for executing workflows are a special type of editorial permissions which

refer to the workflows within a project only.

The permissions configuration can be defined, context-dependent, directly on the

object on which the workflow instance is started or in the Template Store with

general validity within the workflow model:

 General permissions configuration for starting and switching a workflow in the

Template Store (for all instances) (see Chapter 4.6.1 page 194)

 Context-dependent permissions assignment for starting a workflow on individual

objects, sub-trees and stores (for individual instances – depending on the object

on which the workflow is started) (see Chapter 4.6.3 page 199)

 Context-dependent permissions assignment for connecting individual transitions

of a workflow ("special permissions") on individual objects, sub-trees and stores

(for individual instances – depending on the object on which the workflow is

started) (see Chapter 4.6.4 page 201)

Apart from the actual permissions configuration, the authorised modifiers of a

workflow (instance) can be limited by the editor (on editing an activity), provided this

has been configured by the template developer of the workflow (see Chapter 4.6.2

page 195).

The effects of permissions definition in the JavaClient are described by way of an

example in Chapter 4.6.5 (page 203 ff.)

4.6.1 General rights (permissions) configuration via the Template Store

Within the Template Store, the general permissions configuration for starting or

switching a workflow are set via the permissions assigned to the individual

transitions. This ensures that each individual activity can be performed by authorised

users only. The permissions dialog is opened by double-clicking the transition in the

workflow model. The permissions for connecting the transition can be assigned in

the "Permissions" tab (see Chapter 4.5.5.2 page 190).

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 195 1.31

Overwriting transition permissions: The permissions which are defined within the

workflow model are evaluated for all instances of the workflow. Therefore, in this

way, generally valid permissions configurations can be defined for the workflow.

However, these permissions can be overwritten for (context-dependent) workflows.

Transition permissions for individual objects, sub-trees or stores can be overwritten

using the "Permission Assignment" dialog on the respective objects (see Chapter

4.6.3 page 199 and Chapter 4.6.4 page 201).

Context-dependent transition permissions: Apart from the fixed definition

permissions of a group or a user for connecting a transition, the transition

permissions can also be assigned, context-dependent, within the Template Store. In

this case, the transition permissions must be selected "From the instance via" (see

Chapter 4.5.5.2 page 190). For example, if "last editor" is selected here, the editor is

automatically the only person to receive the permission to connect the transition,

which switched the workflow instance into the current status.

Linking with the editorial permissions: Apart from the option of determining the

permissions on a context-dependent basis from the workflow instance (see above),

the editorial permissions can also be linked to the transition permissions (also

context-dependent). In this case, the transition permissions option "Permission

defined by object via" must be selected (see Chapter 4.5.5.2 page 190). For

example, if the editorial permission "Release" is selected here, only the modifier who

has permission to "Release" on the object on which the workflow instance was

started, automatically receives permission to connect the transition.

4.6.2 Change or block modifier preselection

The preselection of authorised "modifiers" is displayed to the executing editor of the

workflow in the "Editor" field within the activity dialog. "Editors" are all groups or

users who have permission to connect future transitions of the workflow. The

permissions defined on outgoing transitions with future status are taken into account

(see Chapter 4.6.1 page 194).

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 196

 Example (workflow model):

Figure 4-34: Workflow model with permission configuration (grey background)

Example description (see Figure 4-34):

 The permissions on the transition "to Activity(2a)" have been assigned a fixed

definition for user "anna.administrator".

 The permissions on the transition "to Activity(2b)" have been assigned a fixed

definition for user "charlie.chef".

The workflow is now started by the editor. The activity dialog "Activity(1)" opens (see

Figure 4-35). There the editor can choose between the two statuses: "Status(1a)"

and "Status(1b)". The future modifiers (editors) of the workflow are automatically

listed in the "Editor" field. After forwarding the current "Activity(1)" the workflow has

either "Status(1a)" or "Status(1b)". Future "Editor" can therefore only be groups or

users who have permissions on the outgoing transitions of these two statuses.

Therefore, in the example, the "editors" who have permissions to connect the

transitions "to Activity(2a)" and to connect the transitions "to Activity(2b)".

1.31

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 197

Figure 4-35: Example – Workflow action "Activity(1)"

This preselection of the future possible modifiers (editors) can be changed by the

editor. To do this, the template developer must open the configuration dialog of the

start status on the start status of the workflow in the Template Store (see Chapter

4.5.3.1 page 181).

In the "Common" tab you can choose between two options:

Figure 4-36: Permission configuration for the start status

 Manual editor (per action) (see Chapter 4.6.2.1 page 198)

 Automatic editor by rights (see Chapter 4.6.2.2 page 198)

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 198

4.6.2.1 Manual editor (per action)

The permissions defined within the workflow (on the outgoing transitions of the future

status) are evaluated in the "Editor" filed. If the "Manual editor (per action)" option is

selected, these modifiers (editors) can be changed by the editor. The button for

group or user selection in the "Workflow Action" dialog, which is displayed on starting

or switching the workflow (instance), is then active.

Figure 4-37: Workflow action – manual editor by rights

Click the button to open the dialog for group and user selection with all

authorised modifiers. The editor can now restrict this selection to the required users.

 The editor can only restrict the modifiers. If the list of modifiers is to be
extended, the permissions on the transitions of the workflow model must be
adjusted by the template developer.

4.6.2.2 Automatic editor by rights

The permissions defined within the workflow (on the outgoing transitions of the future

status) are evaluated in the "Editor" field. If the "Automatic editor by rights" option is

selected, these modifiers (editors) cannot be changed by the editor. The button for

group or user selection in the "Workflow Action" dialog, which is displayed on starting

or switching the workflow (instance), is then inactive.

Figure 4-38: Workflow action – Automatic editor by rights

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 199

4.6.3 Context-dependent permissions for starting a workflow

Context-dependent permissions are assigned in the FirstSpirit JavaClient. Here all

areas of the project can be assigned editorial permissions for specific groups or

users. Detailed permissions can be assigned for each object, for example for an

individual page in the Page Store. These permissions can be inherited hierarchically

within the individual stores.

The permissions for the execution of workflows are issued parallel to the editorial

permissions for groups and users via the "Permission Assignment" dialog. The

"Permission Assignment" dialog is opened via the "Extras – Change Permissions"

context menu on the required object within the JavaClient tree structure. In addition

to the general "Permission assignment" of editorial permissions there is also a

"Workflow permissions" tab:

Figure 4-39: Context-dependent workflow permissions

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 200

Inherit permissions: The "Inherit permissions" radiobutton is selected as a default

(exception: root nodes). With this setting the "Workflow permissions" are inherited

from a higher-level node.

Define permissions: If the "Define permissions" radiobutton is selected,

permissions for the workflows can be defined on the node. In the first step the

window opens for adopting the inherited permissions.

Figure 4-40: Adopt inherited permissions?

If the permissions are adopted from a higher-level node, the inherited permissions

are copied into the table of the workflows. If, on the other hand, the dialog is

confirmed with "No" the workflow permissions are reset. The table view is now

active, regardless of the selection, i.e. the user can define their own permissions.

All: If the "All" checkbox is selected, all workflows can be started by the "authorised"

user on the current node and all hierarchically low-level nodes of the tree structure.

In this case, the two tables below it cannot be edited and all the settings made in

them have no significance. If the checkbox is not selected, the settings must be

individually defined for each workflow.

Authorised: This field lists all users and/or groups who may call a workflow on the

current node. If the icon is clicked, the "Select Groups/Users" window opens. All

the project's groups and users are listed. The window can be used to select the

authorised groups and individual users.

All the project's workflows are listed in the top table (cf. Figure 4-39). If selected

workflows only are to be allowed for a sub-tree, a list of the workflows which can be

started by selected users can be created during the permissions definition. If

necessary, a different user can be defined for each workflow.

The input options of this table are only enabled if the "All" checkbox is deselected. In

this case, the permission for starting a workflow can be issued or prevented for

individual workflows:

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 201

Figure 4-41: Context-dependent permissions for starting individual workflows

Authorised: If the "Authorised" checkbox is selected, all authorised users may start

the workflow (see "Authorised" column). The authorisation (permission) is assigned

for the current node and all hierarchically lower-level nodes of the tree structure.

Use release permission: If the "Use release permissions" checkbox is selected, the

release permissions defined in the "Permissions assignment" tab are evaluated for

each user. Important: Contradictions in permissions definition can occur if the

checkbox is not selected. A conflict situation can arise if, for example, a user has no

permission to release on a specific object, but is listed as being authorised in the

standard "Release Request" workflow. In such a case, the release would be

prevented by the system, but the user cannot see the response (no release)

because, as defined, the workflow can be passed on up to the "Issue Release"

status. If, on the other hand, the "Use release permissions" checkbox is activated,

the release permissions of the user are evaluated at each workflow transition. If

contradictions are then found between the editorial permissions (no permission to

release) and the permissions in the workflow (e.g. release), these transitions are

hidden for the "unauthorised" user. In this case, the user can request the release, i.e.

start the workflow, but they can no longer forward the object to the following "Object

released" status. The transition required for this is hidden.

Name: This column contains the name of the workflow.

Authorised: This field lists all users and/or groups who may start a workflow on the

current node. If the icon is clicked, the "Select Groups/Users" window opens. All

the project's groups and users are listed. The window can be used to select the

authorised groups and/or individual users.

For further information on editorial permissions, see FirstSpirit Manual for Editors,

Chapter 13.

4.6.4 Context-dependent permissions for switching a workflow

The context-dependent permissions assigned to date in Chapter 4.6.3 (page 199 ff.)

solely relate to the permission to start a workflow. However, so-called context-

dependent "Special permissions" can also be defined for the workflow's individual

transitions.

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 202

If a specific activity in an individual node is to be performed by another user, this can

be defined using the context-dependent special permissions. To do this, the required

workflow must first be selected in the top table (see Figure 4-41). All the transitions

of the selected workflow are then listed in the bottom table for the definition of

special permissions (see Figure 4-42). Authorised users can then be defined for the

required workflow transition.

 If permissions for executing the transition have already been defined
via the workflow model within the Template Store (see Chapter 4.6.1 page
194), this definition (context-dependent "Special permissions") overwrites the
existing permissions (from the workflow model).

Figure 4-42: Context-dependent special rights for connecting a transition

Special permissions: If the tick is set in this column, the permissions assigned in

the workflow for this transition are ignored on this node. Instead, the permissions

listed in this place in the permissions column apply to this transition.

Transition: This column lists the names of the transitions. If a name has not been

assigned for a transition in the workflow, the names of the transition's source and

target appear here.

Authorised: All users and/or groups who may execute this transition are listed in

this field. The transition permissions listed here are adopted from the workflow model

(see Chapter 4.5.5.2 page 190), but are overwritten if the "Special permissions"

checkbox is selected (default setting: "Everyone" group).

If the icon is clicked, the "Select Groups/Users" window opens. All the project's

groups and users are listed. The window can be used to select the authorised

groups and/or users.

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 203

4.6.5 Effects of the permissions configuration

Transition permissions are either defined generally via the workflow model (see

Chapter 4.6.1 page 194) or context-dependent for individual objects or sub-trees

(see Chapter 4.6.3 page 199 and Chapter 4.6.4 page 201).

The effects are identical for both permission definitions:

Transitions which lead to an activity, authorise the user to call and perform this

activity via the context menu of the corresponding object.

Transitions which lead to a state, authorise the user to switch this state in the activity

dialog.

Example (workflow model):

Figure 4-43: Workflow model example

Example of permissions definition (defined through the workflow model):

Figure 4-44 Example of permissions definition through the model

Example: Effects of the transition permissions:

1. Starting the workflow via the context menu: The editors group can open the

context menu and start the workflow:

1.31

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 204

 Figure 4-45: Start the workflow via the context menu:

2. The "Activity(1)" dialog provides the option to switch the workflow into

"Status(1a)" or "Status(1b)". The button for switching "Status(1a)" is shown

for the "Editors" group only (see Figure 4-46), the button for switching

"Status(1b)" is shown for the "Administrators" group only (see Figure 4-47).

Figure 4-46: Activity dialog for switching the transition "to Status(1a)"

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 205

Figure 4-47: Activity dialog for switching the transition "to Status(1b)"

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 206

3. If the workflow instance has Status(1a), the user anna.administrator may

select the following transition "to Activity(2a)" from the context menu.

"Activity(2a)" dialog is displayed.

 Figure 4-48: Switch the workflow via the context menu

4. If the workflow instance has Status(1b), the user charlie.chef may select the

following transition "to Activity(2b)" from the context menu. "Activity(2b)"

dialog is displayed.

 Figure 4-49: Switch the workflow via the context menu

5. The "Activity(2a)" dialog provides the option to exit the workflow with status

"End(1)". The button for switching "finish(1)" is displayed for user

"anna.administrator" only.

(In this case, the field with the future "Editors" (modifiers) is empty, because it

is the last transition (see Chapter 4.6.2 page 195)).

 Figure 4-50: Activity dialog for switching the transition "finish(1)"

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 207

6. The "Activity(2b)" dialog provides the option to exit the workflow with status

"End(2)". The button for switching "finish(2)" is displayed for user charlie.chef

only.

(In this case, the field with the future "Editors" (modifiers) is empty, because it

is the last transition (see Chapter 4.6.2 page 195)).

 Figure 4-51: Activity dialog for switching the transition "finish(2)"

 If a user or a group has the permission to connect a transition which
leads to an activity dialog, this group or user should also have the permission
to connect the transition into at least one following status. Otherwise the
activity dialog only contains a button for cancelling the action. In this case,
the permissions should be checked and, if necessary, redefined.

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 208

4.7 Write protection within workflows

4.7.1 General information

When a (context-bound) workflow is started, the element on which the workflow was

started can be assigned write protection (write lock) (see Chapter 4.5.3.1 page 181).

This write lock should prevent an element from being changed by another modifier

while a workflow is running.

Write lock due to currently running instances of a workflow:

Figure 4-52: Write lock on lower-level objects

The write lock affects both the current object and all lower level objects of the

currently running workflow instance. In the example from Figure 4-52, a write lock

has been set on the "Product Management" folder by a current workflow. If another

user tries to lock this folder, they are informed that the element cannot be edited at

the present time. The same message appears if the user tries to lock the "Products"

page or any object below the "Product Management" folder.

The write lock is set irrespective of whether the workflow uses a script or not and

regardless of which actions are executed on the element concerned.

4.7.2 Write lock in case of creating and moving objects

Several actions can be executed within the FirstSpirit JavaClient without the object

being in edit mode. This change to the edit concept should ensure that parallel

working (with many users) works as smoothly as possible in large projects too. For

example, the whole sub-tree is no longer requested for editing an element, only the

object to be changed at this time. Therefore, it is also possible to create or move an

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 209

element without requesting a write lock on the parent node first (edit mode).

However, as workflows involve potentially critical actions (e.g. the release of an

object), a workflow's write lock also prevents the creation or moving within the

currently running instance of the workflow.

For example, if an editor attempts to add a section to a page on which a workflow

has been started, the following error message is displayed:

Figure 4-53: Write lock on a page (due to a workflow)

4.7.3 Write lock within scripts

For several actions which are executed via the Access API of FirstSpirit, a write lock

is necessary on the element concerned, e.g.:

 Recursive deletion of elements in the project

 (Recursive) release of elements in the project

One problem which now arises in practice is that of setting a write lock in a script (on

an element or sub-tree - API call setLock(true, false) or setLock(true)), if a

write lock (due to the workflow – see Chapter 4.5.3.1) already exists on the element

due to the starting of the workflow. In this case, the workflow's write lock prevents the

setting of the "normal" write lock on the element.

However, it is not necessary to set the write lock for simple delete or release actions

within the workflow, as the element concerned is automatically locked by the

workflow when the transition is connected.

The situation is different if the deletion or release is to be executed recursively, i.e.

on a sub-tree of the project. In this case, a recursive write lock has to be set on the

complete sub-tree and this is only possible if the workflow's write lock is cancelled.

To do this, the (automatically set) write lock is temporarily removed through the

status of the workflow and is reset when the delete or release option is finished (via

the script). The precise procedure is described by way of an example in Chapter

4.10.1.

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 210

4.8 Using scripts in workflows

Scripts are a powerful tool for implementing customer-specific wishes within

FirstSpirit workflows. As already mentioned in the description of the elements of the

workflow editor, scripts within workflows can only be tied to activities (see Chapter

4.5.4.1 page 184). An activity can either be executed manually by a user, or

automatically by a script (see Chapter 4.2.3.2 page 163).

The result of an activity always relates to the instance of a workflow. It is either a

change in state into a subsequent state which can be reached from the activity or the

retention of the current state (corresponds to the "Cancel" semantics in the activity

dialog). This also applies to scripts which are coupled to this activity. The script must

therefore ensure "itself" that a transition is performed in the following state.

In the workflow model, the activities with which the script is linked can either be

defined as "manual" or as "automatic" – in both cases it can be useful to use a script.

 If scripts are used within workflows, NO automatic evaluation of the
editorial permissions occurs (e.g. on release). These permissions must be
suitably linked to the transition permissions within the workflow (see Chapter
4.5.5.2 page 190).

4.8.1 Automatic activities and scripts

Automatic activities do not expect any user interaction and are executed as soon as

one of the upstream states in the model is reached (i.e. the action is triggered by the

system and not by the user). An automatic action (and therefore the coupled script)

is therefore executed immediately after reaching a state. An automatic action without

script can be used, for example to automatically send an e-mail within the workflow

(see Chapter 4.5.5.3 page 193).

 The use of automatic actions can cause potential endless loops to be
formed. This situation is identified by the FirstSpirit workflow interpreter,
execution of the relevant workflow instance is quit and an error message
appears.

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 211 1.31

4.8.2 Manual activities and scripts

In this case, execution of the action is started by a user. If a script is not available,

the standard form for workflows is displayed to the user with all the transitions

authorised for them ("Activity dialog"). As soon as the action is assigned to a script,

this dialog display is no longer automatic. If an activity dialog is to be displayed to the

user, this must be executed via the script (see Chapter 4.8.3 page 211 and Chapter

4.8.4 page 213).

4.8.3 Workflow context

Among other things, the following methods are available for the script context for

workflows:

Transition showActionDialog();

Task: Display of the activity dialog (in most cases relevant for "manual" actions

only). Returns the transition selected by the user as a "Transition" object. Important:

the actual transition is NOT performed (for example, see Chapter 4.8.4 page 213).

void doTransition(firstspirit.workflow.model.Transition transition)

Task: Execution of the given transition. This can, e.g. be a transition selected by the

user or another transition available (and allowed) in this action. If a transition is

selected which is not allowed an error message appears (for example, see Chapter

4.8.4 page 213).

void doTransition(String transitionName)

Task: Execution of the transition given with name. If a name was not assigned to the

transition in the model, a name in the form"->"+“Name of the target state" is

automatically formed, which can be given here (for example, see Chapter 4.8.5 page

216).

Transition[] getTransitions()

Task: Determines the set of all transitions available for the current user in the current

state (for example, see Chapter 4.8.4 page 213).

Data getData();

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 212 1.31

Task: A form can be assigned to a workflow model. This form is displayed to the

editor in the activity dialog and they can enter or change data (see Chapter 4.4 page

174). With this method the script has access to the content of the form and can, if

necessary, also make changes (see Chapter 4.4.1 page 176).

Map getSession()

Task: (Apart from the form) a special data structure (Java Map) is assigned to each

instance of a workflow, which enables a script to save and if necessary to change its

own instance state. As this state is part of the workflow instance, it is available to all

scripts run through during the instance's life cycle. This method (of instance-related

data) can therefore not be used to exchange between scripts (for example, see

Chapter 4.8.5 page 216).

Examples:

List of all possible transitions with permissions starting from the current action:

//!firstspirit.scripting.BeanshellWrapper

transitions = context.getTransitions();
print("Anzahl Transitionen:" + transitions.length);

for (i=0; i<transitions.length; i++) {
 print("Transition:" + transitions[i].getTarget());
 allowedUsers = transitions[i].getAllowedUsers();
 for (j=0; j<allowedUsers.size(); j++) {
 print("Allowed User:" + allowedUsers.get(j));
 }
}

Status management in workflow instances (counter):

//!firstspirit.scripting.BeanshellWrapper

state=context.getSession();
v=state.get("test");
if(v==null) v=0;
state.put("test",++v);

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 213

Generate an instance for each available workflow:

//!firstspirit.scripting.BeanshellWrapper

import firstspirit.access.store.templatestore.*;
u=context.getUserService();
ts=u.getTemplateStore();
wfs=ts.getWorkflows().getAllChilds(Workflow.class);

for (i=0; i<wfs.length; i++) {
 print("Workflow:" + wfs[i].getName());
 try {
 u.createTask(null, wfs[i], wfs[i].getName());
 } catch (Exception e) { print("Error!");}
}

Further methods are given in the FirstSpirit Access API.

4.8.4 Example: Issue of messages in workflows

Messages can be issued (output) to the executing user within a workflow. The issue

of messages is realised via scripts within the workflow. The script shows a dialog to

the modifier who performs the relevant action within a workflow. This dialog can

display certain information from the workflow context (see Chapter 4.8.3 page 211).

 Example: Workflow "Message":

Figure 4-54: Example of workflow "Message"

In this workflow example, an information dialog with the output "Hello $USER" is

shown before and after the connection of a transition:

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 214

Figure 4-55: First information dialog

After the transition has been connected, a further information dialog appears with the

output "You have selected transition $TRANSITION. Thank you for the comment

$KOMMENTAR":

Script "transitionMessage":

//!Beanshell

import de.espirit.firstspirit.common.gui.*;

userName =
context.getGuiHost().getUserService().getUser().getLoginName();

CMSDialog.showInfoDialog("Hello " + userName + ". Please select a
transition.");

context.showActionDialog();

transition = context.getTransitionParameters();

if (transition.getTransition() != null) {

 CMSDialog.showInfoDialog("You have selected transition '" +
transition.getTransition() + "'. Good choice.\nThank you for the comment
'" + transition.getComment() + "'");

 context.doTransition(transition.getTransition());

} else {

 CMSDialog.showInfoDialog("You have not selected any transition.");

}

The information displayed to the user within the dialogs is obtained in the script via

the context of the workflow (WorkflowScriptContext), e.g. the transition

parameters (see script example):

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 215

context.getTransitionParameters();

The call:

 CMSDialog.showInfoDialog("Hello " + userName + ". Please select a
transition.");

or the call:

JOptionPane.showMessageDialog(null,"Hello " + userName + ". Please select
a transition.");

can be used to realise dialogs within the script.

 An unpublished (untested) API function ("CMSDialog") is used within
the example. But the call can be replaced by the Java Swing class
JOptionPane, e.g.:
JOptionPane.showMessageDialog(null,"Hello " + userName);

 NO dialogs can be shown within a script in WebClient. If, within the
workflow's script, a call of the form:
CMSDialog.showErrorDialog(...) or JOptionPane.showMessageDialog(...) is
used, an error will occur if the workflow is executed in WebClient. .

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 216

4.8.5 Example: Persistent content within workflows

Content about the session can now also be saved within workflows and read out

again after a transition has been connected.

Example: Workflow "Counter":

Figure 4-56: Example of workflow "Counter"

Within the "DoSelectCounting" activity, a counter can be increased by the value 1

each time the workflow is executed. The counter value is saved and is increased

again by the value 1 the next time the workflow is started. The value is displayed to

the modifier within an information dialog:

Figure 4-57: Value of the counter

1.31

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 217

Script "Counter":

//!Beanshell

import de.espirit.firstspirit.common.gui.*;

session = context.getSession();

counter = session.get("counter");

if (counter == null) {

 counter = new Integer(1);

}

CMSDialog.showInfoDialog("Counter: " + counter);

session.put("counter", new Integer(counter + 1));

context.doTransition("->Start");

 An unpublished (untested) API function ("CMSDialog") is used within
the example. But the call can be replaced by the Java Swing class
JOptionPane, e.g.:
JOptionPane.showMessageDialog(null,"Hello " + userName);

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 218

4.9 Delete via a workflow (from V4.1)

 This function is released for FirstSpirit Version 4.1 and higher only.

4.9.1 Introduction (from V4.1)

A project-specific workflow can be created and tied directly to the delete controls

available to date (menu bar buttons, context menu entry) to delete elements in the

FirstSpirit JavaClient and in the FirstSpirit WebClient. Instead of simply deleting an

object, for example a page, a more complex delete function can be made available

via the workflow, for example the additional deletion of dependent objects of a page

(for demo workflow, see Chapter 4.9.3).

 Deleting via a workflow is only available if the project has been
configured accordingly by the project administrator.

The new workflow is then started within the client using the familiar control elements.

The individual tasks of the workflow appear, as usual, in the task list (see Chapter

4.9.2 page 218).

If deletion via a workflow is configured within a project, the permissions configuration

for the workflow must be adjusted. The conventional editorial permissions for

deleting, which are defined for a user or a group, only take effect if the permissions

configuration is adjusted accordingly in the workflow (see Chapter 4.9.4 page 220).

4.9.2 Delete via a workflow in the JavaClient (from V4.1)

If the deletion of elements in the project has been tied to a workflow, the workflow

can be started or forwarded in the JavaClient using the conventional control for

deleting. The following controls are available for this:

 Select element and click key.

 Select element and click the "Delete" context menu entry

 Select element and click the icon in the icon bar

Analogous to the multiple selection of workflows, it is possible to delete a set of

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 219

objects at the same time via a workflow (see Figure 4-58 and Chapter 4.11 page

236).

 The workflow can only be started if no workflows have been started to
date on one of the selected objects and the user has the relevant
permissions for executing the workflow. Otherwise the relevant controls are
disabled.

Figure 4-58: Multiple selection on deleting via a workflow

 The "Remove" permission is also evaluated if elements are deleted via
a workflow. If a user has permission to switch the workflow but NOT
permission to remove elements, the workflow can be started (context menu
entry "Delete" is activated), but the element cannot be deleted. The transition
which deletes the element is not displayed to this user.

4.9.3 Delete via a workflow in the WebClient (from V4.1)

If the deletion of elements in the project has been tied to a workflow, the workflow

can be started or forwarded in the WebClient using the conventional control for

deleting.

The following controls are available for this:

 Select the element in the store overview in the WebClient and click the

"Delete" button.

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

 Open Quick Edit bar and click the "Delete Page" button

 The workflow can only be started if no workflows have been started to
date on one of the selected objects and the user has the relevant
permissions for executing the workflow. Otherwise the relevant controls are
disabled.

 NO dialogs can be shown within a script in the WebClient. If, within the
workflow's script, a call of the form:
CMSDialog.showErrorDialog(...) or JOptionPane.showMessageDialog(...) is
used, an error will occur if the workflow is executed in the WebClient.

4.9.4 Permissions configuration (from V4.1)

Permissions are assigned in the FirstSpirit JavaClient. Here, all areas of the project

can be assigned permissions for specific groups or users (see Chapter 4.6 page

194).

Permissions to delete elements (without workflow) are usually defined via the so-

called editorial permissions. Editorial permissions are defined for a user or a group

on the respective element. Certain permissions can be assigned in this way for all

editorial work. Apart from "Visible" or "Change" these also include, for example, the

permission to "Remove object" and the permission to "Remove folder".

Figure 4-59: Editorial permissions "Remove object" and "Remove folder"

For further information on editorial permissions, see FirstSpirit Manual for Editors,

Chapter 13.1.

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics  1.31  RELEASED  2011-09-02 220

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 221

 These editorial permissions do not take effect automatically if deleting
is tied to a workflow. If these permissions are to be evaluated, the
permissions configuration must be adjusted in the workflow first (see Figure
4-61).

If deleting in a project is handled via a workflow, the permissions configuration must

be moved to the workflow. The permissions to execute workflows are assigned at the

same time as the editorial permissions for groups and users in the "Permission

assignment" dialog within the stores in the FirstSpirit JavaClient:

Figure 4-60: Rights to execute workflows

The permissions defined for the execution of workflows in the top dialog area

("authorised") solely refer to the starting of the respective workflow (see Chapter

4.6.3 page 199).

The permissions for executing a transition (from one step in the workflow to the next

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 222

step) are either:

 defined by the template developer in the workflow (see Chapter 4.6.1 page 194)

 by the assignment of "Special permissions" for the individual steps of a workflow

(see Figure 4-60) (see Chapter 4.6.4 page 201)

For further information on permissions for executing workflows, see FirstSpirit

Manual for Editors, Chapter 13.2.

If the conventional editorial permissions ("Remove folder", "Remove object") and the

permissions for executing the workflow are to be linked to each other in a suitable

way, the permissions configuration within the workflow should be adjusted. Within a

workflow, permissions are issued in the individual transitions (see Chapter 4.5.5.2

page 190). This ensures that each individual activity can be performed by authorised

users only. The permissions dialog is opened by double-clicking the transition in the

workflow model. The permissions for connecting the transition can be assigned in

the "Permissions" tab:

Figure 4-61: Link editorial permissions and transition permissions

If the "Permission defined by object from" option is selected, the authorised users

result from the editorial permissions defined in the tree structure of the JavaClient.

This field can be used to select the permission the user must have on the object

under consideration to be able to perform this transition. If the "Remove object" or

"Remove folder" permission is selected here, when the workflow is started the

system examines whether the user has the permission to "Remove" on the element.

The permissions are then evaluated analogous to conventional deletion without a

workflow.

Special case "Delete objects": If an object is deleted via a workflow in combination

with the permission configuration via the "Permission defined by object from", a

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 223

special case takes effect. If the element is deleted, the permissions can no longer be

determined from the object. In the example from 4.9.5, the object and therefore the

permissions defined on the object are no longer available on the last transition "end".

In this case: "anything is always allowed" on a deleted object. If this is not wanted,

the permissions configuration for the corresponding transitions must be changed

(e.g. to "fixed definition" groups or users).

 If "Special permissions" for switching a workflow to the next level are
defined on an element (see Figure 4-60), the permissions defined by the
template developer for this workflow are overwritten as a result.

4.9.5 Example: Workflow "Delete" (from V4.1)

The workflow for deleting elements consists of the workflow and the corresponding

"clientdelete" script (for deleting individual objects) and "serverdelete" script (for

deleting sub-trees).

If the "clientdelete" action is executed, the element is locked by the corresponding

script and is then deleted. After the deletion the workflow is forwarded to the

following "End" status.

If the "serverdelete" action is executed, the element is recursively locked by the

corresponding script. The "serverdelete" action can therefore be used not only to

delete an individual element, but sub-trees also. Here the deletion is performed via a

ServerHandle, which returns a results report and in case of an error throws an

exception.

After the successful deletion the workflow is forwarded to the following "End" status.

The following applies to both actions: in case of an error, the workflow is not

switched to end status but instead is switched to an error status modelled in the

workflow.

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 224

Figure 4-62: "Delete" workflow example

Script "clientdelete":

//!Beanshell

import de.espirit.firstspirit.common.gui.*;

se = context.getStoreElement();

try {

 se.delete();

 context.doTransition("->End");

} catch (Exception ex) {

 CMSDialog.showErrorDialog(null, "Error while deleting: " + ex,
ex);

 context.getSession().put("error", ex.toString());

 context.doTransition("->Error");

}

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 225

 An unpublished (untested) API function ("CMSDialog") is used within
the example. But the call can be replaced by the Java Swing class
JOptionPane, e.g.:
JOptionPane.showMessageDialog(null,"Hello " + userName);

Script "serverdelete":

//!Beanshell

import de.espirit.firstspirit.common.gui.*;

se = context.getStoreElement();

parent = se.getParent();

try {

 se.setLock(false, false);

 handle = de.espirit.firstspirit.access.AccessUtil.delete(se,
true);

 handle.getResult();

 handle.checkAndThrow();

 Set notDeleted = new HashSet();

 progress = handle.getProgress(true);

 notDeleted.addAll(progress.getDeleteFailedElements());

 notDeleted.addAll(progress.getMissingPermissionElements());

 notDeleted.addAll(progress.getLockFailedElements());

 notDeleted.addAll(progress.getReferencedElements());

 if (!notDeleted.isEmpty()) {

 CMSDialog.showErrorDialog("The following elements could
not be deleted: " + notDeleted);

 }

 if (parent != null) {

 parent.refresh();

 context.getGuiHost().gotoTreeNode(parent);

 }

 if (!se.isDeleted()) {

 se.setLock(true, false);

 }

 context.doTransition("->End");

} catch (Exception ex) {

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 226

 CMSDialog.showErrorDialog(null, "Error while deleting: " + ex,
ex);

 context.getSession().put("error", ex.toString());

 context.doTransition("->Error");

}

4.9.6 Example: Workflow "ContentDeleteDemo" (from V4.1)

Apart from deleting individual elements and sub-trees (see Chapter 4.9.5 page 223),

it is also possible to use a workflow to delete structured data.

To do this, a differentiation must be made within the workflow (in the script) between

normal elements ("StoreElements", e.g. pages, media, page references) and

"entities".

In the script, this information is obtained from the context of the workflow

(WorkflowScriptContext) (see Chapter 4.8.3 page 211):

workflowable = context.getWorkflowable()

The getWorkflowable() method returns whether the element on which the workflow

was started is a StoreElement, for example a medium, or an entity, in the form of a

data record (see script example). For example, the output of the script can be

adjusted accordingly:

if (workflowable instanceof ContentWorkflowable) {

...

} else {

...

}

In the example the output is controlled depending on the context on which the

workflow was started. If the delete function is started on a data record, the script

delivers the following output:

Figure 4-63: Delete entity

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 227

On a "StoreElement" it delivers the output:

Figure 4-64: Delete StoreElement

In this example the deletion also takes place directly via the WorkflowScriptContext

(see Chapter 4.8.3 page 211):

workflowable.delete();

Here the delete method is called on the Workflowable object and not, as in the

example from Chapter 4.9.5, on the StoreElement. This delete method can be

used to delete both a StoreElement and a data record (Entity).

The workflow for deleting entities consists of the workflow and the corresponding

"deletecontentdemo" script (for deleting individual entities)

Figure 4-65: Example of "DeleteContentDemo" workflow

Following the successful deletion the workflow is automatically forwarded to the

following "End" status.

Script ("deletecontentdemo"):

//!Beanshell

import de.espirit.firstspirit.access.*;

import de.espirit.firstspirit.access.store.contentstore.*;

workflowable = context.getWorkflowable();

if (workflowable instanceof ContentWorkflowable) {

 message = "Delete entity:\n content=" +

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 228 1.31

workflowable.getContent().getName() + "\n entity=" +
workflowable.getEntity().getKeyValue();

 JOptionPane.showMessageDialog(null, message, "Delete entity",
JOptionPane.WARNING_MESSAGE);

} else {

 message = "Delete StoreElement:\n store=" +
workflowable.getStore().getName() + "\n id=" +
workflowable.getId();

 JOptionPane.showMessageDialog(null, message, "Delete
StoreElement", JOptionPane.WARNING_MESSAGE);

}

workflowable.delete();

context.doTransition("->End");

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 229

4.10 Workflows with complex functions

Very complex functions can be realised by using the modelling of workflows and the

use of BeanShell scripts within these models. A good example is the previously

described workflow for deleting elements (see Chapter 4.9.5 page 223).

Within the scripts, actions are executed on specific project content via the Access

API of FirstSpirit. Unlike the standard functions (e.g. the standard context menu entry

"Delete"), the developer of the workflow (or the corresponding scripts) must ensure

that all the necessary boundary conditions, for example for deleting an element, are

also covered by the script. For most actions, this requires at least one write lock on

the element concerned. However, the type of element to be executed and on which

elements it is to be executed is decisive. For example, when a simple element is

deleted, e.g. a medium, it is not necessary to set a write lock; however, a lock is

required for recursive deleting, e.g. a page with sections (cf. Chapter 4.9.5 page

223).

The following chapters deal with the write lock within workflows and explain

examples of workflows with complex functions.

4.10.1 Example: "RecursiveLock" workflow

This workflow for recursive locking of sub-trees consists of the workflow and the

corresponding "lockrecursive" script.

Figure 4-66: "RecursiveLock" workflow example

Within the script, a recursive write lock is executed on the element on which the

workflow was started. In order for this to succeed, the automatically set write lock of

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 230

the workflow must be cancelled first. To do this, the write lock is removed first in the

"WriteLockOff" status:

Figure 4-67: Remove write lock via the workflow's status

The "Write Lock" checkbox is deselected, the workflow's write lock is now cancelled

on connecting the "Recursive Lock Test" transition. The following "DoRecursiveLock"

action is executed automatically and is linked to the "lockrecursive" script.

The script can now be used to set a recursive write lock on the element:

// set recursive lock

se = context.getStoreElement();

se.setLock(true);

CMSDialog.showInfoDialog("Sub-tree locked");

The elements are recursively locked, a dialog is displayed to the editor with the

message "Sub-tree locked":

Figure 4-68: Write lock set on the sub-tree

When the message is confirmed, execution of the script is continued, the recursive

write lock on the sub-tree is cancelled:

// reset recursive lock

se.setLock(false);

In the next step the simple write lock must be restored on the element:

// non recursive lock, normal state during workflow

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 231

se.setLock(true, false);

context.doTransition("->WriteLockOn");

This is necessary to enable connection of the following transition within the workflow.

The standard write lock of the workflow must then be restored. To this end, the "write

lock" checkbox is re-selected in "WriteLockOn" status:

Figure 4-69: Set write lock via the workflow's status

Script "lockrecursive":

//!Beanshell

import de.espirit.firstspirit.common.gui.*;

// set recursive lock

se = context.getStoreElement();

se.setLock(true);

CMSDialog.showInfoDialog("Sub-tree locked");

// reset recursive lock

se.setLock(false);

// non recursive lock, normal state during workflow

se.setLock(true, false);

context.doTransition("->WriteLockOn");

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 232

 An unpublished (untested) API function ("CMSDialog") is used within
the example. But the call can be replaced by the Java Swing class
JOptionPane, e.g.:
JOptionPane.showMessageDialog(null,"Hello " + userName);

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 233

4.10.2 Example: "RecursiveRelease" workflow

This workflow for recursive release consists of the workflow and the corresponding

"serverrelease" script.

Figure 4-70: "RecursiveRelease" workflow example

The element on which the workflow was started and all appended elements are to be

recursively released within the workflow.

The server side release used within the "serverrelease" script controls both the

release and the internal setting of the write lock for the element concerned. If

elements are found which already have a write lock the server-side release cannot

be executed. These elements can be called via the return value of the server-side

release (in test mode only):

handle.getProgress(true).getLockFailedElements()

Therefore, a recursive write lock does not have to be set for the server-side release

via the script. However, in order for the release to be given, there must be no write

locks set by the workflow. The write lock on the element is therefore first cancelled

via the script:

 se.setLock(false, false);

Then the server-side release is executed by calling the method:

AccessUtil.release(IDProvider releaseStartNode, boolean checkOnly,
boolean releaseParentPath, boolean recursive,
IDProvider.DependentReleaseType dependentType)

In the example, the following transfer parameters are set for the server-side release:

handle = AccessUtil.release(se, false, false, true,
de.espirit.firstspirit.access.store.IDProvider.DependentReleaseTyp
e.DEPENDENT_RELEASE_NEW_AND_CHANGED);

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 234 1.31

Transferred parameters:

releaseStartNode: Start node for the release

checkOnly: If the value true is transferred the specific release is only tested.

releaseParentPath: If the value true is transferred, the complete parent chain of

the object to be released is determined and all previously never released objects are

also released.

recursive: If the value true is transferred, all children elements of the object to be

released are determined and recursively and are also released.

dependentType: This parameter is used to determined and release dependent

objects of the object to be released. For example, if a medium is referenced on one

page, this medium can also be directly released on the specific release of the page.

The following dependencies can be taken into account:

 DEPENDENT_RELEASE_NEW_AND_CHANGED: new and changed dependent objects

are taken into account.

 DEPENDENT_RELEASE_NEW_ONLY: new created (never yet released objects)

only are taken into account

 NO_DEPENDENT_RELEASE: dependent objects are not taken into account and if

necessary must be released separately (default setting).

The different release options can be combined with each other in any way necessary

to realise extensive release within a short time. However, under certain

circumstances the release of all objects involved in the release process may not be

wanted in all cases and should therefore be executed circumspectly.

For further information on server-side release, see "FirstSpirit Manual for Developers

(Part 2: Advanced)".

Returned parameters:

ServerActionhandle<? extends ReleaseProgress,Boolean >

The server-side release returns a ServerActionHandle, which contains all

information about the release process.

Within the script example, the result of the release process is queried first:

handle.getResult();

handle.checkAndThrow();

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 235

The errors during the release are then examined. If elements cannot be released, for

example, because a write lock existed on the element or the modifier did not have

the relevant permissions to release an element, these can be called via the methods:

progress.getMissingPermissionElements() or

progress.getLockFailedElements():

 progress = handle.getProgress(true);

 notReleased.addAll(progress.getMissingPermissionElements());

 notReleased.addAll(progress.getLockFailedElements());

The script error handling shows the modifier the elements which could not be

released:

if (!notReleased.isEmpty()) {

 CMSDialog.showErrorDialog("The following elements could
not be released: " + notReleased);

}

Figure 4-71: Error message – Unreleased elements

 The error message is displayed in test mode only ("checkOnly").

Script: "serverrelease":

//!Beanshell

import de.espirit.firstspirit.common.gui.*;

import de.espirit.firstspirit.access.*;

import de.espirit.firstspirit.access.store.*;

se = context.getStoreElement();

try {

 se.setLock(false, false);

 handle = AccessUtil.release(se, false, false, true,
de.espirit.firstspirit.access.store.IDProvider.DependentReleaseTyp
e.DEPENDENT_RELEASE_NEW_AND_CHANGED);

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 236

 handle.getResult();

 handle.checkAndThrow();

 Set notReleased = new HashSet();

 progress = handle.getProgress(true);

 notReleased.addAll(progress.getMissingPermissionElements());

 notReleased.addAll(progress.getLockFailedElements());

 if (!notReleased.isEmpty()) {

 CMSDialog.showErrorDialog("The following elements could
not be released: " + notReleased);

 }

 se.refresh();

 context.getGuiHost().gotoTreeNode(se);

 se.setLock(true, false);

 context.doTransition("->End");

} catch (Exception ex) {

 CMSDialog.showErrorDialog(null, "Error during release: " + ex,
ex);

 context.getSession().put("error", ex.toString());

 context.doTransition("->Error");

 An unpublished (untested) API function ("CMSDialog") is used within
the example. But the call can be replaced by the Java Swing class
JOptionPane, e.g.:
 JOptionPane.showMessageDialog(null,"Hello " + userName);

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 237

4.11 Multiple selection of workflows (from V4.1)

 This function is released for FirstSpirit Version 4.1 and higher only.

4.11.1 General information on multiple selection in FirstSpirit

The ability to make multiple selections of elements is available within many dialogs in

FirstSpirit. This means a large number of elements can be selected and edited in a

simple way. For example, multiple selection is possible within the tree view in the

FirstSpirit JavaClient (see Figure 4-72). This enables several elements to be

selected on which a certain action (e.g. move, copy, delete) can then be executed on

them all at the same time.

Multiple selections can be made by simultaneously pressing the SHIFT and CTRL

key. In addition, the CTRL + A key combination can be used to select all visible

elements of a store (within the tree view) or all elements within a table (e.g. within

the Task List).

Within the tree view, the multiple selection of elements is restricted to the respective

current store. Therefore, if an element is already selected, e.g. in the Page Store, an

element from another store cannot then be selected.

 If the key combination CTRL + A is used within the tree view of the
FirstSpirit JavaClient, only the currently visible (expanded) elements of the
tree view are selected. For example, if a folder of the Page Store is not
expanded, the pages below it are not included in the selection.

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 238

4.11.2 Multiple selection of workflows (from V4.1)

Multiple-selection of workflows enables a workflow to be started and switched on a

set of objects.

The required objects for this can be selected within the tree view (see Chapter 4.11.1

page 236). The context menu is then opened as usual and the required workflow is

selected:

 This function is released for FirstSpirit Version 4.1 and higher only.

Figure 4-72: Starting a workflow on several elements

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 239

4.11.3 Requirements for starting and advancing workflows (from V4.1)

 This function is released for FirstSpirit Version 4.1 and higher only.

The starting or switching of a workflow can only take place if all elements have the

same workflow status or no workflow has yet been started to date on the selected

elements (see Figure 4-72).

With the multiple selection of elements, it is determined for each element, which

workflows and which transitions of a workflow can be displayed via the context

menu. At the same time it is also, for example, taken into account whether:

 a workflow has already been started on the element,

 the user has the necessary permissions to start the element on this workflow,

 a workflow may be started on this element,

 a workflow has already been started on the elements but the elements have not

reached the same workflow status.

If these requirements are not fulfilled for only one element in the multiple selection,

the context menu returns the calculation "not available" for all the selected elements.

Figure 4-73: Context menu – not available

In this case, the multiple selection should be cancelled, the individual elements

rechecked and if necessary reselected.

4.11.4 Multiple selection via the task list (from V4.1)

 This function is released for FirstSpirit Version 4.1 and higher only.

Apart from multiple selection via the tree view, workflows which have already been

started can also be forwarded using the task list (see Figure 4-74) or the "Workflows"

overview in the Template Store (see Chapter 4.1 page 152).

The task list displays all not yet completed tasks ("Open tasks") and all started tasks

("Initiated tasks") within a tabular view. Apart from the name of the workflow, the

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 240

current status of the respective workflow instance is also displayed.

Figure 4-74: Multiple selection via the task list

Several tasks can be selected within the tabular task list. Provided these tasks have

the same workflow and the same status and the user has the necessary permissions

to execute the workflow for the selected elements, the possible actions are displayed

in the bottom part of the task list.

In this way the tasks can be forwarded in parallel (i.e. at the same time). Unlike

starting via the tree view, several elements from different stores can also be selected

in the task list and switched in parallel.

4.11.5 Multiple selection via the "workflows" overview (from V4.1)

 This function is released for FirstSpirit Version 4.1 and higher only.

Apart from the task list, a further overview of all tasks started to date exists on the

"Workflows" node within the Template Store (see Chapter 4.1 page 152). Unlike the

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 241 1.31

task list, the tasks here can be filtered by specific search criteria and even already

closed tasks can be displayed (see Chapter 4.1.1 page 154).

Several tasks can be selected within the overview. Direct advancing of the workflows

is not possible here; however, clicking the "Edit" button opens the task list (see

Chapter 4.1.2 page 156). The elements previously selected in the overview are now

directly selected in the task list and can be forwarded from there (see Chapter 4.11.4

page 238).

Apart from editing the overview can also be used to close several selected tasks

(see Chapter 4.1.3 page 159).

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 242 1.31

5 Document Groups

5.1 Introduction

5.1.1 Objective

The concept of FirstSpirit fulfils the paradigm of separation of structure, content and

display of a website. The individual areas can be changed independently of each

other and content can be reused at any time. For example, content in the form of

pages with variable section lists are maintained in the Page Store. These pages are

then grouped together in the Site Store to form structures (e.g. page groups, menu

level).

This basic structure is appropriate for the generation of websites and individual PDF

documents, because exactly one results document (e.g. an HTML or a PDF file) is

generated for each FirstSpirit page.

But in several cases, this "1:1" correspondence is not wanted, for example for

creating the PDF print version of an extensive company description. A single PDF

document is to be generated for this, which contains a complete sub-tree of the Site

Store. In this case, several FirstSpirit pages are grouped together to form a single

document. Simple implementation of this case is made possible by the concept of

the FirstSpirit document group.

5.1.2 Concept

Document groups can be created within the FirstSpirit Site Store. Unlike the other

elements of the Site Store (e.g. menu levels), a document group can be selected as

a link target, but it is not part of the navigation. (For this reason, document groups

can also not be selected as the startpage of a menu level.)

A document group can contain page references and menu levels of the Site Store.

The advantage of the support of menu levels is that new pages are "automatically"

added to the document group when they are transferred into the selected menu level

of the Site Store.

As other templates usually have to be used to generate a document from a set of

individual documents, it is necessary to either define a specific template for the

document group or to adjust the existing templates so that both individual documents

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 243

and document groups are generated correctly (see Chapter 5.3.4 page 247).

A further special feature of the document group is the optical restriction to a fixed

presentation channel. This means a document group is generated as a PDF only

(i.e. only 1x and for all presentation channels). Through this enhancement, it is

simultaneously possible to realise a "few PDF documents", without having to

generate a complete presentation channel (see Chapter 5.3.5 page 249).

5.2 Configuration

5.2.1 Check licence file

Use the "FirstSpirit – Configuration – Licence" menu of the FirstSpirit Server

Monitoring to display the valid FirstSpirit functions of the

fs-license.conf licence file. The license.DOCUMENTGROUP parameter must be set to

the value 1 for use of the function (see Figure 5-1).

If not, a new valid licence can be requested from the manufacturer and added in the

blue part of the window. The new licence file can be saved by clicking the

button.

 Manipulating the fs_license.conf results in an invalid licence. If
changes become necessary, please contact the manufacturer.

When adding a new configuration file fs_license.conf it is not necessary to restart

the server. The file is automatically updated on the server.

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 244

Figure 5-1: Display of the licence file parameters (Server-Monitoring)

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 245

5.3 Using document groups in the FirstSpirit JavaClient

5.3.1 Create new document groups

Document groups are created using the context menu of the Site Store (or using the

keyboard shortcut Ctrl + D):

Figure 5-2: Create new document group (context menu)

A dialog window for creating a new document group opens:

Figure 5-3: Create a new document group

Language-dependent display names and the unique reference name for the new

document group can be entered here.

The document group is then displayed in the tree structure with the following symbol:

5.3.2 Define properties

Further configuration options for the document group are available in the right-hand

editing window:

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 246

Figure 5-4: Properties of the document group

File name: The file name of the document group can be defined in this field. The

generated file (e.g. a PDF file) is filed on generation under this name in the

generation directory (default procedure: The reference name of the document group

is adopted, but can be changed).

Comment: An additional name for a document group can be assigned in this field.

The comment can be used, for example, to display a title heading in the generated

PDF file.

The content of the document group can be selected from the project's Site Store

(see Chapter 5.3.3 page 246).

In addition, the template settings (see Chapter 5.3.4 page 247) and the presentation

channels for generation of the document group can be adjusted (see Chapter 5.3.5

page 249).

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 247

5.3.3 Manage content of the document groups

The content of the document group can be managed in this area:

Figure 5-5: Content of a document group

 click this icon to add new elements from the project's Site Store to the document

group.

 use this icon or the "Del" key to remove selected elements again.

 If a page reference is deleted from the Site Store, which is already
being used in a document group, after it has been deleted the name of the
page reference no longer appears in the editing window of the document
group, but instead the text "--Broken Link--". This text indicates that the
integrated page reference is no longer available in the project. The node
concerned can be removed from the document group using the button.

 this icon can be used to change the order of the elements in the document

group – it must be noted that this is only possible on the highest level (see Figure

5-5). If menu levels from the Site Store are copied into the document group, the sub-

menus can be opened (with a double-click). However, the lower level elements

cannot be changed (sorting) or deleted. It is merely a viewing function (see Figure

5-6).

Figure 5-6: Content of a document group (lower level)

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 248

5.3.4 Template settings for document groups

This area is used to define which template is to be rendered before the first page and

after the last page of the document group. In this way, structures which only appear

once (for example, tables of content) can be generated.

Figure 5-7: Template settings for document groups

Start template: Page template which is to be rendered before the first page of the

document group, e.g. a table of contents.

End template: Page template which is to be rendered after the last page of the

document group, e.g. a glossary.

Template end: In addition, a template suffix can be defined. The template to be

rendered (a part of the document group) is replaced by an extended template.

Background: The individual parts of the document group possibly contain information

which is only required once or are only allowed to exist once within the document

group. For example, the PDF output channel contains an Information page template

for generation of the PDF (FOP). If a page (based on this page template) is

generated in the PDF output channel, this information is necessary for the individual

page (Figure 5-8).

Figure 5-8: Example FOP information of an individual document

However, in a document group, which is made up of several pages, the FOP

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 249 1.31

information is only required once (and not for each individual part of the page group).

Errors occur during the PDF generation if this information is contained more than

once. For this application case, the FOP information can be moved into the start

template (opening tags) and the end template (closing tags). The FOP information

within the page page template can then be removed (see Figure 5-9). This ensures

that the PDF channel creates a PDF during the generation and all content of the

document group (without inner lying FOP information) is created within an FOP

information.

To this end, a new template can be created (based on the original template). The

new template must be named with the original name and a freely selectable suffix.

This suffix can be entered as a "template end" in the template settings of the

document group. The page template to be rendered is now automatically replaced by

the document group's new page template when the document group is generated.

Recommended is a suffix in the following form: _[A..z][any character string].

Background: As the reference names within a project have to be uniquely assigned,

templates created with an existing reference name are automatically assigned

consecutive numbering. I.e. if a suffix in the form _[1..9] is entered manually, it can

result in overlapping with the automatic numbering.

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 250

Another option is to adjust the original page template so that the FOP information is

written for individual documents, but is suppressed for document groups, e.g. by a

query within the template:

$CMS_IF(!#global.docgroup)$<?xml version="1.0" encoding="UTF-8"?>
<of:root xmlns:fo="http://www.w3.org/1999/XSL/Format" ...
...
CMS_END_IF
 $CMS_VALUE(#global.page.body("center"))$
$CMS_IF(!#global.docgroup)$
 </of:block>
 </of:flow>
 </of:page-sequence>
</of:root>
CMS_END_IF

In this case, a start and end template are still needed, however not a new page

template for generation of the document group.

Figure 5-9: Example of FOP information of a document group

5.3.5 Presentation channels for generating document groups

This area is used to define the presentation channels for which the document group

is to be generated. A presentation channel is not selected in the default setting. The

"All" setting results in the document group being generated separately for each

presentation channel. Optionally, selected presentation channels only can be

generated. If more than one presentation channel is selected, but not "All", a default

channel must be defined. This default channel is then the link target used if a link

from a presentation channel points to the document group for which the document

group is not generated.

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 251

Figure 5-10: Presentation channels for generation of a document group

The "Presentation channels" area is characterised by another special feature: all

presentation channels are displayed here – i.e. including the "inactive" presentation

channels. This enables a document group to be generated on the basis of a

presentation channel which is not part of the "normal" generation. Therefore, use of

document groups enables, for example, a few PDF documents to be inserted into a

project, without having to generate a completely new channel.

5.4 Template development

5.4.1 System objects

So-called system objects can be used to access information, data and objects within

the templates. System objects are always context-dependent. Several specific

system objects are available within the generation context, with which the generation

of documents can be controlled from document groups.

System objects can be invoked wherever method invocations can be used: Each

system object begins with the symbol # and is extended by the respective name of

the system object. Different methods can be invoked depending on the type of

system object.

 In general system objects can be read-accessed only. However, there
are several methods which can also modify system objects or can affect the
system performance. These include, e.g. the output of a document group's
elements during generation (cf. #docGroup.pageFirst).

The specific system objects for document groups are briefly described here first,

before examples of several applications are shown in the following chapter (see

Chapter 5.5 page 254).

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 252 1.31

For further information on system objects, see FirstSpirit Online Documentation.

#global.docgroup: The system object #global.docgroup is available within the

generation context for access to information on document groups.

#global.docgroup returns the value "true" during generation of a document group.

#docGroup: The system object refers to the ("virtual") root node of the current

document group. #docGroup provides various methods via dot notation with which,

for example, a table of contents can be generated (see Chapter 5.5.2):

 childs

Returns a list of the document group's child nodes. Each child is in turn of the

same type as #docGroup. The list of children contains nodes of the type

"page reference" first, followed by nodes of the type "menu level".

 depth

Returns the depth of the node in the document group (e.g. "0" for the highest

level). By way of comparison: Nodes of the #docGroup.childs list have depth

"1".

 isFolder

Indicates whether the node is of the type "menu level" (value "true") or not

(value "false").

 isPageRef

Indicates whether the node is of the type "Page Reference" (value "true") or

not (value "false").

 index

Returns the node's index in the "childs" list of the parent node.

 parent

Returns the parent node of the element. If the docGroup is already the root

node, null is returned.

 selected

Returns the value "true", if the node itself or a child node is currently being

written in the output.

 label

Returns the heading of the node; for the root this equals the name of the

document group, for menu levels the menu name and for page references the

sitemap name.

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 253

 chapter

Returns the chapter number, e.g. a text in the form "2.3.1".

 section

Returns the chapter number; however, unlike chapter, with section only

folders are included in the chapter numbering.

 root

Returns the virtual root element (equals the value of #docGroup).

 pageFirst

The value should be set to "true" in the start template (using the expression

$CMS_SET(...)$), if pages are to be output before folders (see Chapter 5.3.4

page 247). Output within the template can be achieved with the expression

$CMS_VALUE(...)$.

#docNode: The system object #docNode returns an element (e.g. a page reference)

from the document group during generation of the document group. The referenced

object is of the same type as the return value of the system object #docGroup.

5.4.2 Context variables

Apart from the system objects, other specific context variables exist for working with

document groups. These context variables are not written in the generation context

by the system, but can be specifically used by the template developer, for example

to adjust the templates for generation of the document group (see Chapter 5.3.4

page 247).

PREFIX / SUFFIX: The variables PREFIX and SUFFIX can be used by the template

developer in the start template. If these variables are set, the content in front of

(PREFIX) and/or after (SUFFIX) each node is shown.

They are used, e.g. to realise headings (see Chapter 5.5.1 page 254), navigations to

the next / previous / higher level chapter or for the generation of several pageflows in

XML-FO documents for PDF generation.

 The SUFFIX variable for menu levels is not shown until after the last
child node of the menu level.

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 254 1.31

5.4.3 Start and end template

In principle, these templates only contain the frame for generating a valid document

of the selected presentation channel (see Chapter 5.3.4 page 247).

Example: Start template in HTML

<CMS_HEADER></CMS_HEADER>
<html>
 <body>

Example: End template in HTML

<CMS_HEADER></CMS_HEADER>
</body>
</html>

If necessary, special functions can also take be used at this point, e.g. the creation of

a "clickable" table of contents of the document group (cf. Chapter 5.5.2 page 255).

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 255 1.31

5.5 Application examples

5.5.1 Example: Chapter headings

A simple way of realising chapter headings is to use the page-specific context

variable PREFIX (cf. Chapter 5.4.2).

This variable can be used to define FirstSpirit expressions before the actual content

of each page reference or menu level:

<CMS_HEADER>
</CMS_HEADER>
$CMS_SET(PREFIX)$

 <hr />
 <h$CMS_VALUE(#docNode.depth)$>
 Chapter $CMS_VALUE(#docNode.chapter)$
 $CMS_IF(!#docNode.label.isEmpty)$

 $CMS_VALUE(#docNode.label.convert2)$

 CMS_END_IF
 </h$CMS_VALUE(#docNode.depth)$>
 <hr />
CMS_END_SET

With this, the following variables are defined and written in the context:

PREFIX: Defines the structure of the chapter heading including anchors for the table

of contents.

In this variable definition, the following context variables are used, which refer to the

respective current element of the document group during the evaluation (cf. Chapter

5.4.1):

Variable Function

#docNode.depth Depth of the current document object in the tree of the

document group

#docNode.chapter Page reference/menu level numbering

#docNode.label Heading of the node

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 256 1.31

5.5.2 Example: Table of contents

The table of contents is usually needed once at the beginning of a document. The

template fragment shown below should therefore be copied into the start template

(cf. 5.3.4 page 247):

<!-- Headline -->
<h1>

 $CMS_IF(#global.language.abbreviation == "EN")$
 Summary
 CMS_ELSE
 Summary
 CMS_END_IF

</h1>

<!-- Recursive loop -->
$CMS_SET(renderEntry)$
 $CMS_FOR(child, entries)$
 $CMS_FOR(void, [0..(child.depth - 1)])$

 CMS_END_FOR
 $CMS_VALUE(child.chapter)$

 $CMS_IF(!child.label.isEmpty)$

 $CMS_VALUE(child.label.convert2)$

 CMS_END_IF
 $CMS_IF(child.childs.size > 0)$
 $CMS_SET(entries, child.childs)$
 $CMS_VALUE(renderEntry)$
 CMS_END_IF
 CMS_END_FOR
CMS_END_SET

$CMS_SET(entries, #docGroup.childs)$
$CMS_VALUE(renderEntry)$

The table of contents is introduced by the heading:

<!-- Headline -->
<h1>

 $CMS_IF(#global.language.abbreviation == "EN")$
 Summary
 CMS_ELSE
 Summary
 CMS_END_IF

</h1>

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 257 1.31

This is followed by the recursive execution:

<!-- Recursive loop -->
$CMS_SET(renderEntry)$
 <!-- All children (same level) -->
 $CMS_FOR(child, entries)$
 <!--Indent -->
 $CMS_FOR(void, [0..(child.depth - 1)])$

 CMS_END_FOR

 <!--Chapter -->
 $CMS_VALUE(child.chapter)$

 <!--Label -->
 $CMS_IF(!child.label.isEmpty)$

 $CMS_VALUE(child.label.convert2)$

 CMS_END_IF

 <!--Recursive loop abort condition -->
 $CMS_IF(child.childs.size > 0)$
 $CMS_SET(entries, child.childs)$
 $CMS_VALUE(renderEntry)$
 CMS_END_IF
 CMS_END_FOR
CMS_END_SET

With it, all children of a level are considered and the chapter number and

corresponding labelling is obtained for each element in the document group. To this

end, the chapter name is output (from the page reference or the menu name) and is

directly assigned a link:

 $CMS_VALUE(child.label.convert2)$

Using the "convert2" function on the page group text causes illegal characters to be

replaced by the conversion rule.

Finally, the abort condition for the recursion:

 <!—Recursive loop abort condition 
 $CMS_IF(child.childs.size > 0)$
 $CMS_SET(entries, child.childs)$
 $CMS_VALUE(renderEntry)$
 CMS_END_IF

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 258

The result is displayed as follows:

Figure 5-11: Example of document group with numbering and labelling

5.5.3 Example: Jump to table of contents

Especially in longer documents, it is frequently desirable to be able to jump to the

table of contents at the end of a chapter.

In this example this function is achieved using a page-specific SUFFIX. The SUFFIX

variable can be used to define FirstSpirit expressions after the actual content of each

page reference or menu level. In the example, the SUFFIX is output after rendering a

page reference:

$CMS_SET(SUFFIX)$
 $CMS_IF(#docNode.isPageRef)$

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 259 1.31

 $CMS_IF(#global.language.abbreviation == "EN")$
 to Summary
 CMS_ELSE
 go to summary
 CMS_END_IF

 CMS_END_IF
CMS_END_SET

5.5.4 Example: Local page references

For the preparation of links in document groups, it can be useful to decide whether a

link remains within the document group or points outside the document group, e.g. to

generate an internal PDF link.

The following expressions can be used for this:

$CMS_VALUE(#docGroup.contains("gain_1"))$
$CMS_VALUE(#docGroup.contains(myVar))$

To this end, either the Uid ("Unified Identifier") is transferred as a string or the page

reference is transferred directly as an "object". The return value of the ".contains(...)"

expression is a Boolean value, which e.g. can be used for an If statement.

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 260 1.31

6 Tracking Changes using Revision Metadata (from V4.1)

6.1 Introduction (from V4.1)

FirstSpirit provides an option for tracking changes using the FirstSpirit Access-API.

Access to the metadata of a revision is possible via specific API functions (see

Chapter 6.3 page 261). The revision metadata contains information about the type

(what changes have taken place?) and the scope (which elements were changed?)

of change in the project. The information made available through the revision's

metadata is very fine grained. For example, if changes are made to the contents, it is

possible to determine which properties of an element have been changed, e.g.

whether the content was changed in a certain editing language, whether a child

element has been added or removed or whether certain attributes have been

changed, e.g. the permissions for the corresponding element.

The enhanced revision information can be used to determine all changes which have

taken place within a project, from a specific revision up to a specific revision.

This information can be accessed via the FirstSpirit Access-API, e.g. by means of

BeanShell script.

The following chapter describes methods for obtaining one or several revisions of a

project which are to be examined for changes (see Chapter 6.2 page 260) and

methods for determining the corresponding change information (see Chapter 6.3

page 261). Different metadata information is available depending on the respective

change type (see Chapter 6.3.1 page 261).

In addition, detailed examples are described for using change tracking in the project.

The first example determines all database changes which have taken place since the

last deployed revision of a project (see Chapter 6.4 page 263).

The second example determines content changes which have taken place within the

project between a start revision to be defined and an end revision to be defined (see

Chapter 6.5 page 268).

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 261 1.31

6.2 Get revisions (from V4.1)

FirstSpirit operates with a revision-based repository. A special technique is used to

manage the change in data over time: the so-called revision management.

A revision can be thought of as a kind of "snapshot" of the whole repository at a

specific point in time. Unlike a version which usually only relates to a single object,

the complete state of all objects in the repository is described in a revision.

Revisions are described by consecutive numbering (revision ID), whereby there is

always precisely one current revision for the whole repository. If a repository is

edited, all the changes made are linked with a new revision number. The revision

number results from the last current revision number of the whole repository

increased by one. All unchanged objects keep their old revision numbers. If an object

is changed it is not overwritten in the repository but instead is inserted as a new

object (with a higher revision number).

To determine the period during which certain changes have taken place within the

project, the corresponding revision of the repository must be obtained first.

The revision can be directly obtained via the project. Either the required unique

revision ID can be transferred, e.g.:

project.getRevision(revisionId);

or the date of the required revision can be transferred, e.g.:

project.getRevision(context.getStartTime());

The transferred date does not have to be uniquely assigned to a revision. Any date

value can be transferred. If a revision exists on this date it is returned, otherwise the

method returns the next smallest revision.

A selection of revisions within a certain period can be made available using the

method:

project.getRevisions(Revision from, Revision to, int maxCount,
Filter<Revision> filter);

Two revisions are transferred. The first revision ("from") defines the bottom revision

limit and the second revision ("to") defines the upper revision limit. Apart from these

two revisions, all revisions with a higher revision ID than the bottom revision limit and

a lower revision ID than the upper revision limit are returned.

The respective most up to date revision can be obtained using:

 getRevision(new Date());

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 262 1.31

start = project.getRevision(context.getStartTime());

end = project.getRevision(new Date());

revisions = project.getRevisions(start, end, 0, null);

Optionally, the "maxCount" parameter can also be transferred, which limits the

number of returned revisions to a maximum value and – also optionally – a filter for

further limitation.

6.3 Determine changes within a revision (from V4.1)

The revisions (see Chapter 6.2 page 260) can then be used to obtain the metadata

with enhanced information on the changes:

revision.getMetaData();

The metadata manages different information, which depends on the type of

respective change (see Chapter 6.3.1 page 261). Not only language-dependent

content changes of an element are taken into account but also structural changes

(e.g. move) or a change to the element attributes (e.g. name, permission definition,

etc.) (see Chapter 6.3.2 page 262).

6.3.1 Determine change type (from V4.1)

The changes which have taken place within a revision can be obtained using:

metaData.getOperation();

The delivered revision operation (RevisionOperation) for example returns

information on the change type (RevisionOperation.OperationType):

operation.getType();

Different change types are available for different project content.

The following types of change are possible for content of the type IDProvider:

 CREATE a new object has been created in the project

 MODIFY an object in the project has been changed

 MOVE an object in the project has been moved

 DELETE an object in the project has been deleted

 RELEASE an object in the project has been released

The corresponding revision operation (e.g. ModifyOperation) returns an object of

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 263 1.31

the type BasicElementInfo with further information on the object concerned (e.g.

the unique identifier).

The following types of change are possible for content of the type Entity:

 CONTENT_COMMIT database content has been changed

The corresponding revision operation (e.g. ContentOperation) returns an object

of the type EntityInfo with further information on the data records concerned (e.g.

the ID of the data record or the ID of the corresponding database schema).

6.3.2 Determine changed elements (from V4.1)

Further information on the changes can be called depending on the respective

change operations, for example, which data records were released within the project

(for operation type: CONTENT_COMMIT):

operation.getReleasedEntities();

or, for example, which new content has been created within the project (for operation

type: CREATE):

operation.getCreatedElement()

Further methods are given in the examples of the next two chapters (see Chapter

6.4 and Chapter 6.5).

For an overview of all available methods, see FirstSpirit Access-API documentation5.

5 About the FirstSpirit Online documentation in Template Development – FirstSpirit API

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 264

6.4 Changes since the last deployment (from V4.1)

The first example is used to display the changes which have been made within the

project since the last deployment. Specifically, it involves a project in which experts'

reports are managed using the Content Store of FirstSpirit. An overview of the

change to the data records is now to be made available each time the project is

deployed. A post-deployment script is created within the deployment schedules first

to determine the changes:

Figure 6-1: Post deployment script configuration

The script first determines the ID of the revision which was current at the time of the

last project deployment:

task = context.getTask();

lastExecutionRevisionId = (Long) context.getVariable(task.getName() +
".revision");

if (lastExecutionRevisionId != null) {

 context.logInfo("revision of last execution=" +
lastExecutionRevisionId);

 revId = lastExecutionRevisionId.longValue();

}

Then, all revisions of the project since the last deployment are obtained. The revision

with the revision ID just obtained is used as the lower revision limit ("startRev"). The

current revision at the time the deployment starts is determined as the upper revision

limit:

startRev = project.getRevision(revId);

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 265 1.31

endRev = project.getRevision(context.getStartTime());

context.logInfo("startRev=" + startRev.id + ", endRev=" + endRev.id);

if (startRev.id == endRev.id) {

 context.logInfo("no changes detected");

}

revisions = project.getRevisions(startRev, endRev, 0, null);

Within a loop, all determined revisions are then examined for changes:

checkChanges(revisions) {

 for (revision : revisions) {

 metaData = revision.getMetaData();

 operation = metaData.getOperation();

 if (operation != null) {

 type = operation.getType();

 switch (type) {

 case OperationType.CONTENT_COMMIT:

 ..

 ..

 break;

 }

 }

 }

At the same time, only changes to database content – i.e. of the operation type

CONTENT_COMMIT – are to be taken into account here, namely only the new data

records created and the changed data records of a specific database table.

createdEntities = operation.getCreatedEntities();

releasedEntities = operation.getReleasedEntities();

are first used to determine all new generated and all released data records. This

selection is then limited to a specific database table (here: MyEntityTypName):

ENTITY_TYPE = "MyEntityTypName";

if (ENTITY_TYPE.equals(created.getEntityTypeName())){

..

}

if (ENTITY_TYPE.equals(released.getEntityTypeName())) {

..

}

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 266 1.31

In complete form:

case OperationType.CONTENT_COMMIT:

 createdEntities = operation.getCreatedEntities();

 for (created : createdEntities) {

 if (ENTITY_TYPE.equals(created.getEntityTypeName())){

 createdCertificates.put(created.getEntityId(), revision);

 context.logInfo("\t created entity " + created.getEntityId() +
" in revision " + getRevisionString(revision));

 }

 }

 releasedEntities = operation.getReleasedEntities();

 for (released : releasedEntities) {

 if (ENTITY_TYPE.equals(released.getEntityTypeName())) {

 releasedCertificates.put(released.getEntityId(), revision);

 context.logInfo("\t released entity " + released.getEntityId()
+ " in revision " + getRevisionString(revision));

 }

 }

 break;

The IDs of the changed and released data records determined ("created" and

"released") are used to obtain the required information (e.g. the expert report

numbers) and then save it for further use.

context.setProperty("created", createdList);

context.setProperty("updated", updatedList);

The values saved using context.setProperty(..) are only persistent within the

current schedule, i.e. can continue to be used in a subsequent action within the

schedule with context.getProperty(..). In this example, the content is further

used within the mail template in the following "Mail" action (cf. Figure 6-1):

Hello,

$CMS_SET(created, #context.getProperty("created"))$$CMS_SET(updated,
#context.getProperty("updated"))$

new$CMS_IF(created != null)$($CMS_VALUE(created.size)$)CMS_END_IF and
modified$CMS_IF(updated != null)$($CMS_VALUE(updated.size)$)CMS_END_IF
certificates have been published on

http://www.certificates-online.com

$CMS_IF(created.size > 0)$New certificates:

=====================

$CMS_FOR(entity, created)$ * $CMS_VALUE(entity.CertificateNo)$
($CMS_VALUE(entity.Date.format("dd.MM.yy"))$) - $CMS_VALUE(entity.carNo)$

$CMS_END_FOR$$CMS_END_IF$

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 267 1.31

$CMS_IF(updated.size > 0)$Updated certificates:

=====================

$CMS_FOR(entity, updated)$ * $CMS_VALUE(entity.CertificateNo)$
($CMS_VALUE(entity.Date.format("dd.MM.yy"))$) - $CMS_VALUE(entity.carNo)$

$CMS_END_FOR$$CMS_END_IF$

--

This is an automatically generated e-mail which is sent when new
certificates are published.

If you have any questions, please contact info@certificates-online.com

When a deployment schedule is executed, the template now generates an e-mail

with the new generated and changed content:

Example (mail):

Hello,

new(4) and modified(2) certificates have been published on

http://www.certificates-online.com

New certificates:

=====================

 * AZ33048/D (10.08.10) - DO-WZ 1234

 * AZ45134/D (10.08.10) - DO-XY 4321

 * AZ46200/D (11.08.10) - EN-AA 1111

 * AZ50261/D (13.08.10) - BO-YZ 5566

Updated certificates:

=====================

 * AZ44356/D (10.08.10) - DO-ZZ 3388

 * AZ47709/D (05.05.08) - D-YY 9999

--

This is an automatically generated e-mail which is sent when new
certificates are published.

If you have any questions, please contact info@certificates-online.com

Content which has been saved using context.setVariable(..), is also

persistent beyond the execution of the current schedule run (unlike the saving of

content using context.setProperty(..)). This option is used in the example, to

save the revision at the time of the current schedule:

context.setVariable(task.getName() + ".revision",

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 268 1.31

new Long(endRev.getId()));

When the next schedule is started this information can then be used to obtain the

revision ID, which was current at the time of the last deployment of the project:

lastExecutionRevisionId = (Long) context.getVariable(task.getName() +
".revision");

If necessary, the complete script and the templates described here can be requested

from the FirstSpirit Helpdesk.

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 269

6.5 Changes between two revisions (from V4.1)

In the second example the revisions can be conveniently selected via a GUI. To this

end, a new script must be created first in the project's Template Store.

Input components for selecting a start and end date for the required revision limits

can be configured in the form area of the script:

Figure 6-2: GUI for selecting the revision limits

If necessary, the XML file for configuring the form area can be requested from the

FirstSpirit Helpdesk.

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 270 1.31

Analogous to the first example, the relevant revisions can then be obtained using the

selected data:

data = context.showGui();

if (data != null) {

 context.logInfo("data=" + data);

 from = data.get("from").getEditor().get(null);

 to = data.get("to").getEditor().get(null);

 if (from != null) {

 context.logInfo(from + " -- " + to);

 start = project.getRevision(from);

 end = project.getRevision(to);

 context.logInfo("startRev=" + start.id + ", endRev=" + end.id);

 if (start.id <= end.id) {

 revisions = project.getRevisions(start, end, 0, null);

 } else {

 revisions = project.getRevisions(end, start, 0, null);

 }

 context.logInfo("found '" + revisions.size() + "' revisions ->
first=" + revisions.get(0) + ", last=" + revisions.get(revisions.size() -
1));

 checkChanges(revisions);

 }

The changes which have taken place within these revisions are determined in

checkChanges. In this example the changes to project content of the operation type

DELETE and CREATE are taken into account (within the Page Store). In addition,

changes to the project's database content are also determined here:

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 271 1.31

Change by removing elements in the Page Store:

case OperationType.DELETE:

 deleteRoot = operation.getDeleteRootElement();

 if (deleteRoot.getStoreType() == Type.PAGESTORE) {

 // include only pagestore

 context.logInfo("found delete in pagestore (deleted node=" +
deleteRoot.getUid() + ") in revision=" +
getRevisionString(revision));

 }

 break;

Change by adding elements in the project:

case OperationType.CREATE:

 created = operation.getCreatedElement();

 parent = operation.getParent();

 context.logInfo("found created element in store '" +
created.getStoreType() + "' (created node=" + created.getUid() +
", parent node=" + parent.getUid() + ") in revision=" +
getRevisionString(revision));

 break;

Change by creating, deleting, changing or releasing database content:

case OperationType.CONTENT_COMMIT:

 created = operation.getCreatedEntities();

 changed = operation.getChangedEntities();

 deleted = operation.getDeletedEntities();

 released = operation.getReleasedEntities();

 context.logInfo("found content changes in revision=" +
getRevisionString(revision));

 context.logInfo("\t created entities(" + created.size() + ") "
+ created);

 context.logInfo("\t changed entities(" + changed.size() + ") "
+ changed);

 context.logInfo("\t deleted entities(" + deleted.size() + ") "
+ deleted);

 context.logInfo("\t released entities(" + released.size() + ")
" + released);

 break;

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 272 1.31

The script is output via the Java console:

..

INFO 20.05.2008 15:44:50.317

startRev=6804, endRev=7677

found created element in store 'PAGESTORE' (created
node=Testpage_131, parent node=Test_6C22873) in revision=7335

 - Thu May 15 16:02:51 CEST 2008 (importStoreElement) - Admin –
CREATE

..

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 273 1.31

7 Server-Side Release

Apart from release via a workflow, all objects in FirstSpirit can be released on the

server side via the Access API. To this end, methods exist to define the different

release settings for an object. In this way, the specific release can be used to release

other objects dependent on the current object, e.g. the complete parent chain or the

child elements of the object to be released.

In general, a differentiation is made between the following release options:

 Standard release (see Chapter 7.1 page 272):

Release for the object to be released including additional, defined release

options for the standard case. These pre-defined release options differ

depending on the object. For example, the standard release options of a page in

the Page Store, are also used to release the lower level sections and the parent

elements which have never been released. The standard release of a page

reference in the Site Store on the other hand only takes into account the page

reference itself. The standard release options cannot be changed.

 Specific release (see Chapter 7.2 page 273):

Release for the object to be released including optional release options which

are defined by the user. The different release options can be combined with each

other in any way necessary to realise extensive release within a short time.

However, under certain circumstances the release of all objects involved in the

release process may not be wanted in all cases and should therefore be

executed circumspectly.

7.1 Standard release

This option is used to execute the release for the current object (e.g. page or folder

of the Page Store), including defined, object-dependent release options for the

standard case.

Direct release of an object is executed using the following API method:

AccessUtil.release(IDProvider toRelease, boolean checkOnly)

Transferred parameters:

toRelease: Element to be released

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 274 1.31

checkOnly: If the value true is transferred the standard release is only tested. The

objects to be released are not transferred into release status. Instead, the standard

release is run through, e.g. to uncover errors before the real release of an object.

Returned parameters:

ServerActionhandle<? extends ReleaseProgress,Boolean >

The server-side release returns a ServerActionHandle, which contains all

information about the release process and, for example, the status of the release or

the log info.

7.2 Specific release

Depending on the defined release parameters, the specific release takes into

account even more (dependent) objects within the release process.

 Ensure accessibility (parent chain): starting from the selected object, all new

(never released) higher level nodes are also released (see Chapter 7.2.4 page

281). This option is useful, for example, if a new page has been created below a

new folder in the Page Store and are both to be released together. Unlike the

recursive release, other new pages below the folder were not released. While the

combination of this option with the "recursive release" option remains limited to

the current store (see Chapter 7.2.5 page 284), in combination with the

"dependent release" option it also affects the parent chains of the dependent

objects and therefore other stores (see Chapter 7.2.6 page 286).

 Release recursive: starting from the selected object, all lower level nodes are

also released. This selection is useful, for example, if many pages below a folder

in the Page Store have been changed and now all the changes are to be

released together. This options remains limited to the current store (cf. Chapter

7.2.1 page 276).

 Release new dependent objects only: starting from the selected object, all

objects dependent on the selected object (e.g. a medium used in a picture input

component) and which have never been released yet (new created objects) are

also released. If this release option is combined with other options (e.g. release

of the parent chain), the dependent release also affects other objects and stores

involved in the release process.

 Release new and changed dependent objects: starting from the selected

object, all objects dependent on the selected object (e.g. a medium used in a

picture input component) are also released. Both objects which have never been

released (new created objects) and objects which have been edited again in the

meantime following a release (changed objects) are taken into account. If this

release option is combined with other options (e.g. release of the parent chain),

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 275 1.31

the dependent release also affects other objects and stores involved in the

release process.

Specific release of an object is executed using the following API method:

AccessUtil.release(IDProvider releaseStartNode, boolean checkOnly,
boolean releaseParentPath, boolean recursive,
IDProvider.DependentReleaseType dependentType)

Transferred parameters:

releaseStartNode: Start node for the release

checkOnly: If the value true is transferred the specific release only is tested. The

objects to be released are not transferred into release status. Instead, the defined

release options are run through, e.g. to uncover errors before the real release.

releaseParentPath: If the value true is transferred, the complete parent chain of

the object to be released is determined and all previously never released objects are

also released. If the releaseParentPath=false option is set, the parent chain is not

releassed, but the elements to be released are added to the release child list of hte

parent node. The following applies:

 In the case of changed parent nodes: The object to be released can be reached

in release status. However, the parent element is not released.

 In the case of new parent nodes: The object to be released cannot be reached in

release status as the parent node has never been released. This can result in

invalid references in the release status (see Chapter 7.2.4 and Chapter 7.2.5).

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 276 1.31

recursive: If the value true is transferred, all children elements of the object to be

released are determined and recursively and are also released. If the value false is

transferred the child elements are not taken into account in the release (see Chapter

7.2.1, Chapter 7.2.3 and Chapter 7.2.5).

dependentType: This parameter is used to determined and release dependent

objects of the object to be released. For example, if a medium is referenced on one

page, this medium can also be directly released on the specific release of the page.

The following dependencies can be taken into account (see Chapter 7.2.2, Chapter

7.2.3 and Chapter 7.2.6):

 DEPENDENT_RELEASE_NEW_AND_CHANGED: new and changed dependent objects

are taken into account.

 DEPENDENT_RELEASE_NEW_ONLY: new created (never yet released objects)

only are taken into account

 NO_DEPENDENT_RELEASE: dependent objects are not taken into account and if

necessary must be released separately (default setting).

The different release options can be combined with each other in any way necessary

to realise extensive release within a short time. However, under certain

circumstances the release of all objects involved in the release process may not be

wanted in all cases and should therefore be executed circumspectly.

The server-side release is therefore explained in the following chapters using several

examples.

Returned parameters:

ServerActionhandle<? extends ReleaseProgress,Boolean >

The server-side release returns a ServerActionHandle, which contains all

information about the release process.

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 277

7.2.1 Recursive release

Figure 7-1: Server-side release – recursive

The following parameters have been set to call AccessUtil.release(...) :

releaseStartNode: Folder 1
releaseParentPath: false
boolean recursive: true
DependentReleaseType: NO_DEPENDENT_RELEASE

The selected start node for the release is the menu level "Folder 1".

Recursive release: The recursive option is evaluated at the starting point of "Folder

1" release. The recursive release solely affects the child elements of the release

starting point. In the example from Figure 7-1, the child elements "Ref 1", "Folder 2"

and "Ref 2" are therefore released by the option.

Recursive releases of other dependent elements are not executed - even in

combination with other release options. The recursive release therefore does not

affect the release of child element dependent objects in other stores.

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 278

7.2.2 Dependent release

Server-side release: Dependent release

Media Store

Media Store Root

MS Folder 1

MS Folder 2

Pict 1

Pict 2

Pict 3

Pict 4

MS Folder 3

Site Store

Site Store Root

SS Folder

Folder 1

Ref 1

Folder 2

Ref 2

Start node of
the release

1

new

new

new

changed

Folder 2 references
Pict 2 for the menu

Folder 1 referenziert
Pict 4 for the menu

dependent
release

Figure 7-2: Server-side release – release only new or new and changed

The following parameters have been set to call AccessUtil.release(...) :

releaseStartNode: Folder 1
releaseParentPath: false
boolean recursive: false
DependentReleaseType:
DEPENDENT_RELEASE_NEW_AND_CHANGED||DEPENDENT_RELEASE_NEW_ONLY

The selected start node for the release is the menu level "Folder 1".

Dependent release: The DEPENDENT_RELEASE_NEW_ONLY and

DEPENDENT_RELEASE_NEW_AND_CHANGED options affect all dependent objects in the

Page Store, Site Store and Media Store. This release option therefore not only

concerns the start node but also all objects considered during the release process. In

the example from Figure 7-2, the option examines and releases all outgoing

references of the menu level "Folder 1". If the dependent release only is activated

(without recursive release) "Pict 4" only would be released (see Figure 7-2);

however, if other release options are activated, the release can be considerably

more extensive (see Chapter 7.2.3 page 279, Chapter 7.2.6 page 286 and Chapter

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 279

7.2.7 page 288).

 All outgoing references for the dependent release are completely taken
into account in one direction only. If all dependent objects are to be included
in the release process, the release must therefore take place in a certain
order (see Chapter 7.2.8 page 290).

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 280

7.2.3 Dependent release with recursive release

Figure 7-3: Server-side release – release recursive and dependent

The following parameters have been set to call AccessUtil.release(...) :

releaseStartNode: Folder 1
releaseParentPath: false
boolean recursive: true
DependentReleaseType:
DEPENDENT_RELEASE_NEW_AND_CHANGED||DEPENDENT_RELEASE_NEW_ONLY

The selected start node for the release is the menu level "Folder 1".

Dependent release and recursive release If the DEPENDENT_RELEASE_NEW_ONLY or

DEPENDENT_RELEASE_NEW_AND_CHANGED options are combined with the recursive

option, the dependent release also affects all objects which lie below the start node.

Therefore, in the example from Figure 7-3, not only the outgoing references of the

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 281

menu level "Folder 1" are examined (cf. Chapter 7.2.2 page 277), but also the

outgoing references of the child objects located under it:

 In relation to the example, "Ref 1" which has a reference in the Page Store and is

located below "Folder 1" is therefore also examined. The page reference "Ref 1"

is released by the recursive release, the page "Page 1" is also released through

the dependent release.

 The menu level "Folder_2", which has become part of the release process due to

the recursive release option, has a reference to a medium in the Media Store.

The recursive release releases the folder "Folder 2" and the lower level page

reference "Ref 2". The dependent release also releases the referenced medium

"Pict 2".

 The page "Page 1" which was dependently released, also has outgoing

references in the Media Store. The referenced media "Pict 1" and "Pict 3" are

also dependently released.

Other dependent or recursive objects are no longer considered, as they are not

covered by any of the release options.

 All outgoing references for the dependent release are completely taken
into account in one direction only. If all dependent objects are to be included
in the release process, the release must therefore take place in a certain
order (see Chapter 7.2.8 page 290).

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 282

7.2.4 Ensure accessibility (parent chain)

Figure 7-4: Server-side release – Ensure accessibility (parent chain)

The following parameters have been set to call AccessUtil.release(...) :

releaseStartNode: Ref 1
releaseParentPath: true
boolean recursive: false
DependentReleaseType: NO_DEPENDENT_RELEASE

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 283 1.31

The selected start node for the release is the page reference "Ref 1".

Release parent chain: Starting from the start node of the release "Ref 1", the

complete parent chain of the object is considered up to the root node of the store.

The releaseParentPath option releases all nodes of the parent chain, which have

never been released. In specific terms, this means objects which have already been

released (changed objects), are not released by the releaseParentPath options, not

even if they have changed by an addition, for example, by adding a page page

reference (see Figure 7-4).

If the releaseParentPath=false option is set, the parent chain is not released, but

the elements to be released are added to the release child list of the parent node.

The following applies:

 In the case of changed parent nodes: The object to be released can be reached

in release status. However, the parent element is not released.

 In the case of new parent nodes: The object to be released cannot be reached in

release status as the parent node has never been released. This can result in

invalid references in the release status.

Background: If a page reference is to be released, although the editor does not have

permission to release within the higher menu level, the page reference should still be

included in the release status. Any content changes within the menu level (e.g. other

references), should however not be released by the releaseParentPath option (see

Figure 7-5).

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 284

Figure 7-5: Server-side release – Release parent chain (release child list)

In the example from Figure 7-5, a release of page reference "Ref 2" by "Editor A"

released both the newly created page reference and the newly created menu level

"Folder 2". Menu level "Folder 1" is not released. "Folder 2" is however added to the

release child list of menu level "Folder 1" using the releaseParentPath option so

that the new menu level "Folder 2" (and therefore the page reference "Ref 2") can be

reached in release status. Page reference "Ref 2" can therefore be reached within

the release status, but not the newly created page reference "Ref 1". If "Editor B"

now releases the page reference "Ref 1", this is also added to the release child list of

the menu level "Folder 1". As "Folder 1", as a changed object, can already be

reached via the release child list of the folder "SS Folder" which has also been

changed, the release is therefore closed. The two menu levels ("Folder 1" and "SS

Folder") are not released by the option, as they are not newly created objects.

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 285

7.2.5 Ensure accessibility (parent chain) and release recursively

Figure 7-6: Server-side release – Ensure accessibility (parent chain) and release
recursively

The following parameters have been set to call AccessUtil.release(...) :

releaseStartNode: Ref 1
releaseParentPath: true
boolean recursive: true
DependentReleaseType: NO_DEPENDENT_RELEASE

The selected start node for the release is the page reference "Ref 1".

Ensure accessibility (parent chain) and recursive release: Starting from the start

node of release "Ref 1", the complete parent chain of the object is considered up to

the root node of the store. The releaseParentPath option releases all nodes of the

parent chain, which have never been released (cf. Chapter 7.2.4 page 281). In

addition, all child elements of the starting point are released recursively (cf. Chapter

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 286 1.31

7.2.1 page 276). Using the example in Figure 7-6, it can be clearly seen that this

release is limited to the Site Store, as no dependencies are taken into account here

(unlike Figure 7-7). With this release it must be noted that defective references result

if a new object referenced in the Site Store has been created, i.e. in the example,

"Page 1" and the media "Pict 1" and "Pict 4". The current configuration in the

example (cf. Figure 7-6) will therefore result in an error within the release, as the

referenced page "Page 1" has never been released. If the references refer instead to

objects which have already been released once ("changed"), the last released

versions of each of the objects is referenced. In this case the release from the

example could be successfully executed.

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 287

7.2.6 Ensure accessibility (parent chain) and dependently release

Server-side release: Release parent chain + new and changed objects

Page Store

Media Store

Media Store Root

Page Store Root

PS Folder

MS Folder 1

MS Folder 2

Page 1

Pict 1

Pict 2

Pict 3

Pict 4

MS Folder 3

Page 2

Page 1 references
Pict 1 and Pict 3 via a
picture input
component

Site Store

Site Store Root

SS Folder

Folder 1

Ref 1

Folder 2

Ref 2

Ref 1 references Page 1

Start node of
the release

1

release
parent chain

new

new

new

changed

dependent
release

release
parent
chain

Folder 1 references
Pict 4 for the menu

Meta:
MS Folder in FILE

dependent
release

dependent
release

changed

new

added to
release child
list

new

changed

added to
release child
list

new

changed

added to
release
child list

Figure 7-7: Server-side release – Ensure accessibility (parent chain) and dependent
objects

The following parameters have been set to call AccessUtil.release(...) :

releaseStartNode: Ref 1
releaseParentPath: true
boolean recursive: false
DependentReleaseType:
DEPENDENT_RELEASE_NEW_AND_CHANGED||DEPENDENT_RELEASE_NEW_ONLY

The selected start node for the release is the page reference "Ref 1".

Ensure accessibility (parent chain) and dependent release: If the

DEPENDENT_RELEASE_NEW_ONLY or DEPENDENT_RELEASE_NEW_AND_CHANGED options are

combined with the releaseParentPath option, the dependent release affects both

the current start node and the parent chain on release of elements which have never

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 288

been released. This means, for example for the release of a page reference, that the

page referenced there is released. The whole parent chain for the referenced page is

now run through also and elements which have never been released are sought.

These elements are also released. The same applies to dependent objects in the

Media Store.

 The whole parent chain is run through for the page reference "Ref 1". Objects

there which have never been released are released, i.e. in the example the new

menu level "Folder 1", but not the changed menu level "SS Folder".

 The menu level "Folder 1" has an outgoing reference in the Media Store. The

dependent release also releases the medium "Pict 4".

 The whole parent chain is now run through for the medium "Pict 4" and all never

released objects are released. In the example, only the new media folder "MS

Folder 3" is released.

 On release of the page reference "Ref 1", the referenced page "Page 1" is

released.

 The whole parent chain is now run through for the page "Page 1" and all never

released objects are released. In the example, this does not apply to any objects,

as the parent node "PS Folder" has already been released once. Dependent

objects of the folder "PS Folder" are therefore not taken into account in the

dependent release.

 But the page "Page 1" which was dependently released, still has outgoing

references in the Media Store. The referenced media "Pict 1" and "Pict 3" are

also dependently released.

 The parent chain is now also examined for the two media. As the common parent

node "MS Folder 2" has only changed, no release is executed here.

 All outgoing references for the dependent release are completely taken
into account in one direction only. If all dependent objects are to be included
in the release process, the release must therefore take place in a certain
order (see Chapter 7.2.8 page 290).

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 289

7.2.7 Ensure accessibility (parent chain), release recursively and dependently

Figure 7-8: Server-side release including all options

The following parameters have been set to call AccessUtil.release(...) :

releaseStartNode: Folder 1
releaseParentPath: true
boolean recursive: true
DependentReleaseType:
DEPENDENT_RELEASE_NEW_AND_CHANGED||DEPENDENT_RELEASE_NEW_ONLY

The selected start node for the release is the menu level "Folder 1".

Ensure accessibility (parent chain), release recursively and release dependently:

The most comprehensive release is executed if all release options are combined

with each other. In this case, both never released elements of the parent chain and

all elements below the start node are released. In addition, the dependent objects of

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 290

all nodes affected by the release process are released and the whole parent chain is

examined there and if applicable is released. Unlike the release of the parent chain,

the recursive release does not affect the dependent objects. Using the example in

Figure 7-8, it is clear that the release approximately affects all the displayed objects

– only "Page 2" is not affected:

 The recursive option is evaluated at the starting point of the release "Folder 1".

The recursive release solely affects the child elements of the release's starting

point. In the example from Figure 7-8, the child elements Ref 1, Folder 2 and Ref

2 are therefore released by the option.

 All outgoing references of the released objects are released. In the example, this

is the objects "Pict 4" (through the reference within the menu level "Folder 1"),

"Page 1" (through the page reference "Ref 1"), "Pict 2" (through the reference

within the menu level "Folder 2")

 The outgoing edges of these released objects are examined again and released.

In the example, these are the media "Pict 1" and "Pict 3" (through the reference

within the page "Page 1").

 The complete parent chains of all released elements are now examined and all

never released parent nodes are released. In the example, these are the "SS

Folder" (parent element start node), "PS Folder" (parent element "Page 1"), "MS

Folder 2" (parent element "Pict 1" and "Pict 2"), "MS Folder 3" (parent element

"Pict 4").

 The dependent objects of the released parent nodes are now released. In the

example, this is the "MS Folder 1" (through the reference in "PS Folder"). Unlike

the releaseParentPath release option, "MS Folder 1" is released even if it has

only been "changed", i.e. had already been released once.

 All outgoing references for the dependent release are completely taken
into account in one direction only. If all dependent objects are to be included
in the release process, the release must therefore take place in a certain
order (see Chapter 7.2.8 page 290).

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 291 1.31

7.2.8 Order for the release

All outgoing references for the dependent release are completely taken into account

in one direction only, to prevent cyclical dependences in the release.

If all dependent objects are to be included in the release process, the following order

must be adhered to:

 Release in the Site Store includes outgoing references in the Page Store

 Release in the Site Store includes outgoing references in the Media Store

 Release in the Page Store includes outgoing references in the Media Store

The following are not taken into account:

 Release in the Page Store includes no outgoing references in the Site Store

 Release in the Media Store includes no outgoing references in the Site Store or

in the Media Store

Further cases in which dependent objects are shown in the reference graph but not

taken into account for a dependent release:

 Page→Page reference: Page with the input component CMS_INPUT_PAGEREF

in which a page reference is used.

 Only the page will be released, but not the dependent page reference.

 Page→Medium: Page basing on a page template in which the reference to a

medium is hard coded, for example $CMS_REF(media:"XXX")$ in the HTML

channel.

 Only the page will be released, but not the dependent medium.

 Medium→Medium: In a css file (Parse file: yes) another Medium (for example a

picture) is referenced hard coded. Both media are not released yet.

 If the css file is released ("Specific release -> Release dependent objects "),

the referenced picture will not be released at the same time.

 Page with LINK/DOM editor→Page reference: Both referenced objects are not

yet released.

 The referenced medium (picture) is released at the same time, but not the

referenced page reference.

 Page→Data set: Page with input component CMS_INPUT_CONTENTLIST /

FS_LIST etc., in which data sets are referenced.

 Object of the Content Store will not be released.

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 292

 Under certain circumstances, cyclical dependencies can occur, which
cannot be automatically released and therefore have to be triggered
manually.
Example: 2 pages exist in the Page Store ("Page 1" and "Page 2") each with
a section and a section reference to the section on the other page:
-- Page 1
 -- Section A
 -- Section reference to Section B of Page 2
-- Page 2
 -- Section B
 -- Section reference to Section A of Page 1

If the section references have not yet been released, neither Page 1 nor
Page 2 can be automatically released in this constellation. To release the
pages, one of the section references must be deleted first to remove the
cyclical dependency, e.g. "Section reference to Section B of Page 2". Page 2
can then be released. The section reference must then be established again,
then Page 1 can also be released.

In some cases, dependent objects are shown in the reference graph but not released

at the same time as the object on which the dependent release workflow is started.

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 293 1.31

8 WebEdit

WebEdit has been developed as a supplement to the FirstSpirit JavaClient editing

system. WebEdit mode provides a browser-based interface for fast and

uncomplicated input and maintenance of editorial content. The authors can

immediately use the diverse functions of the FirstSpirit editing environment, because

unlike the installation of the FirstSpirit JavaClient, the web browser is used for

WebEdit and therefore no other software (Java environment (JRE)) is required. From

a technical point of view, WebEdit operates purely on the basis of HTML and

JavaScript.

WebEdit is usually used if authors want to change existing content very quickly,

without having to familiarise themselves with the far-reaching functions of the

FirstSpirit editing environment. To keep use and user prompting in WebEdit as

simple and understandable as possible, the WebEdit interface does not provide the

full functional scope of the FirstSpirit editing environment. Functions which are not

part of the editorial work, for example, defining and changing workflows or editing

templates, are therefore not a component part of WebEdit.

For details of the functional scope of WebEdit and restrictions within the WebEdit

versions 4.0 and 4.1, see "FirstSpirit Release Notes".

Further documentation about the subject WebEdit can be found in the FirstSpirit

Online Documentation under "Template development – WebEdit".

8.1 Requirements for the use of WebEdit

The requirements for the use of WebEdit are described in the following

documentation:

System requirements:

 FirstSpirit Technical Data Sheet

Project requirements:

 FirstSpirit Manual for Administrators ("Project prerequisites when using WebEdit"

Chapter)

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 294

Browser compatibility:

 FirstSpirit Technical Data Sheet

Configuration:

 FirstSpirit Manual for Administrators:

Chapter "WebClient Configuration"

Chapter "WebEdit as local project application (from V4.1)

Chapter "Activate scripts in WebEdit" Chapter

Chapter “Prevent ‘directory browsing’”

Chapter "Configure WebEdit tree presentation"

Chapter "Configure workflows in WebEdit"

Chapter “Area: WEBedit configuration”

For details of browser configuration for editing editorial content, see:

 FirstSpirit Manual for Editors (WebClient):

Chapter "Browser Configuration"

 FirstSpirit Manual for Administrators:

Chapter "Browser Configuration for the Use of WebEdit"

8.1.1 Use of WebEdit without adjusting the templates

 WebEdit can be used without changing the project templates up to
FirstSpirit Version 4.0 inclusively, but this is not recommended. From
FirstSpirit-Version 4.1 the use of WebEdit without adjusting the templates is
no more supported!

If WebEdit is used without adjusting templates the following restrictions apply:

 WebEdit mode is controlled solely using the WebEdit toolbar (i.e. changing

existing data requires more work operations than using the Quick Edit bar or the

WebEdit icons).

 Links may not use any explicit targets such as "_top" or "_parent".

8.1.2 Use of WebEdit with adjustment of the templates (recommended)

If the templates are to be used both for WebEdit and within the JavaClient (for

example for a WebEdit preview), adjustments can be made within the templates to

integrate controls for direct editing in the page preview. These control elements (cf.

FirstSpirit Manual for Editors (WebClient)) enable the pages or certain parts of pages

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 295

to be edited within the preview directly in the browser.

To this end, the format templates for the required elements must be created first in

the project:

Figure 8-1: WebEdit control format template

These can then be integrated in a suitable position of the page and/or section

templates, e.g. in the HTML presentation channel, using the call:

$CMS_RENDER(template:"WEBeditIncludeJS")$

 When specifying the UID, note upper/lower case (case sensitive).

By adjusting the templates, the same templates can be used for the WebClient and

the JavaClient.

The template adjustment must always be made for the template set configured for

this project by the project administrator (cf. "FirstSpirit Manual for Administrators").

Either an existing template set (e.g. HTML channel) or a separate template set (e.g.

WebEdit channel) can be used for WebEdit.

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 296

 When adjusting the templates, make sure that the layout of the pages
is correct both with the inserted controls (e.g. in the WebEdit standalone
view) and in the view without controls (e.g. in a preview from the JavaClient).

8.2 Functional scope of WebEdit

 WebEdit button on the start page

 Login and project selection

 Simplified editing due to new controls (Quick Edit bar) at page and section level:

The new Quick Edit controls group together frequently required functions at page

and section level in the form of a fold-out menu. The following functions are

available:

 Page: New menu, New page, New section, Edit page, Start or Forward

workflow, Edit metadata, Delete page, Help

 Section: New section, Edit section, Move up, Move down, Edit metadata,

Delete section, Help

 The Quick Edit bar will be no more supported from FirstSpirit Version
5.0. It will be replaced by the Easy-Edit functionality (see Chapter 8.3 page
305).

 Easy-Edit (from FirstSpirit Version 4.2): explanation about the use of Easy-Edit

see Chapter 8.3 page 305 and FirstSpirit Online Documentation 6.

 Themes for WebEdit: The "Look & Feel" of all central WebEdit components, such

as controls, icons, fonts, etc, can be configured using Themes. The creation of

new "WebEdit Themes" is no longer supported from FirstSpirit Version 4.0. The

Theming function of WebEdit will be dropped with the release of WebEdit Version

5.0. Support for the creation of new themes for WebEdit is therefore no longer

planned. The FirstSpirit standard themes ("default", "xp") and the specific SAP

theme ("sap") can however continue to be used in FirstSpirit Version 4.1.

 Introduction of Content Outlining: In conjunction with the Quick Edit bar at section

level, it is now possible to interactively select the content area to which an

operation relates if the Quick Edit menu is displayed. This requires a DIV

6 FirstSpirit Online Documentation – Chapter: ../Template development/WebEdit/Easy-Edit

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 297 1.31

container to be added in the template.

Note: This functionality is not supported by FirstSpirit Version 4.2 because it can

cause conflicts with the Easy-Edit functionality.

 Introduction of a new WYSIWYG editor with:

 Undo/Redo

 Support for lists

Create new and extend nested lists is NOT possible

Editing nested lists is possible

 "Drag & Drop" for selected text

 Full-screen edit mode

 Introduction of context-sensitive, multi-lingual Online Help

 Improvement of interfacing for workflows. Certain standard workflows can be

stored for the status values "New", "Changed" and "Delete" (in the Quick Edit

bar), which are recommended to the editor or are executed with priority. In

addition, from FirstSpirit Version 4.1, a project-specific workflow can be tied

directly to the previous controls for deleting (menubar buttons, context menu

entry) elements (see Chapter 4.9 page 218). The evaluation order for the Quick

Edit bar starts with the stored standard workflows (highest priority) and ends with

the standard "Delete" function (lowest priority).

 Redesign of the input components CMS_INPUT_LINKLIST and

CMS_INPUT_CONTENTAREALIST

 Internal scalability optimisations: Performance and main memory requirements

 Improved multi-user synchronisation

 WebEdit as project locale web application: With this feature WebEdit can now be

combined for single projects for example with a project spezific personalisation

configuration (see FirstSpirit Manual for Administrators, Chapter "WebEdit as

local project application (from V4.1)“).

 Support for the permission definition component CMS_INPUT_PERMISSION

with the following restrictions:

 No support for scripts

 (to date) only 1 can be used per page

 No conflict visualisation

 Support for the most important input components in the Page and Content Store:

 DOM editor: The DOM editor supports WYSIWYG for format templates and

bold/italic and underline. Support for internal and external links and links on

elements from the Content Storevia appropriate link editors. Any existing

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 298 1.31

configuration is adopted from the form.

 DOM table editor: Convenient insertion of rows and columns. Each cell can

be separately edited in the DOM editor.

 Generic link editors: In FirstSpirit Version 4.2 the configuration options for links

are enhanced by the introduction of generic link editors. The use of the related

input components is restricted in WebEdit.

 Enhancements for Input components and selection dialogues:

 Preview in picture input components

 Display of elements in the Media Store

 Fading effects when loading new contents (e.g. when generating a preview)

 Additional control elements can be displayed in layers and iFrames into the

preview.

 Remote Media function: The multiple definition of remote projects is supported in

WebEdit too – with restrictions:

 The definition of more than one remote project (<REMOTE...>) and the

definition of categories (<CATEGORY...>) is supported for WebEdit only for

the input components CMS_INPUT_FILE and CMS_INPUT_ PICTURE.

 If more than one remote project is configured for an input component each

with the parameter uploadFolder only the first uploadFolder is taken into

account in WebEdit. Further uploadFolder of other remote projects are

ignored in WebEdit.

 Page Store:

 Editing folders (i.e. create/delete/rename)

 Edit pages (i.e. create/delete pages and create/delete/sort sections)

 Media Store:

 Editing folders (i.e. create/delete/rename)

 Create/delete pictures/files

 Automatic assignment of reference names

 Content Store:

 Overview table (incl. paging, but without sort)

 Create/delete data records

 Search: "Simple search" and "saved search" incl. parameters

 Site Store:

 Editing folders (i.e. create/delete/rename)

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 299 1.31

 Create/delete/rename pictures and files (language-independent only)

 Support for multi-lingualism

 Support for workflows

 Automatic, unique assignment of reference names: The WebEdit functions "New"

and "Create" automatically convert non-unique reference names (or reference

names with special characters). References names which are the same are

automatically assigned as unique names by appending a consecutive number

(e.g. by appending "_1").

 Enhancement of the WWW rollout: More files are automatically updated when

the server is started.

 Optimisation of the transition in workflows: If only one activity can be switched,

this activity is selected directly and the transition dialog appears.

8.2.1 New in Version 4.1

Development in Version 4.1 focuses on the user. The functions planned within the

scope of "WebEdit 5.0" development have already been implemented in the

FirstSpirit JavaClient. Comprehensive revision of the WebClient is not planned until

Version 5.

However, several new functions have already been realised for WebEdit 4.1. In

particular, the option to configure WebEdit as a local project web application is new

(see FirstSpirit Manual for Administrators, "WebEdit as local project application"

chapter). This means that WebEdit can now, for example, be combined with a

project-specific personalisation configuration.

The following functions have been supported in WebEdit to date:

 Media restrictions (with restrictions – see Chapter 8.2.2 page 299)

 Linking workflow to the "Delete" function

(see Chapter 4.9 page 218)

 Language enhancement: Apart from German, English, French, Spanish and

Russian, the FirstSpirit applications JavaClient and WebClient are now also

available in Italian. The language setting of the menu labelling, context menus

and dialogs can be selected via the FirstSpirit start page.

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 300 1.31

8.2.2 New in Version 4.2

The WebClient has been comprehensibly redesigned for WebEdit 4.2. To this end

(among other things), the "xp" theme, which can be configured for a project by the

project administrator, has been revised.

An important new function of WebEdit 4.2 is “Easy-Edit“. This will be described in

Chapter 8.3 from page 305, a detailed description of the configuration options can be

found in the FirstSpirit Online Documentation7.

From FirstSpirit Version 4.2, the configuration options for links have been

considerably enhanced by the introduction of so-called “generic link editors”. For this

purpose new input components have been introduced among other things. The

functionality of the generic link editors is alos supported by WebEdit, but with

restrictions in comparison with the use in JavaClient. For information for developers

about using the functionality see FirstSpirit Online Documentation, Chapter “Link

templates”8, for information about restrictions in WebEdit see FirstSpirit Online

Documentation, Chapter “WebEdit”9.

For further new functions see FirstSpirit Release Notes Version 4.2 and FirstSpirit

Online Documentation10.

7 FirstSpirit Online Documentation - Chapter: ../Template development/WebEdit/Easy-Edit

8 FirstSpirit Online Documentation - Chapter: ../Template development/Link templates/Generic link editors

9 FirstSpirit Online Documentation - Chapter: ../Template development/WebEdit/Restrictions

10 FirstSpirit Online Documentation - Chapter: ../Template development/WebEdit

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 301 1.31

8.2.3 Restrictions

At the present time (09-2009), the following restrictions must be noted in WebEdit

mode:

 "New Window" projects: When new windows are opened, there is no WebEdit

bar.

 WebEdit preview: It is possible that the preview is not up-to-date, for example, if

changes are made to the templates. In this case, a current preview can be

requested manually.

 Despite extensive optimisations within the scope of implementation of WebEdit,

very large projects and/or slow network connections sometimes result in

substantial delays (see below).

 Tree view: The "Locked" state is not displayed in the tree view of the stores. On

the other hand, the coloured marking for the status of a workflow on an object is

shown.

 Support for move operations within the tree is not implemented. However, it is

possible to change the order of the sections below a page (or the order of the

menu levels in the Site Store).

 The following functions for increasing the usability of FirstSpirit JavaClient are not

available in WebClient (see also FirstSpirit Release Notes 4.2):

 Multi-Tabbing (horizontal tabs for convenient editing of several workspaces)

 Breadcrumb navigation (display of the path from the Store root up to the

current element above the form area)

 Individual display of the stores (tree view reduced to one Store)

 Integrated preview

 Content highlighting

 Restore settings on restart

 In addition, the following functions which were implemented as new functions in

Version 4.2 of FirstSpirit JavaClient, are not available in WebEdit:

 Multi-lingualism of content areas: Instead of the language-dependent display

names which are displayed in JavaClient, the reference name is displayed in

WebClient.

 Media galleries

 Importing MS Word documents

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 302 1.31

 Drag & Drop FirstSpirit objects (e.g. from the local file system into the

JavaClient and vice versa, between two workspaces, from the search dialog)

 Status display for objects

 Quick text search

 Project homepage

 New start dialog

 Site Store: No complete support for page groups. All page references created

using the Quick Edit bar are located in the "Default" page group.

 Content Store:

 The "advanced search" and the full text search are not available.

 Saved queries can only have parameters of the type "String". (In the

JavaClient, Boolean, integer, double and date types are also supported.)

 Data sets can not be displayed in multi-line-view.

 Media Store:

 From FirstSpirit Version 4.1 uploading media in the Media Store of the

FirstSpirit JavaClient and the FirstSpirit WebClient can be limited to specific

file sizes and formats. As the file selection dialog available in the browser for

uploading media is not an independent implementation of FirstSpirit, but

instead is permanently integrated in each browser (e.g. Firefox, Mozilla,

Internet Explorer, Opera), filtering (as in the JavaClient) is technically not

possible in the WebClient. The files are therefore not filtered until after the

upload and any error message on exceeding the media restrictions defined in

the project configuration is issued to the user.

 Input components:

 Pre-configuration for input components is supported in individual cases only.

 CMS_INPUT_TEXTAREA: The length restriction has no effect.

 CMS_INPUT_DOM: No support for links to custom link editors.

 CMS_INPUT_DOM: Limited support for lists. Nesting within a list is not

possible.

 CMS_INPUT_DOM: No length restriction.

 CMS_INPUT_DOMTABLE: No support for cell formatting (format templates

are possible, however, no cell-specific attributes).

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 303

 The following are not planned for WebEdit:

 Changes in the Template Store (i.e. all types of templates, workflows and

schemata CANNOT be edited via WebEdit.)

 Definition of variables in the Site Store.

 Resolutions in the Media Store.

 Support for permission assignment.

 Support for document groups.

 CMS_INPUT_DOMTABLE: No merging and splitting of cells.

 For information about restrictions in the functionality of FirstSpirit
WebEdit please see also FirstSpirit Online Documentation11.

11 FirstSpirit Online Documentation – Chapter: ../Template development/WebEdit/Restrictions

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 304 1.31

8.2.4 Implementing WebEdit input components

Supported input components: The following input components were implemented

within the scope of the WebEdit implementation:

 CMS_INPUT_TEXT: single line text.

 CMS_INPUT_TEXTAREA: multiple line text without formatting.

 CMS_INPUT_DOM: formatted text with format templates and links (including

database links, but no support for lists, limited support for inline tables (from

FirstSpirit Version 4.2, see Chapter 2.8 page 95).

 CMS_INPUT_DOMTABLE: Table with formatted text including format templates

and links (WITHOUT cell merging and formatting, incl. DOM restrictions).

 CMS_INPUT_COMBOBOX: Simple selection from a dropdown list.

 CMS_INPUT_RADIOBUTTON: Simple selection from a displayed list.

 CMS_INPUT_CHECKBOX: Multiple selection from a displayed list.

 CMS_INPUT_PICTURE: Media selection

 CMS_INPUT_FILE: File selection

 CMS_INPUT_PAGEREF: Page reference selection

 CMS_INPUT_LINKLIST: List of links

 CMS_INPUT_NUMBER: Numbers

 CMS_INPUT_DATE: Date (without data selection dialog)

 CMS_INPUT_CONTENTAREALIST: List of sections

 CMS_INPUT_LINK: Ability to create and edit links.

 CMS_INPUT_LIST: Selection from a set of pre-defined list entries.

 CMS_INPUT_TOGGLE: Switch between two pre-defined values.

 CMS_INPUT_SECTIONLIST: List of all existing sections of a page.

 CMS_INPUT_PERMISSION: Permissions definition for user permissions.

Separate configuration is required for use of the permission filter within a

WebEdit environment (for further information, see FirstSpirit Manual for

Administrators). Restrictions to use of the component exist in WebEdit, for

example, the use of validation scripts is not possible.

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 305 1.31

 CMS_INPUT_OBJECTCHOOSER (from FirstSpirit Version 4.2): Data set

selection (restrictions see FirstSpirit Online Documentation12)

 FS_DATASET (from FirstSpirit Version 4.2): Data set selection (restrictions see

FirstSpirit Online Documentation)

 FS_LIST (from FirstSpirit Version 4.2): List of sections (restrictions see FirstSpirit

Online Documentation)

 FS_REFERENCE (from FirstSpirit Version 4.2): Reference selection (restrictions

see FirstSpirit Online Documentation)

not supported (planned):

 Complex components within the Content Store (CMS_INPUT_TABLIST,

CMS_INPUT_CONTENTLIST)

not supported:

 CHART components: Chart graphics

 FONT: Picture generation from Windows fonts

8.2.5 Implementing WebEdit design elements

Supported design elements: The following design elements in the form area were

implemented within the scope of the WebEdit implementation

 CMS_COMMENT: Comment on individual parts within the form area of a page or

section template.

 CMS_GROUP: Graphic grouping of input components as a group. In WebEdit,

unlike JavaClient, the grouped elements can only be displayed as a tab in the top

part of the form area (not on the page).

 CMS _LABEL: For specifying additional labelling on each page or on each

section.

12 FirstSpirit Online Documentation – Chapter: ../Template development/WebEdit/Restrictions

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 306

8.3 Easy-Edit (from V4.2)

The "Easy-Edit" function has been introduced to enable direct editing of sections

within the preview page without using separate windows. It can therefore replace the

Quick Edit function at section level (see Chapter 8.5.1 page 316).

Existing FirstSpirit projects do not have to be migrated. Easy-Edit is an additional

function, i.e. existing projects can initially continue to be used as usual without

adjustments (and therefore without Easy-Edit).

To use the "Easy-Edit" function, the templates of a project must be adjusted first.

Special templates, the Easy-Edit format templates, are used for this. They can be

combined with the WebEdit format templates and, just like these, are already

included in the FirstSpirit scope of supply. The Easy-Edit format templates are

created in the project together with the WebEdit format templates using the

FirstSpirit server and project configuration, if the project property "Use WebEdit" is

enabled. Apart from the format templates, a new media folder "WebClient Media

(EasyEdit)" is created in the project for the Easy-Edit function.

 For release projects, the "WebClient Media (EasyEdit)" folder and the
media contained in it must be manually released in the project. On disabling
the project property "Use WebEdit", the format templates and the "WebClient
Media (EasyEdit)" media folder are removed from the project. In this case,
release on the higher level folder of the Media Store takes place
automatically.

The Easy-Edit format templates must be added to the page, section and/or table

templates in which the Easy-Edit function is to be used.

 A precise description of the format templates is given in the FirstSpirit
Online Documentation 13.

13 FirstSpirit Online Documentation – Chapter: ../Template development/WebEdit/Easy-Edit

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 307

 The technologies used for the "Easy-Edit" function intervene in the
HTML source code of a FirstSpirit project far more than the WebEdit
functions used to date. For this reason, it is not possible to guarantee that
"Easy-Edit" can be used without changes to the project HTML. Use of
JavaScript must at least be enabled within the browser settings; however,
other changes to the browser configuration through to adjustments in the
project may be necessary.
Furthermore, problems can occur if JavaScript Frameworks are used in
projects, as Easy-Edit uses the JavaScript Framework MooTools. Manual
adjustments may also be necessary.

 The "Easy-Edit" function already provides new user prompting
concepts in WebEdit 4.2, which will be continued with the launch of WebEdit
5.0. However, in WebEdit 5.0, the technologies on which these are based will
be implemented in a completely new way with the help of the GWT
framework14. In order to keep the migration work for projects as small as
possible, it is planned to keep template changes to the Easy-Edit function of
Version 4.2 compatible with Version 5.0. However, this cannot be guaranteed
at the present time.

14 GWT – Google Web Toolkit

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 308 1.31

8.4 WebEdit format templates

The WebEdit standard format templates can be installed and updated by the project

administrator via the FirstSpirit server and project configuration. These format

templates can then be referenced and used within the project templates.

The scope of supply of FirstSpirit includes the following WebEdit format templates:

WEBeditBarIncludeJS WebEdit basic functions for the Quick Edit

buttons.

WEBeditEditAttribute Editing an input component.

WEBeditEditContent Edit a data record.

WEBeditEditSectionAttributes Edit all input components of a section.

WEBeditIncludeJS WebEdit basic functions for the Inline

buttons.

WEBeditQuickBar Display the Quick Edit buttons at page or

section level.

WEBeditScripts Enables up to three script buttons to be

shown in the WebEdit toolbar.

WEBeditSelectPicture Edit a picture.

WEBeditSwitch Switch edit mode (old)

WEBeditSwitch2 Switch edit mode (new)

The WebEdit format templates are located in the Template Store in the "WebClient

Format Templates" node:

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 309

Figure 8-2: WebEdit format templates (reference names/display names)

The display of names in the tree depends on the "Extras" – "Preferred display

language" setting (see Figure 8-2).

The instruction $CMS_RENDER(...)$ is used within a template to integrate the

content of a format template. The WebEdit format templates therefore have to be

integrated within the required page and section templates using

$CMS_RENDER(...)$:

$CMS_RENDER(template:"TEMPLATE", OPTIONS)$

For further information on format templates or the $CMS_RENDER(...)$ instruction,

see FirstSpirit Online Documentation.

Note: The optional parameters WEBeditExternal and WEBeditMode of the

templates can be alternatively defined project-wide in the Site Store.

 When using templates, note that WEBeditIncludeJS must be used in
the <HEAD>-area of each the project's page templates!

8.4.1 WEBeditBarIncludeJS

WEBeditBarIncludeJS is used to make the WebEdit function "Quick Edit" availalbe

to a page. The "WEBeditBarIncludeJS" template must be used in each page

template of the project in which "Quick Edit" is to be used. In addition, each page

template must contain WEBeditIncludeJS .

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 310 1.31

$CMS_RENDER(template:"WEBeditIncludeJS")$
$CMS_RENDER(template:"WEBeditBarIncludeJS")$

8.4.2 WEBeditEditAttribute

WEBeditEditAttribute requires the mandatory parameter name for specifying the

input components (e.g. "st_text"). In addition, the parameter tooltip can be used to

assign an alternative tooltip.

$CMS_RENDER(template:"WEBeditEditAttribute",name:"st_subheadline")$

Mandatory parameters:

name: Name of the GUI component ("name" attribute of the <CMS_INPUT_...>

component), e.g. name:"st_text" or name:"st_headline".

Optional parameters:

tooltip: Specification of a different tooltip for the display when the cursor is

moved over the link, e.g. tooltip: “Edit heading".

8.4.3 WEBeditEditContent

WEBeditEditContent does not require any mandatory parameters. The optional the

parameter tooltip can be used to assign an alternative tooltip. The optional

parameter WEBeditExternal can be used to display the WebEdit buttons even in

generated and deployed statuses ("1" display in generated status also, "0" display

within the preview only).

The Uid of the table template and the ID of the currently rendered data record are

normally used. The optional parameter content can be used to change the default

Uids of the table template used ($CMS_VALUE(ContentName)$). The optional

parameter index can be used to change the default data record ID used

$CMS_VALUE(#row.getId())$).

$CMS_RENDER(template:"WEBeditEditContent")$

Optional parameters:

tooltip: Specification of a different tooltip for the display when the cursor is

moved over the link, e.g. tooltip: "Edit Heading".

WEBeditExternal: If the value here is set to "1", the WebEdit buttons are

displayed even in the generated status, if value "0" is set the WebEdit buttons are

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 311 1.31

hidden in the generated status.

content: Specification of the Uid of the table template, e.g.:

content:"glossar.glossary".

index: Specification of the data record ID in the schema, e.g. index: "128" or

index:#row.getId()

8.4.4 WEBeditEditSectionAttributes

WEBeditEditSectionAttributes does not require any mandatory parameters. The

optional the parameter tooltip can be used to assign an alternative tooltip.

$CMS_RENDER(template:"WEBeditEditSectionAttributes")$

Optional parameters:

tooltip: Spcification of a different tooltip for the display when the cursor is moved

over the link, e.g. tooltip: "Edit Heading".

8.4.5 WEBeditScripts

WEBeditScripts has six optional parameters: script1, scriptTooltip1, script2,

scriptTooltip2 sript3 and scriptTooltip3.

$CMS_RENDER(template:"WEBeditScripts"
[,script1:"PARAMETER",scriptTooltip1:"TOOLTIP"]
[,script2:"PARAMETER",scriptTooltip2:"TOOLTIP"]
[,script3:"PARAMETER",scriptTooltip3:"TOOLTIP"])$

The parameters script1 to script3 are used to transfer a character string of

parameters which define which parameters are to be taken into account for the

script. Within this character string the key and value are separated by the equals

sign ("=") and a key/value pair is separated by the "&" symbol. There is NO "&"

symbol in front of the first key/value pair. scriptTooltip1 to scriptTooltip3 are

used to indicate the tooltips for the buttons in the WebEdit toolbar, for example

"Execute script".

In WebEdit the keys script, id, store and templateset are evaluated in a

parameter character string, whereby script is a mandatory key and must contain

the unique name of the script to be executed. Other keys are made available to the

script context.

With templateset, either the name or the number of the script's presentation

channel must be given. The id and store keys indicate in which store (e.g.

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 312 1.31

store=mediastore) and on which node (e.g. id=12345) the script is to be executed.

These two keys must always be given together.

Example:

$CMS_RENDER(template:"WEBeditScripts",script1:"script=myTestScript&tem
plateset=html&store=mediastore&id=23456¶meter1=value1"

In the example, the content of the script's "html" channel with the unique name

“myTestScript”, is executed in the Media Store on the node with the ID "23456". The

parameter parameter1 is available in the script context with the value value1.

Optional parameters:

script1: Specification of the parameter URL for the first script button, e.g.

script1:“script=myScript".

scriptTooltip1: Tooltip for the first script button in the WebEdit toolbar, e.g.

scriptTooltip1:“My 1st script".

script2: Specification of the parameter URL for the second script button, e.g.

script2:“script=myScript".

scriptTooltip2: Tooltip for the second script button in the WebEdit toolbar, e.g.

scriptTooltip2:“My 2nd script".

script3: Specification of the parameter URL for the third script button, e.g.

script3:“script=myScript".

scriptTooltip3: Tooltip for the third script button in the WebEdit toolbar, e.g.

scriptTooltip1:“My 3rd script".

Parameter URL:

script=VALUE: Specification of the unique name of the script to be executed, e.g.

script=myScript.

templateset=VALUE: Specification of the presentation channel of the script to be

executed, either via the channel number or the channel name, e.g. templateset=0 or

templateset=html.

store=VALUE&id=VALUE: ID and store of the node on which the script is to be

executed, e.g. store=mediastore&id=23884.

NAME=VALUE: Other variables, which are to be made available in the script context,

e.g. date=03.04.2005&editor=Franz

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 313 1.31

8.4.6 WEBeditSelectPicture

WEBeditSelectPicture has the same mandatory and optional parameters as

WEBeditEditAttribute: name for the name of the input component and tooltip as

an optional parameter (cf. Chapter 8.4.2).

$CMS_RENDER(template:"WEBeditSelectPicture",name:"st_picture")$

Mandatory parameters:

name: Name of the GUI component ("name" attribute of the <CMS_INPUT_...>

component), e.g. name:"st_picture".

Optional parameters:

tooltip: Specification of a different tooltip for the display when the cursor is

moved over the link, e.g. tooltip:"Edit picture".

8.4.7 WEBeditIncludeJS

WEBeditIncludeJS is used to make the WebEdit standard functions available in a

page, therefore the parameter must be used in each page template of a project.

$CMS_RENDER(template:"WEBeditIncludeJS")$

8.4.8 WEBeditQuickBar

WEBeditQuickBar is used to add the Quick Edit bar at page/section level.

WEBeditQuickBar has no mandatory parameters. The following optional parameters

can be specified: barOrientation, highlightContainer, highlightClass,

extended, wfNew, wfChanged, wfDelete and wfForce. barOrientation is used to

specify the fold-out direction of the Quick Edit bar. hightlightContainer and

highlightClass define an area to be highlighted and assign a CSS class to it.

extended can be used to affect the initial fold-out behaviour of the Quick Edit bar

(folded out/extended or folded up/retracted). The parameters wfNew, wfChanged and

wfDelete are used to define the recommended workflows for the object status.

wfForce can be used to force execution of a recommended workflow. A detailed

explanation is given in the next chapter.

$CMS_RENDER(template:"WEBeditQuickBar",barOrientation:"left",highl
ightContainer:"hc" + #global.page.id)$

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 314 1.31

Optional parameters:

tooltip: Specification of a different tooltip for the display when the cursor is

moved over the link, e.g. tooltip:"Edit".

barOrientation: Specification of the fold-out direction of the Quick Edit bar. If

the value "left" is specified, the Quick Edit bar is folded out (dropped down) to the

left, if "right" is specified it folds out to the right, e.g. barOrientation:"left". If

no parameter is specified the Quick Edit bar folds out to the right.

extended: Specification of the initial fold-out behaviour of ONE Quick Edit bar on

a preview page, e.g. extended:“true“. "true" means dropped down and "false" means

folded up. If the parameter is not specified the Quick Edit bar is folded up (see

Chapter 8.5.6 page 318). The parameter can only be used once per page.

highlightContainer: ID of the element whose content is to be especially

highlighted, e.g. highlightContainer:“section1" (see Chapter 8.5.7 page 318).

Examples:

 highlightContainer: "hc" + #global.id

 highlightContainer: "hc" + #global.page.id

 highlightContainer: "hc" + #global.section.id

highlightClass: Specification of a CSS class which is to be used for the element

which as specified with highlightContainer. If no CSS class is specified, the standard

CSS class "weHighlight" is used (see Chapter 8.5.7 page 318). Examples:

 highlightClass: "weContainer"

 highlightClass: "layout"

wfNew: Name of the recommended workflow for "new" status, e.g.

wfNew:"Release request".

wfChanged: Name of the recommended workflow for "changed" status, e.g.

wfChanged:"Release request".

wfDelete: Name of the recommended workflow for "Delete" status, e.g.

wfDelete:"Delete".

wfForce: Force execution of the recommended workflow for a status. "true"

means force execution, "false" means execution is not forced. If the parameter is not

specified, the execution is not forced, e.g. wfForce:"true" or

wfForce:"false".

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 315 1.31

disableButtons: Specification of Quick Edit bar buttons (at page level), which

are to be concealed in the bar. At present, hiding the buttons using the attribute

disableButtons is only possible for the "Create Page"

(disableButtons:"newpage") and "Extras" (disableButtons:"extras")

buttons (cf. Chapter 8.5.4 page 317). The two parameters can also be specified

combined (disableButtons:"newpage,extras"). These buttons are no

longer displayed when the Quick Edit bar is opened.

8.4.9 WEBeditSwitch

The format template WEBeditSwitch can be used to realise a jump into a WebEdit

preview page ("DeepLink") from a page which is not a preview page.

$CMS_RENDER(template:"WEBeditSwitch",guiLanguage:"EN",login:"User_
A",password:"PW_A")$

Optional parameters:

tooltip:Specification of a different tooltip for the display when the cursor is moved

over the link, e.g. tooltip:"Display page".

guiLanguage: Specification of a valid interface language which is to be used for

WebEdit, e.g.guiLanguage:"EN".

login: Specification of a valid user name for authentication in the WebClient, e.g.

login:"User_A".

password:Specification of a valid password for authentication in the WebClient,

e.g. password:"PW_A".

8.4.10 WEBeditSwitch2

The format template WEBeditSwitch2 can be used to realise a jump into a

WebEdit preview page ("DeepLink") from a page which is not a preview page. Unlike

WEBeditSwitch, apart from the conventional authentication ("plain"), other

authentication methods can also be used (e.g. authentication using SAP ticket).

$CMS_RENDER(template:"WEBeditSwitch2",guiLanguage:"EN",login:"plai
n",user:"User_A",password:"PW_A")$

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 316 1.31

Optional parameters:

tooltip: Specification of a different tooltip for the display when the cursor is

moved over the link, e.g. tooltip:"Go to".

guiLanguage: Specification of a valid interface language which is to be used for

WebEdit, e.g. guiLanguage:"EN".

user: Specification of a valid user name for authentication in the WebClient, e.g.

user:"User_A".

login: Specification of a valid authentication procedure for authentication in the

WebClient, e.g. login:"ticket". Other login options:

 plain Plain text authentication

 hash Base64 authentication

 ticket Authentication using SAP ticket

ticket: Specification of a ticket for SAP authentication. The ticket parameter is

only required is "ticket" has been defined as the authentication method for the login

parameter.

password:Specification of a valid password for authentication in the WebClient,

e.g. password:"PW_A".

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 317

8.5 Quick Edit

8.5.1 Use of Quick Edit in FirstSpirit projects

The "Quick Edit" function provides a fast and easy option for performing editorial

changes and processes at page and section level.

At present the following operations are available to the editor at page level:

 Create a new menu level

 Create a new page

 Create a new section

 Edit the page in the Page Store.

 Start or forward workflow on the page reference

 Edit the metadata of the page reference

 Delete page

 Help

 Some of these functions are covered by the Easy-Edit functionality.
From FirstSpirit Version 5.0 the Quick Edit bar will no more be supported and
replaced by Easy-Edit.

The operations at section level are:

 Create a new section

 Edit the section in the Page Store.

 Move section up by one position

 Move section down by one position

 Edit metadata of the section

 Delete section

 Help

 From FirstSpirit Version 5.0 the Quick Edit bar will no more be
supported and replaced by Easy-Edit.

Two steps are necessary to be able to use Quick Edit. First, general functions must

be made available at page level (see Chapter 8.5.2 page 317) and secondly Quick

Edit buttons must be integrated at page and section level (see Chapter 8.5.3 page

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 318

317).

8.5.2 General functions of Quick Edit at page level

All pages of a WebEdit project which are to use the Quick Edit function must be

modified. It is advisable to make the settings directly in the page templates. To this

end, the general Quick Edit functions must be made available first in the WebEdit

presentation channel. In addition to render format template WEBeditIncludeJS, the

render format template WEBeditBarIncludeJS must also be added to the page

templates between the opening and closing HTML head tag:

...
<html>
 <head>
 <title>Page template</title>
 $CMS_RENDER(template:"WEBeditIncludeJS")$
 $CMS_RENDER(template:"WEBeditBarIncludeJS")$
 </head>
 <body>
...

The render format template WEBeditBarIncludeJS does not require any additional

parameters, just like WEBeditIncludeJS.

8.5.3 Integrating the Quick Edit buttons

Quick Edit buttons can be integrated both on page and on section level. A render call

must be added to the page or section template for a Quick Edit button:

$CMS_RENDER(template:"WEBeditQuickBar")$

Whether the page or section operation is displayed in Quick Edit depends on

whether the render call is added in the page or section template.

 ONLY ONE render call may take place for "WEBeditQuickBar" in a
page or section template.

8.5.4 Hiding Quick Edit bar buttons

it is possible to hide certain buttons of the Quick Edit bar (at page level). At present,

hiding the buttons using the attribute disableButtons is only possible for the

"Create Page" and "Extras" buttons (cf. Chapter 8.4.8 page 312). These buttons are

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 319 1.31

no longer displayed when the Quick Edit bar is opened. The render call in the page

template must be adjusted to hide the Quick Edit buttons:

Example of hiding the "Extras" button:

$CMS_RENDER(template:"WEBeditQuickBar",disableButtons:"extras")$
Extras

Example of hiding the "Create page" and "Extras" buttons:

$CMS_RENDER(template:"WEBeditQuickBar",disableButtons:"newpage,extras"
)$

8.5.5 Orientation of the Quick Edit bar

As the Quick Edit bar overlaps part of the content when it is dropped down and the

space for dropping down in one direction can be smaller than the Quick Edit bar, the

fold-out direction should be specified for the Quick Edit bar. The parameter for the

fold-out direction is called barOrientation. The two possible values for

barOrientation are "right" (Quick Edit bar folds open to the right) and "left"

(Quick Edit bar folds out to the left). If the parameter is not specified the Quick Edit

bar always folds out to the right.

$CMS_RENDER(template:"WEBeditQuickBar",barOrientation:"left")$

8.5.6 Drop down the Quick Edit bar

In addition to the orientation of the Quick Edit bar, the initial drop down behaviour

can also be changed. The fold-out behaviour can be configured for exactly one

Quick Edit bar on a page, i.e. for the page template and all section templates used.

The name of the attribute is extended (see Chapter 8.4.8 page 312). Possible

values are "true“ (initially dropped down) and "false" (initially folded up). If the

parameter is not specified the Quick Edit bar is initially folded up.

$CMS_RENDER(template:"WEBeditQuickBar",extended:"true")$

8.5.7 Highlighting page areas

If Quick Edit is used in a project, it is not always obvious that a Quick Edit button

belongs to the section of a page. For example, a button can belong to the previous

or following section. To visualise the affiliation for the editor, page areas or sections

can be especially highlighted. There are two attributes for the highlighting

highlightContainer and hightlightClass (see Chapter 8.4.8 page 312).

highlightContainer is used to specify a unique ID, which is assigned to an HTML

FirstSpirit Manual for Developers (Part 1: Basics)

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 320

tag whose content is to be highlighted. The system object #global can be used to

output page-related information. The CMS variables #global.id (ID of the node),

#global.page.id (ID of the page) and #global.section.id (ID of the section) can

be used to generate a unique ID.

 No “class" attributes may be defined for the HTML tag whose content is
to be defined.

1st example: HTML tag whose content is to be highlighted:

<div>
 $CMS_VALUE(fr_st_text)$
</div>

could for example look like this after adding the "id" attribute:

<div id="hc$CMS_VALUE(#global.section.id)$">
 $CMS_VALUE(fr_st_text)$
</div>

2nd example: Specification of the ID in the render call of "WEBeditQuickBar":

$CMS_RENDER(template:"WEBeditQuickBar")$

The call could, for example, look like this after adding the highlightContainer

attribute:

$CMS_RENDER(template:"WEBeditQuickBar",highlightContainer:"hc" +
#global.section.id)$

In the example, the content of the element with the ID:

"hc" + #global.section.id would be especially highlighted when the Quick Edit

bar is opened. The second attribute highlightClass can be used to specify a user-

defined CSS class for highlighting. If the parameter highlightClass is not

specified, the CSS class weHighlight is used, which has the following content:

.weHighlight{
 background-color:ffffd3 !important;
 border:1px solid #464600 !important;
}

A user-defined CSS class is specified as follows:

$CMS_RENDER(template:"WEBeditQuickBar",highlightContainer:"hc" +
#global.section.id,highlightClass:"webEditHighlighting")$

The user-defined CSS class could, e.g. then look like this:

<style type="text/css">

1.31

FirstSpirit Manual for Developers (Part 1: Basics)

 .webEditHighlighting {
 background-color:#008000 !important;
 }
</style>

 In the case of websites without tables, problems can occur in Internet
Explorer if the CSS attribute "float" is used. If the surrounding area has a
width of 100% and if a border is to be added for highlighting, the layout
collapses. In most cases it then helps to use another HTML tag or to reduce
the width.

8.5.8 Workflow recommendations

In the Quick Edit bar the status the object has is determined during workflows. A

differentiation is made between the following status values: "new", "changed" nd

"delete". A workflow can be recommended for each status. The attributes for this are:

wfNew ("new" status), wfChange ("changed" status) and wfDelete ("delete" status)

(see Chapter 8.4.8 page 312). The name of the workflow must be specified for the

attributes, e.g. "Request Release".

In addition, immediate execution of the recommended workflow can be forced with

the wfForce attribute. The possible values are "true" and "false" (default selection).

$CMS_RENDER(template:"WEBeditQuickBar",wfNew:"Release
request",wfForce:"true")$

A special workflow is required for dependent release of elements for new elements

which were created using the Quick Edit functions "Create menu level" and "Create

page". Such a workflow is not included in the WebEdit scope of supply as the

configuration of such a workflow can differ greatly from project to project.

FirstSpirit 4.x  DEVB40EN_FIRSTspirit_DeveloperDocumentationBasics   RELEASED  2011-09-02 321 1.31

	Introduction
	1.1 Topics covered in this documentation
	1.2 Position within the overall documentation
	1.3 General terms
	1.3.1 Templates
	1.3.2 New input components (Status: Under development) (from V4.2)
	1.3.3 Content Store
	1.3.4 Workflows
	1.3.5 Integrated preview (from V4.2)
	1.3.6 Content Highlighting (from V4.2)

	2 Template Store of the FirstSpirit JavaClient
	2.1 General information
	2.2 General Template Store context menus
	2.2.1 New
	2.2.1.1 New: Create template
	2.2.1.2 New: Create folder
	2.2.1.3 New: Create format template
	2.2.1.4 New: Create table format template (from V4.1)
	2.2.1.5 New: Create style template (from V4.1)
	2.2.1.6 New: Create link configuration
	2.2.1.7 New: Create link template
	2.2.1.8 New: Create new script
	2.2.1.9 New: Create new schema
	2.2.1.10 New: Create schema from db
	2.2.1.11 New: Create new table template
	2.2.1.12 New: Create new query
	2.2.1.13 New: Create new workflow

	2.2.2 Lock/Unlock (Edit Mode On/Off)
	2.2.3 Reset Changes
	2.2.4 Cut
	2.2.5 Copy
	2.2.6 Paste
	2.2.7 Rename
	2.2.8 Delete
	2.2.8.1 Special case: Deletion of section restrictions
	2.2.8.2 Deleting section templates (use as section restriction)

	2.3 Special context menus of the Template Store
	2.3.1 Refresh this store
	2.3.2 Create update
	2.3.2.1 Create selection list
	2.3.2.2 Select selection list
	2.3.2.3 Delete selection list
	2.3.2.4 Select objects for the update
	2.3.2.5 Last used objects

	2.3.3 Install update
	2.3.3.1 Status of the template on updating
	2.3.3.2 Change mapping to template in the target project

	2.3.4 Export
	2.3.4.1 Export folders
	2.3.4.2 Export templates
	2.3.4.3 Export style and table format templates (from V4.1)
	2.3.4.4 Export link configurations and link templates
	2.3.4.5 Export scripts
	2.3.4.6 Export schema
	2.3.4.7 Export table templates and queries
	2.3.4.8 Export workflows

	2.3.5 Import
	2.3.5.1 Import style and table format templates (from V 4.1)
	2.3.5.2 Import schema
	2.3.5.3 Import workflows

	2.3.6 Restore deleted objects
	2.3.7 Edit extern

	2.4 Administrative context menus of the Template Store
	2.4.1 Version history
	2.4.2 Start Workflow
	2.4.3 Execute Script
	2.4.4 Search in templates
	2.4.5 Extras – Change Permissions
	2.4.6 Extras – Reset write lock
	2.4.7 Extras – Select preview image
	2.4.8 Extras – Show properties (from V4.2)
	2.4.9 Extras – Show usages
	2.4.10 Extras – Accept template changes
	2.4.11 Extras – Cancel editing
	2.4.12 Extras – Convert link template (from V4.2)
	2.4.13 Extras – Change reference name
	2.4.14 Extras – Display dependencies (from V4.1)
	2.4.15 Extras – Create a copy of this workflow

	2.5 Page templates
	2.5.1 Preview tab
	2.5.2 Properties tab
	2.5.3 Form tab
	2.5.4 Template sets tabs
	2.5.5 Restricting the content areas for page templates (up to and including V4.1)

	2.6 Section templates
	2.6.1 Preview tab
	2.6.2 Properties tab
	2.6.3 Form tab
	2.6.4 Template sets tabs

	2.7 Format templates
	2.7.1 Properties tab
	2.7.2 Template Sets tabs

	2.8 Style templates (from V4.1)
	2.8.1 Introduction: Inline tables (from V4.1)
	2.8.2 Create style template (from V4.1)
	2.8.3 Form area of a style template (from V4.1)
	2.8.3.1 Prevent layout editing for editors (from V4.1)

	2.8.4 Pre-configuration of the layout attributes (from V4.1)
	2.8.5 Output channel of a style template (from V4.1)
	2.8.6 Linking with standard table format templates (from V4.1)
	2.8.7 Examples (from V4.1)
	2.8.7.1 Example: Text input component for entering a background colour
	2.8.7.2 Example: Input component for entering a font colour
	2.8.7.3 Example: Input component for selecting a text alignment
	2.8.7.4 Example: Input component for entering a CSS attribute

	2.9 Table format templates (from V4.1)
	2.9.1 Creating and editing display rules (from V4.1)
	2.9.2 Evaluation order (from V4.1)
	2.9.3 Insert inline tables in the DOM Editor (from V4.1)

	2.10 Link templates
	2.10.1 Standard link types
	2.10.2 Link configuration – Properties tab
	2.10.3 Link configuration – Configuration tab
	2.10.4 Link templates – Properties tab
	2.10.5 Link templates – Template sets tabs
	2.10.6 Generic link editors (from V4.2)

	2.11 Scripts
	2.11.1 Properties tab
	2.11.2 Form tab
	2.11.3 Template sets tabs

	2.12 Database schemes
	2.12.1 The FirstSpirit schema editor
	2.12.2 Table templates – Preview tab
	2.12.3 Table templates – Properties tab
	2.12.4 Table templates – Form tab
	2.12.5 Table templates – Mapping tab (up to and including V4.0)
	2.12.6 Table templates – Mapping tab (from V4.1)
	2.12.7 Table templates – Template sets tabs
	2.12.8 Query – Conditions tab
	2.12.9 Query – Parameter tab
	2.12.10 Query – Result tab

	2.13 Workflows

	3 Data sources in FirstSpirit
	3.1 Terms
	3.2 Multiproject layers
	3.2.1 Multiproject layer in FirstSpirit Version 3.1
	3.2.2 Multiproject layer in FirstSpirit Version 4.0

	3.3 Single project layers
	3.4 Layer types and their names from FirstSpirit Version 4.2
	3.5 Data (content) sources in the FirstSpirit JavaClient
	3.6 Template update on data (content) sources

	4 Workflows
	4.1 Overview
	4.1.1 Search for tasks (filtered overview) (from V4.1)
	4.1.2 Edit tasks
	4.1.3 Close tasks

	4.2 Modelling workflows
	4.2.1 Create a workflow
	4.2.2 Toolbar of the workflow editor
	4.2.3 Elements of the graphic workflow editor
	4.2.3.1 State / Status
	4.2.3.2 Activity
	4.2.3.3 Transition

	4.2.4 Keyboard shortcuts in the Workflow Editor
	4.2.5 Editor accessibility features
	4.2.6 Modelling rules
	4.2.7 Examples of modelling rules
	4.2.8 Print preview for workflow models

	4.3 Error handling within workflows
	4.3.1 General error handling
	4.3.2 Error status (from V4.1)
	4.3.3 Example: Workflow "Error" (from V4.1)

	4.4 Form support for workflows (form)
	4.4.1 Example: Workflow "GUI"

	4.5 Properties of a workflow (configuration)
	4.5.1 General properties
	4.5.2 Show logic for workflows (from V4.1)
	4.5.3 Properties of a status
	4.5.3.1 Common tab
	4.5.3.2 Colour Identifier tab

	4.5.4 Properties of an activity
	4.5.4.1 Common tab
	4.5.4.2 E-mail tab

	4.5.5 Properties of a transition
	4.5.5.1 Common tab
	4.5.5.2 Permissions tab
	4.5.5.3 E-mail tab

	4.6 Permissions configuration for workflows
	4.6.1 General rights (permissions) configuration via the Template Store
	4.6.2 Change or block modifier preselection
	4.6.2.1 Manual editor (per action)
	4.6.2.2 Automatic editor by rights

	4.6.3 Context-dependent permissions for starting a workflow
	4.6.4 Context-dependent permissions for switching a workflow
	4.6.5 Effects of the permissions configuration

	4.7 Write protection within workflows
	4.7.1 General information
	4.7.2 Write lock in case of creating and moving objects
	4.7.3 Write lock within scripts

	4.8 Using scripts in workflows
	4.8.1 Automatic activities and scripts
	4.8.2 Manual activities and scripts
	4.8.3 Workflow context
	4.8.4 Example: Issue of messages in workflows
	4.8.5 Example: Persistent content within workflows

	4.9 Delete via a workflow (from V4.1)
	4.9.1 Introduction (from V4.1)
	4.9.2 Delete via a workflow in the JavaClient (from V4.1)
	4.9.3 Delete via a workflow in the WebClient (from V4.1)
	4.9.4 Permissions configuration (from V4.1)
	4.9.5 Example: Workflow "Delete" (from V4.1)
	4.9.6 Example: Workflow "ContentDeleteDemo" (from V4.1)

	4.10 Workflows with complex functions
	4.10.1 Example: "RecursiveLock" workflow
	4.10.2 Example: "RecursiveRelease" workflow

	4.11 Multiple selection of workflows (from V4.1)
	4.11.1 General information on multiple selection in FirstSpirit
	4.11.2 Multiple selection of workflows (from V4.1)
	4.11.3 Requirements for starting and advancing workflows (from V4.1)
	4.11.4 Multiple selection via the task list (from V4.1)
	4.11.5 Multiple selection via the "workflows" overview (from V4.1)

	5 Document Groups
	5.1 Introduction
	5.1.1 Objective
	5.1.2 Concept

	5.2 Configuration
	5.2.1 Check licence file

	5.3 Using document groups in the FirstSpirit JavaClient
	5.3.1 Create new document groups
	5.3.2 Define properties
	5.3.3 Manage content of the document groups
	5.3.4 Template settings for document groups
	5.3.5 Presentation channels for generating document groups

	5.4 Template development
	5.4.1 System objects
	5.4.2 Context variables
	5.4.3 Start and end template

	5.5 Application examples
	5.5.1 Example: Chapter headings
	5.5.2 Example: Table of contents
	5.5.3 Example: Jump to table of contents
	5.5.4 Example: Local page references

	6 Tracking Changes using Revision Metadata (from V4.1)
	6.1 Introduction (from V4.1)
	6.2 Get revisions (from V4.1)
	6.3 Determine changes within a revision (from V4.1)
	6.3.1 Determine change type (from V4.1)
	6.3.2 Determine changed elements (from V4.1)

	6.4 Changes since the last deployment (from V4.1)
	6.5 Changes between two revisions (from V4.1)

	7 Server-Side Release
	7.1 Standard release
	7.2 Specific release
	7.2.1 Recursive release
	7.2.2 Dependent release
	7.2.3 Dependent release with recursive release
	7.2.4 Ensure accessibility (parent chain)
	7.2.5 Ensure accessibility (parent chain) and release recursively
	7.2.6 Ensure accessibility (parent chain) and dependently release
	7.2.7 Ensure accessibility (parent chain), release recursively and dependently
	7.2.8 Order for the release

	8 WebEdit
	8.1 Requirements for the use of WebEdit
	8.1.1 Use of WebEdit without adjusting the templates
	8.1.2 Use of WebEdit with adjustment of the templates (recommended)

	8.2 Functional scope of WebEdit
	8.2.1 New in Version 4.1
	8.2.2 New in Version 4.2
	8.2.3 Restrictions
	8.2.4 Implementing WebEdit input components
	8.2.5 Implementing WebEdit design elements

	8.3 Easy-Edit (from V4.2)
	8.4 WebEdit format templates
	8.4.1 WEBeditBarIncludeJS
	8.4.2 WEBeditEditAttribute
	8.4.3 WEBeditEditContent
	8.4.4 WEBeditEditSectionAttributes
	8.4.5 WEBeditScripts
	8.4.6 WEBeditSelectPicture
	8.4.7 WEBeditIncludeJS
	8.4.8 WEBeditQuickBar
	8.4.9 WEBeditSwitch
	8.4.10 WEBeditSwitch2

	8.5 Quick Edit
	8.5.1 Use of Quick Edit in FirstSpirit projects
	8.5.2 General functions of Quick Edit at page level
	8.5.3 Integrating the Quick Edit buttons
	8.5.4 Hiding Quick Edit bar buttons
	8.5.5 Orientation of the Quick Edit bar
	8.5.6 Drop down the Quick Edit bar
	8.5.7 Highlighting page areas
	8.5.8 Workflow recommendations

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

