

FirstSpirit™ CorporateContent
FirstSpirit™ Version 5.2

Version 1.41

Status RELEASED

Date 2022-08-11

Department FS-Core

Copyright 2022 Crownpeak Technology GmbH

File name CONT_EN_FirstSpirit_CorporateContent

Crownpeak Technology GmbH

Stockholmer Allee 24
44269 Dortmund | Germany

T +49 231 . 477 77-0
F +49 231 . 477 77-499

 info-dach@crownpeak.com
 www.e-Spirit.com

http://www.e-spirit.com/en
mailto:info-dach@crownpeak.com
http://www.e-spirit.com/en

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 1

Table of contents

1 Introduction ... 5

2 Terms and concepts .. 7

2.1 ContentTransport functionality .. 7

2.1.1 Feature combination in ContentTransport ... 7

2.1.2 Cross-server transport of features.. 8

2.2 CorporateContent functionality .. 8

2.2.1 Package types in CorporateContent .. 9

2.2.2 Package dependencies in CorporateContent 9

2.2.3 Package definition and package version .. 11

2.2.4 Publication groups ... 13

2.2.5 Subscription ... 14

2.2.6 Integrating workflows and scripts ... 17

3 Configuration .. 18

3.1 Checking the license file ... 18

3.2 Starting the "PackageManager" service ... 18

4 Content Transport .. 20

4.1 Creating or loading a feature ... 24

4.2 Adding objects to a feature ... 25

4.2.1 Using the tree structure of stores ... 25

4.2.2 Adding data sources and datasets ... 26

4.2.3 Within the feature combination .. 27

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 2

4.3 Feature combination ... 27

4.3.1 Overview .. 27

4.3.2 "Included objects" area .. 28

4.3.3 "Required missing references" area .. 30

4.3.4 "Optional missing references" area .. 31

4.4 Flyout menu .. 32

4.5 Graphical representation of dependencies .. 34

4.5.1 Icon bar ... 35

4.5.2 Display of relation graph .. 35

4.5.3 Context menu on objects .. 36

4.6 Transporting project properties ... 37

4.7 Installing a feature in a target project .. 40

4.8 Restrictions and notes ... 42

4.9 Configuring the storage locations ... 45

4.10 Automatic creation, updating and installation of features 47

4.10.1 Exporting existing feature combinations via a schedule ("Create new

feature bundle") .. 48

4.10.2 Importing feature combinations via a schedule ("Install/Update feature

bundle")... 50

5 CorporateContent (Package pool) ... 52

5.1 Creating or editing a package .. 53

5.1.1 Creating a new package .. 53

5.1.2 Creating a package version .. 64

5.1.3 Publishing a package ... 68

5.2 Adding objects to a package .. 69

5.2.1 Using the tree structure of the stores .. 69

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 3

5.2.2 In the package combination ... 70

5.3 Package combination ... 70

5.3.1 Overview .. 70

5.3.2 "Included objects" area .. 71

5.3.3 "Unfulfilled dependencies (own package)" area 72

5.3.4 "Missing references (dependent package)" area 73

5.4 Flyout menu .. 74

5.5 Graphical representation of dependencies .. 75

5.5.1 Icon bar ... 76

5.5.2 Display of relation graph .. 76

5.5.3 Context menu on objects .. 77

5.6 Functions via the "CorporateContent" menu item 78

5.6.1 Overview menu item ... 78

5.6.2 Package menu item - Edit packages ... 85

5.6.3 Package menu item - Publish packages .. 87

5.6.4 Subscription menu item - Create subscription 88

5.6.5 Subscription menu item - Edit subscription ... 94

5.6.6 Subscription menu item - Update subscription 95

5.6.7 Publication groups menu item ... 98

5.6.8 Combining package and target project contents 102

5.7 CorporateContent content menu in the stores ... 107

5.7.1 Starting adding to a package (master project) 107

5.7.2 Removing from a package (master project) 108

5.7.3 Undoing a package relation (target project) 109

5.7.4 Change status (target project) ... 110

5.7.5 Reintegrating an original (target project) .. 113

5.8 Transferring existing projects into package master projects 114

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 4

5.8.2 For similar projects .. 123

5.8.3 Import / export... 123

5.9 Corporate Content for developers .. 124

5.9.1 Individualization of the package contents in the target projects .. 124

5.9.2 Support for multiple languages .. 125

5.9.3 Using workflows and events ... 131

5.10 Shared database access... 135

5.10.1 Configuring the target projects (read-only DB access) 137

5.10.2 For existing databases ... 138

5.10.3 New databases ... 139

5.10.4 "contentSelect" function ... 139

5.10.5 Language-dependent content .. 140

5.10.6 Different database layers in the master and target project 141

6 Legal notices .. 142

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 5

1 Introduction

 This document is provided for information purposes only. Crownpeak Technology

GmbH may change the contents hereof without notice. This document is not warranted to

be error-free, nor subject to any other warranties or conditions, whether expressed orally

or implied in law, including implied warranties and conditions of merchantability or fitness

for a particular purpose. Crownpeak Technology GmbH specifically disclaims any liability

with respect to this document and no contractual obligations are formed either directly or

indirectly by this document. The technologies, functionality, services, and processes

described herein are subject to change without notice.

The Multisite Management area includes functions that allow the distribution, and thereby the

reuse, of FirstSpirit content in SiteArchitect. In the process, the user is conveniently supported by

the user interface in an optimal way. This reuse is possible across both project and server

boundaries.

The essential use cases here are:

▪ Reusing editorial content and layouts between different projects (sites or clients)

▪ Simply reusing specific project solutions

▪ Supporting the development of quality assurance processes (DQP scenario)

Multisite Management includes the ContentTransport and Corporate Content functions.

The Corporate Content functionality is located on the vertical icon bar in the left-hand area of

SiteArchitect under the icon and on the menu bar under the "Corporate Content" menu

item. The desired project contents are combined in the source project into what are known as

packages. These packages can be subscribed to in other FirstSpirit projects (target projects).

The ContentTransport functionality is located on the vertical icon bar in the left-hand area of

SiteArchitect under the icon. The desired project content and project properties are

combined in the source project into what are known as features. The feature combination can

then be saved as an archive file and be imported into other FirstSpirit projects (target projects).

The advantage of these functions: FirstSpirit elements can be managed at a central location

(source project) and can always be kept at the desired version in other projects (target projects).

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 6

Topics covered in this documentation:

Chapter 2 explains the most important terms and concepts for working with packages, features

and subscriptions. This chapter offers a general overview of how the CorporateContent function

works and helps first-time users get started (starting from page 5).

Chapter 3 describes the configuration settings on the server. The chapter is only relevant for

administrators (starting on page 18).

Chapter 4 goes over the ContentTransport area with all of the functions for creating, editing and

deploying ContentTransport features (starting on page 20).

Chapter 5 goes over the Corporate Content area with all of the functions for creating, editing and

publishing packages (starting on page 52).

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 7

2 Terms and concepts

2.1 ContentTransport functionality

Different project content – as well as project properties – can be collected from all of the stores

using ContentTransport. Aside from the templates, it is also possible to transport all the FirstSpirit

content that has been entered using SiteArchitect and/or ContentCreator (content from the page,

media, data and site stores plus content from the global settings), and any project properties that

have been made using FirstSpirit ServerManager. As a result, they can all be reused very easily.

A feature and the elements it contains always relate to one specific project state. This can be a

state such as the release state or one of the past states. FirstSpirit also only transports content

from this state via the feature. These past contents can easily be viewed at any time. Both the

editing forms and the integrated preview of SiteArchitect are displayed with the historical data.

An object explicitly added to a feature is used as the start node. All subordinate objects, including

entire folders, are also applied to the feature starting from this start node. The parent chain of the

object is also taken into account and implicitly applied to the feature. Necessary and optional

dependencies are detected automatically and can be added to the feature manually using the

"ContentTransport" store. Once all desired objects have been combined in the feature, the

feature can be saved as a compressed zip file and be provided for import into the FirstSpirit

target projects.

 For restrictions and notes concerning the "ContentTransport" functionality, see also

Chapter 4.8, page 42.

2.1.1 Feature combination in ContentTransport

Feature combinations do not have to be complete, i.e. not all of the referenced objects have to

be included in a feature, since a link to existing objects is established automatically in the target

project. In the user interface, these open edges relating to project content are indicated at

different spots:

Directly in the tree view:

The tree view shows the missing elements of the feature for both the entire feature and starting

from elements already in the feature. The missing elements can be added to the feature directly

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 8

by the user.

In the graphical display for the combination

The graphical display provides a complete overview of the elements (open edges) that are in the

feature or are still missing. Optimum support is provided for the feature combination process in

that elements can be added directly to the feature from the graphs or can be directly removed

from the feature.

2.1.2 Cross-server transport of features

The transportation of combinations from ContentTransport (which are called "Features") is

possible across server boundaries, e.g. by using external storage locations (also refer to Chapter

4.9, page 45 in this regard). Thus, ContentTransport also provides optimum support for DQP

scenarios and the associated development and quality assurance process, which involve

transferring new functions from a development system (D) to a quality assurance system (Q) so

that the function can be tested there. After being tested successfully, the function is transferred

further to the live system (P) starting from D.

The transfer of features between DQP systems can be automated by using a corresponding

schedule (see Chapter 4.10, page 47). There is also an API available for this.

2.2 CorporateContent functionality

The FirstSpirit CorporateContent function represents a further development of the previous

"package pool" function that could be used to distribute templates and content between different

projects on a server automatically. Content can be reused conveniently and across projects with

FirstSpirit this way. An important aspect when combining packages is that all dependent objects

also have to be included in the package.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 9

Packages are created and edited in the source project. The project available for importing

packages into other projects is designated the source project. The objects are selected from the

source project's project tree. What is known as a start node is defined in the process. All

subordinate objects, even entire folders, are transferred to the package starting from this node. If

all desired objects have been combined, a new package version is created which is then

available for importing to all target projects with a valid subscription.

Likely the most important functional enhancement is the option for creating packages at the last

released state. Thus, all of the package's elements no longer have to have been released at the

time the version is created.

2.2.1 Package types in CorporateContent

FirstSpirit distinguishes between two package types:

• Content packages: Content packages contain objects from the page store, the site store

and the media store. They do not contain templates or objects from the Data Store.

• Template packages: Objects from the template store are integrated into template

packages. In addition, a template package is allowed to contain objects from the Data

Store and the media store. Integrating objects from the media store into a template

package should, however, be limited to media that are referenced in the templates

directly, such as those used for the layout (cascading style sheets, spacer.gif, logos, etc.).

Other media objects continue to belong to a content package.

 Each object can only be integrated into one respective package!

2.2.2 Package dependencies in CorporateContent

Different objects are combined into packages. Most objects, excepting objects from the media

store, can reference additional objects. For instance, a page from the content store could

reference an image from the media store and a template from the template store. The

dependencies between objects have to be resolved in order to import objects into different

projects successfully. In other words, it must be ensured that all objects referenced in a package

are also contained in the package. This is the reason behind strictly separating content and

template packages.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 10

A distinction is made between two dependencies in the process:

1. Content-related dependencies:

The dependencies within a content package are resolved automatically using what are

known as relation graphs (see Chapter 5.8.1.1, page 115). For instance, which objects a

page references for each page that is to be taken over in a package is checked in the

process. The referenced objects are then also taken over in the package. If the object

that is to be transferred to a content package is, for example, a page reference or a folder

from the site store, then all associated pages from the page store are transferred to the

package as well.

If referenced objects are already integrated into one content package, they cannot be

taken over in another context package since each object is only allowed to be included in

one single package. In this case, a dependency on this dependent content package is

established by the system. This is shown when creating a package version or in the

version list for a package and in the detailed information for the package. The dependent

content packages can then be subscribed to manually (see Chapter 5.6.6, page 95). A

content package can have multiple dependent content packages.

2. Dependencies on templates

A content package's dependency on a template cannot be resolved automatically. The

relationship between a content package and a template package has to be specified in

the content package's properties. If there is a dependency between a content package

and a template package, a specific sequence has to be followed when creating a version

in the master project and when publishing from the master project (see Chapter 5.6.3,

page 87).

Templates can also have dependencies on other templates. These dependencies cannot

be resolved automatically in each instance since the effects would be very far-

reaching in some cases. The package developer should put thought into dependencies

and the most effective package structure possible well in advance when packing a

template package. The sequence in which objects are added to a package also has to be

taken into account in the process. If, for instance, a template has a dependency on a data

source, the associated database schema (including table templates and queries) has to

be added to the package beforehand.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 11

 For a subscription this means: A package can have a dependency on another

package (content or template package). In order to subscribe to a package, all dependent

template packages must be subscribed to and all dependent content packages can be

subscribed to as well. The import sequence is not arbitrary in this context:

Whenever a content package with a dependency on a template package is imported,

the template package has to be imported first and then the associated content package. If

this sequence is not followed, an error message appears and the user can restart the

import.

Whenever a content package with a dependency on another content package is

imported, the dependent content package has to be imported first and only then is the

content package that contains the references to the dependent objects imported. Errors in

the target project may result if this sequence is not followed during the import or if the

dependent content packages are not imported.

A specific sequence has to be followed for publishing dependent content packages.

2.2.3 Package definition and package version

A package consists of one or more package versions depending on the specific type (content or

template package). Each package version has precisely one zip file used for importing into

target projects.

The zip file contains all of the data required for the package version and a meta description of the

package contents. This meta description is called a package definition. The package definition

is made hierarchically based on a list of start nodes. These start nodes determine which objects

are part of the package. All of the objects below this start node are taken over in the package

when it is created. Which objects this exactly entails depends on the structure and contents of

the master project.

In addition to the package definition, the dependencies between individual objects have to be

taken into account as well (see Chapter 2.2.2, page 9). If there are dependencies between an

Package

 Package

version

 Zip file

Conceptual Physical

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 12

object contained in a package and another object that is not part of the package, then the

dependency is identified automatically using the relation graphs and the referenced object is

added to the package even though it is not explicitly part of the package definition. Thus, a

package cannot be defined solely via the selected package content. Therefore, a distinction

between the package definition and the package version is vital.

Package definition:

Describes the content of a package using the start node from the master project integrated in the

package. Referenced objects are not included in this node list and thus are not part of the

package definition. The complete content does not result until a package version is created using

a package definition.

Package version:

Contains all of the objects determined using the package definition and all manually referenced

objects. Thus a package version provides a complete description of the package contents. Unlike

the package definition, which always reflects the most up-to-date content, a package version is

only as up-to-date as the date of its last creation.

The package contents change if:

• A new start node is explicitly added, i.e. when a package definition is modified.

• An object is implicitly added because it was created from scratch below a start node in

the master project (no change to the project definition).

In these two cases, the packages should be refreshed by creating a new package version (see

Chapter 5.1.2, page 64). A package version can be released for one or more publication groups.

 If a new object (e.g. an image) is created in an existing package below a start node

that has already been integrated, this object is added to the package automatically and

included in the next package version.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 13

 Overlap between package contents cannot occur when creating packages. This

means, each project node can only belong to exactly one package. Project nodes and

objects already used in a package can be identified based on the

"ObjectName@PackageName" name extension (in reference names; if namespace

enhancement has not been disabled, see Chapter 5.1.1.3.1, page 62) and by a package

symbol in the project tree. This process increases clarity since otherwise multiple new

package versions would have to be created and published at the same time when

modifying a single object.

2.2.4 Publication groups

Creating and publishing packages is a complex task. Incorrect operation can result in problems

and conflicts in target projects. Therefore, packages should be thoroughly tested before they are

used in a live environment. The concept of a "publication group" was instituted for this purpose

(also refer to Chapter 5.6.7, page 98). A publication group is a sort of "marker" that can be

assigned to one or more package versions. Packages can "be released" for specific publication

groups on master project pages and in the event of subscription to a package, target project

pages can be used to define the publication group for which the package is intended. Publication

groups are defined server-wide and thus can be used in both master and target projects.

For instance, the following publication groups could be defined:

• Development: For developing packages.

• Test: For projects used for testing packages.

• Live operation: For projects that use a package in a live environment.

The example flow then appears as follows:

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 14

The "Development" group begins developing a package. The initial 0.1 and 0.2 package versions

are only released for this group. Development continues until package version 0.3 – which is

released for both the "Development" publication group and the "Test" group – is created at some

point. As a result, this version of the package becomes available to all projects whose

subscription was concluded with the "Development" and "Test" publication groups. An automatic

or manual update occurs in the target project depending on the project configuration. Once

development of the package is complete, a new package version 1.0 can be released for the

"Live operation" group.

As can be seen in the example, multiple versions can be released for one publication group. The

package version with the highest package number, i.e. the most up-to-date version, is always

used in this case. The package number is unique and is generated when creating a new package

version.

2.2.5 Subscription

Subscriptions are created and edited in target projects. Projects that can import packages from a

source project are designated as target projects. Only packages defined as "available" in the

source project can be subscribed to (see 5.1.1.2, page 55).

A distinction is made between two states for a subscription:

1. Initialization: In the event of a subscription, all package content (such as all of the

source project's media files) are initially transferred to the target project and can be edited

further by the target project's editors (depending on the package or subscription

configuration).

2. Update: A new package version has to be created as soon as some aspect of the objects

integrated into the package changes in the source project or new objects are to be made

available, such as a new image. Each new package version not only contains changes

Package

version

Release for pub. group

Version 0.1 Development

Version 0.2 Development

Version 0.3 Development, Test

Version 0.4 Development, Test

Version 1.0 Live operation

Version 1.1 Development

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 15

from the preceding version, but also all the modified objects from the preceding version.

However, all of the objects contained in the package are no longer replaced when

updating a target project with a new package version. Instead, only the newly added and

modified objects are replaced.

2.2.5.1 Updating packages in the subscription

A package update can be carried out using two different processes:

1. Automatic update: With automatic updating, the decision to update a package is in

the hands of the source project administrator. From a central location, the

administrator initiates the update for all target projects that have a valid subscription

to this package by publishing the package (see Chapter 5.6.3, page 87). This is also

referred to as a "push" process. Manual intervention on behalf of the person

responsible for the target project is not necessary.

2. Manual update: With manual updating, the decision to update is in the hands of the

target project administrator. A new package is made available to the administrator

(such as in the package overview, see Chapter 5.6.1, page 78, or in the subscription

list) and the administrator can update the project using the new package as needed

(see Chapter 5.6.6, page 95). This is also referred to as a "pull" process. The

administrative burden is placed on the target projects by manual updating.

Three possible states are feasible during updating:

• An object from the source project is newly created in a target project.

• An object present in a target project is updated with content from the source

project.

• A conflict situation occurs (also see Chapter 5.7.4, page 110).

Publication groups have been defined in order to simplify package updating and to avoid errors in

live projects (see Chapter 2.2.4, page 13).

2.2.5.2 Subscribing to metadata and project setting templates

In most projects, in addition to standard page templates, there is also a template page for global

project settings and for what are known as metadata, if they are used in the project. These

templates can be part of a template package and thus can be imported into any target project

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 16

with a valid subscription. By integrating a project setting template, for example, it is possible to

define layout specifications uniformly for headlines and continuous text across an entire project.

By integrating metadata, for example, it is possible to work with personalized pages. If these

templates are imported into target projects, they can be expanded and adapted to project-

specific circumstances there without issue.

 Imported metadata templates have to be configured in the project settings within

ServerManager under the "Options" item in the "Metadata template" field.

 These templates can, in fact, be imported into target projects in both cases, but

using them is also not mandatory. This can lead to problems if other packages are based

on these project settings or metadata.

 The CorporateContent function only transfers the templates, not the content.

Metadata/project settings maintained by editors can only be transferred to other projects

by using the ContentTransport function (see Chapter 4, page 20).

2.2.5.3 Release

The project-specific concept of release control can also be used for working with packages.

Whether the subscribed contents are to be released automatically or not is already determined

when subscribing to a package. If automatic release is selected, all new or modified objects are

released automatically and immediately after being imported, without any action on the part of

the target project (for release via workflows see Chapter 2.2.6, page 17). Which objects are

modified is not apparent to target project content editors in this case.

In contrast to this procedure, explicit release can also be defined. Modified or new objects are

shown in red in the target project's project tree in the process and have to be released explicitly

by a responsible editor. Advantage: The changes are visible at a glance. This solution does offer

more transparency, but would not be very convenient for a larger package scope. For this

reason, explicit release can be carried out using a single workflow. When updating a package, a

list of the released objects is created at the same time and announced throughout the

subscription. All of the objects from this list can then be released using just one workflow (also

see Chapter 5.9.3.1, page 132 in this regard).

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 17

2.2.6 Integrating workflows and scripts

Packages are usually updated and imported in complex project environments. Integrating

workflows into target projects is vital in order to make working as convenient as possible. Specific

events are made known to each package in the process. A workflow or script that is started after

importing the package can then be assigned to each of these events. Examples of such events

include:

• Automatic release: Directly after importing, a workflow is started that releases all new or

modified objects automatically, without any action on the part of the target project (see

Chapter 2.2.5.3, page 16).

• Resolving a conflict: If a package conflict occurs when importing a package, a workflow

that is intended to correct the conflict is started when this event occurs.

• Report function: The report function is particularly interesting for large projects. It creates

a log file during import of a package and informs groups of responsible persons about

updates.

In the event of a subscription, the assignments created in the package for events are applied by

default but can be reconfigured in the target project.

In addition to being run in the target projects, workflows can also be used in the master project. A

package update can also basically be initiated using a workflow or a script.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 18

3 Configuration

"CorporateContent" is a license-dependent functionality; this means the "CorporateContent"

menu item (on the FirstSpirit SiteArchitect menu bar) and the ContentTransport icon (on the

FirstSpirit SiteArchitect vertical icon bar) are only shown if a valid license for this functionality is

present.

Two steps are needed to activate the functionality:

▪ Checking the license file and replacing it if necessary (see Chapter 3.1, page 18)

▪ Activating PackageManagerService (see Chapter 3.2, page 18)

3.1 Checking the license file

The applicable FirstSpirit functions of the license file

fs-license.conf are shown using the FirstSpirit Server Monitoring menu "FirstSpirit –

Configuration – License". The license.PACKAGEPOOL parameter has to be set to a value of 1

in order to use the "CorporateContent" or "ContentTransport" functions.

If this is not the case, a new valid license can be requested from the manufacturer and be

exchanged using FirstSpirit server monitoring.

 Tampering with fs_license.conf will result in an invalid license. If changes

become necessary, please contact the manufacturer.

The server does not have to be restarted when inserting a new fs_license.conf configuration

file. The file is updated on the server automatically.

3.2 Starting the "PackageManager" service

The next step is to start the "PackageManager" service on the FirstSpirit server. The service can

be activated via FirstSpirit Server Monitoring in the "FirstSpirit – Control – Services" area (or via

ServerManager).

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 19

The service is started by clicking the "Start" entry. The server does not have to be restarted.

The configuration for automatically starting the service each time the server is restarted can be

defined in the "FirstSpirit – Configuration – Services" area.

For details of how to carry out configuration using FirstSpirit ServerMonitoring, also see the

following documentation: FirstSpirit Manual for Administrators, Chapter 8.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 20

4 Content Transport

The "Content Transport" store is used for creating new features and for editing existing features.

It can be opened using the icon from the vertical icon bar in SiteArchitect. Creating and

combining a feature in a source project and updating one in a target project is described in the

following chapters:

▪ Creating or loading a feature Chapter 4.1, page 24

▪ Adding objects to a feature Chapter 4.2, page 25

▪ Feature combination Chapter 4.3, page 27

▪ Flyout menu Chapter 4.4, page 32

▪ Graphical representation of dependencies Chapter 4.5, page 34

▪ Transporting project properties Chapter 4.6, page 37

▪ Updating a feature in a target project Chapter 4.7, page 40

▪ Notes on Content Transport Chapter 4.8, page 42

▪ Configuring the storage location Chapter 4.9, page 45

▪ Automation Chapter 4.10, page 47

Figure 4-1: Content Transport store

The ContentTransport area's icon bar contains entries for creating and editing ContentTransport

features.

 The name of the opened feature is shown after this icon. Clicking the name opens a dialog

where the feature name can be modified. If no feature is loaded, "No feature loaded" is

displayed.

 Create or load feature; clicking this icon opens a dialog for creating a new feature or loading

an existing one (see Chapter 4.1, page 24). This icon is only active if no feature is currently

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 21

loaded.

 Save feature; clicking this icon saves the current feature combination (for example to be used

or reused later) on the server (see Chapter 4.1 page 24). It can be loaded using the function

"Load feature from server" within the same project at a later time.

 Generate feature ZIP file; to use in a target project on the same or on another server (if the

configuration is correct), the content of the feature is stored in a ZIP file. This is also required for

enabling automated updates. Using this icon initiates generation of the feature ZIP file. The

storage location for the ZIP file can be selected in the following dialog:

Figure 4-2: Selecting the target storage location

Possible target storage locations can be configured in FirstSpirit ServerManager in the project

properties under "Project components"/"FirstSpirit Content Transport Storage

App"/"Configuration" or by double-clicking on the project component (refer to Chapter 4.9, page

45). If no other storage location is configured, a default storage location is offered on the local

FirstSpirit server ("Project-Local-Storage" storage location).

Clicking "OK" generates the feature ZIP file and saves it to the selected storage location. The

user can then select whether the file should also be stored in another, local storage location:

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 22

Figure 4-3: Saving the ZIP file locally as well

Save locally: The desired target folder for the ZIP file can be selected in following dialog box.

The name of the ZIP file is created automatically.

Save in storage only: The ZIP file is only saved in the storage location previously selected.

A message box appears indicating that the feature was saved successfully.

 Discard feature; clicking this icon closes the open feature – after affirming a confirmation

prompt. Unsaved changes to the combination are lost.

 Install feature; clicking this icon opens a dialog for selecting the source. The call for this

function only occurs in the target project.

Figure 4-4: Selecting a source

Local file system: A dialog opens for selecting a feature ZIP file from the local workstation.

Storage: The feature to be installed can be selected in the following dialog. The storage location

from which the feature is to be loaded is selected first. The list is empty if no feature was

previously created (see the "Generate feature ZIP file" function, further up).

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 23

Figure 4-5: Feature selection

Storage: Storage location selected for feature generation (for details of how to configure

storage locations, see Chapter 4.1, page 45).

 Default storage location on FirstSpirit server: "Project-Local-Storage"

The available features at the particular storage locations are displayed with the following

information:

Feature name: Name given to the feature when it was created

Project name: Specifies the name of the source project on the server.

Revision: Feature revision selected when generating the feature.

Released: Release state selected when generating the feature.

Server: Specifies the name of the server where the feature was created.

UUID: Unique ID across servers that was assigned automatically by the system when the

feature was generated.

Clicking "OK" installs the selected file in the target project (see Chapter 4.7, page 40).

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 24

4.1 Creating or loading a feature

Clicking the icon or the entry "Create or load a feature" in the empty feature area opens a

dialog for creating a new feature or for editing or loading an existing feature.

Figure 4-6: "Create or load a feature" dialog

Creating or loading a feature

In the upper area of the dialog, you can choose between creating a new feature or loading one

that has already been created (feature or feature zip file). Existing feature zip files can be loaded

from the local workstation and existing features can be loaded from the FirstSpirit server.

Create new feature: Activating this option creates a new empty feature.

Load feature from server: A dialog for selecting an already existing feature opens. The combo

box contains all of the features that have previously been saved on the FirstSpirit server (icon,

see Chapter 4, page 20).

Features, which are no more required, can be deleted from the list using this dialog using the

icon . These deleted features may be archived and thus removed from the FirstSpirit

repository via the schedule action "Archive old project states" (see FirstSpirit Documentation for

Administrators, chapter "Archive old project states"). To do so, activate the option "System data"

in the schedule action.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 25

Load feature from local zip file: A dialog for selecting a feature zip file from the local

workstation opens.

Feature settings

The settings for the newly created or loaded feature can be edited in the lower area of the dialog.

Name: A unique and legible name should be specified when creating a new feature. The name is

used to save the feature file on the FirstSpirit server, on the local workstation, or externally.

Revision: A feature always relates to a specific revision of the object (the current revision when

being added). The field is used for selecting a maximum revision for all of the FirstSpirit content

within the feature. When added to a feature, all objects are stored with the revision in the feature

that is directly below this maximum revision.

Release status: If this option is enabled then only the last release state is taken into account for

each included object.

Elements: This field specifies how many elements have already been added to the selected

feature.

Datasets: This field specifies how many datasets in the selected feature have already been

added.

4.2 Adding objects to a feature

For details of how to add project properties to a feature, see Chapter 4.6, page 37.

4.2.1 Using the tree structure of stores

Project content that is compatible with ContentTransport can be added to a ContentTransport

feature using the tree structure of the corresponding stores in one of two ways:

▪ Using the submenu entry of the context menu Content Transport of an object

▪ Using drag-and-drop to copy an object to the "Included objects" area (see Chapter 4.3.2,

page 28).

The selected object is then added explicitly to the feature. Furthermore, all of the selected

object’s higher level parent elements are implicitly added to the list of included objects and all

child objects are added explicitly.

The state of objects already added to the feature can be checked and modified in the "Included

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 26

objects" area (see Chapter 4.3.2, page 28) and sometimes in the workspace.

4.2.2 Adding data sources and datasets

The user works on a view of the datasets in the Data Store when adding datasets. Data source

folders, data sources, filtered data sources (with or without content or datasets) or even

individual datasets can be added as objects here.

When adding data sources, the following options are available:

▪ Add Content Source:

Only the selected data source (without datasets) is added to the feature.

In order to take into account datasets as well in a transport, one of the two following options

should be selected.

▪ Add all displayed datasets (explicitly):

The datasets currently displayed in the workspace are added to the feature. Datasets of the

data source that are not displayed in the overview due to filtering, search, etc., are not taken

into account. In addition, datasets that are added to or deleted from the selected data source

at a later point in time are not taken into account. If you want the current status of the

datasets of the selected data source to be taken into account for future exports, select the

option “Add all datasets (automatically via Content Source)".

If not only the datasets are to be considered during a transport, but also the data source, it

can be added to the feature in the tree structure using the context menu entry "Add Content

Source" or by activating the option "Content Source is part of feature" in the "Included

objects" area (see Chapter 4.3.2, page 28).

▪ Add all datasets (automatically via Content Source):

All datasets of the data source are added to the feature. This also takes into account

datasets that are not displayed in the overview due to filtering, searches, etc. During each

transport, all datasets are exported that are contained in the data source at the time,

including datasets that are created in the data source after the feature is created.

If not only the datasets are to be considered during a transport, but also the data source, it

can be added to the feature in the tree structure using the context menu entry "Add Content

Source" or by activating the option "Content Source is part of feature" in the "Included

objects" area (see Chapter 4.3.2, page 28).

Other functions:

▪ The "Add Content store folder" function adds all data sources contained in the folder to the

feature (without datasets, similar to "Add Content Source").

▪ The "Add Dataset" function adds only the selected dataset to the feature (similar to "Add all

displayed datasets (explicitly)").

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 27

4.2.3 Within the feature combination

Additional objects can also be added to the feature using the areas for required (see Chapter

4.3.3, page 30) or optional (see Chapter 4.3.4, page 31) dependencies. The checkbox in front of

the respective object just has to be selected for the desired objects, then the objects are included

in the feature by clicking the Add selected button.

4.3 Feature combination

4.3.1 Overview

Figure 4-7: Feature - Overview

Revision: The maximum revision of all included objects is displayed here (with/without release

state).

Date: The date and time when the maximum revision was configured is specified here.

Included objects/datasets: This indicates how much project content and/or how many of the

datasets explicitly added by the user are present in the feature.

Missing references: How high the number of missing references in the entire feature

combination is specified here. The number of absolutely necessary objects is shown here in red;

the number of optional objects is in yellow.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 28

 Missing references always refer to the entire feature – A detailed view of the

missing references can be called up using the flyout menu (see Chapter 4.4, page 32).

Project properties: In addition to the project content that has been entered using SiteArchitect

and/or ContentCreator, it is also possible to transport project properties – even across servers.

This method can be used, for example, to transfer the properties of a project to an empty project

as well as to synchronize the project configuration of multiple projects. See Chapter 4.6, starting

on page 37.

4.3.2 "Included objects" area

This area lists all the project content that has been included in the feature (but not project

properties – see Chapter 4.6, page 37). There is a distinction between explicitly and implicitly

added objects. If an object is added explicitly, then all higher level parent objects are implicitly

added automatically to the feature as well. Child objects, on the other hand, are added explicitly

even though they were not added separately by the user.

• Objects added by the user are shown in normal text; this indicates that they can be removed

from the list again by using the icon or by right-clicking and then clicking the "Element is

part of feature" tooltip.

• Explicit objects that are the child elements of an explicitly included object are also shown in

normal text but cannot be removed from the list.

• Implicitly added objects that are at a higher level than an explicitly included object are shown

in text with less contrast and cannot be removed from the list either. However, they can be

added to the feature explicitly right-clicking and then clicking the "Element is part of feature"

tooltip. All child elements are also added automatically.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 29

Figure 4-8: Feature – Included objects

Clicking on an object in the list opens a tab in the SiteArchitect editing area so that you can view

the forms of the object concerned. The object cannot be edited at this point; this is indicated by a

 clock symbol on the object icon.

By right-clicking, you can check and, if necessary, modify the state of the object concerned as to

whether it is treated as an implicitly or explicitly added element:

▪ Active / box ticked:

The object was explicitly added. The object can be removed from the feature by clicking on

the tooltip (corresponds to the "x" icon). Elements with this state are also identified by a

briefcase icon.

▪ Active / box not ticked:

The object has been implicitly added as the parent element. The object can be explicitly

added to the feature by clicking on the tooltip. All child elements are also added

automatically.

▪ Inactive / box ticked:

The object was implicitly added as a child element. The implicit/explicit state for these

elements can only be modified from the parent node.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 30

For data sources with datasets, the following additional options can be selected (right-click on the

dataset node):

▪ Automatically add all datasets of the content data source to the feature: If this option is

active (ticked), all the datasets contained in the data source at the respective time are taken

into account during transport. If this option is inactive (not ticked), only the datasets contained

at the time the feature was first created are taken into account during transport. If required,

the option can be activated or deactivated by clicking on it.

▪ Remove all datasets: By clicking on the tooltip, all datasets including the data source can be

removed from the feature (corresponds to the "x" icon).

 Show relation graphs; clicking this icon opens a tab in the AppCenter area with a graphical

representation of the hierarchical structure and the dependencies of the selected object (see

Chapter 4.5, page 34).

 Delete; this icon is only displayed if the associated object was explicitly included by the user.

Clicking this icon removes the selected, explicitly added object from the list along with all

automatically included child objects, after the user affirms a confirmation prompt. Higher level

objects that are not used by other explicitly included objects are also removed.

 Missing optional references; the yellow exclamation mark indicates that the respective object or

a child object has missing optional references. The objects are listed in detail in the "Optional

missing references" area (see Chapter 4.3.4, page 31).

 Missing required references; the red exclamation mark indicates that the respective object or a

child object has missing hard references. The objects are listed in detail in the "Required missing

references" area (see Chapter 4.3.3, page 30).

 Object details; clicking this icon opens a flyout menu with object-specific information (see

Chapter 4.4, page 32). Clicking the icon again closes the flyout menu.

4.3.3 "Required missing references" area

All of the project content that is required to install the feature combination in a target project

successfully is shown in this area. If all of the required references are found, then this area

remains empty.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 31

Figure 4-9: Feature – Required missing references

Required objects are displayed in list form, each with a checkbox for selecting each individual

object. Clicking on an object in the list opens a tab in the SiteArchitect editing area so that you

can view the forms of the object concerned. The object cannot be edited at this point; this is

indicated by a clock symbol on the object icon.

Required missing references: If this checkbox on the top end of the area is selected, then the

checkbox for selecting an object is selected for all of the objects in the list.

Clicking on the Add selected button integrates all of the objects selected in this area into the

feature combination.

 Required dependent objects have to be added. But this only applies to an empty

project. If missing references are already found in the target project, then these objects do

not absolutely have to be added; the feature can be applied regardless.

4.3.4 "Optional missing references" area

All of the project content that is not absolutely essential for successful installation in a target

project – but is still desirable – is shown in this area. If all of the optional references are found

then this area remains empty.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 32

Figure 4-10: Feature – Optional missing references

Optional objects are displayed in list form with a checkbox for selecting each individual object.

Clicking on an object in the list opens a tab with that object's forms in the SiteArchitect edit area

for viewing. The object cannot be edited at this point; this is indicated by a clock symbol on

the object icon.

Optional missing references: If this checkbox on the top end of the area is selected, then the

checkbox for selecting an object is selected for all of the objects in the list.

Clicking on the Add selected button integrates all of the objects selected in this area into the

feature combination.

4.4 Flyout menu

The flyout menu contains object-specific information on project content. This is displayed in the

same way as the information for the feature combination.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 33

Figure 4-11: Flyout menu

Just like the feature overview, the flyout menu always contains a tabular list of object-specific

data as a bare minimum.

• Icon and language-dependent display name for the displayed object

• Revision of the object (object-specific state included in the feature) as well as the date and

time of the revision

• "Include child objects" checkbox – If this checkbox is selected, then the missing references

for the displayed object are displayed along with all of the object's child objects. If the

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 34

checkbox is not selected, then only the missing references of the displayed object are

shown.

• Number of child objects

• Number of missing references (required and optional)

• A tab with a graphical representation of an object's dependencies can be displayed using the

Show dependencies link in the AppCenter area (see Chapter 4.5, page 34).

The Required and Optional missing references areas are the same as the areas in the feature

combination with the same name (see chapters 4.3.3 and 4.3.4, starting from page 30).

4.5 Graphical representation of dependencies

The graphical representation is used to provide a flexible view of the hierarchical structure and

dependencies of a feature's embedded project content. Furthermore, project content can be

added/removed in the graphical representation. No project properties are displayed here; for

more information, see Chapter 4.6, page 37.

Figure 4-12: Show dependencies

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 35

The relation graph is integrated as a reusable tab in the SiteArchitect AppCenter area.

4.5.1 Icon bar

 Layout; clicking this icon automatically arranges the displayed objects in a uniform layout. In

the process, layout changes made by the user are discarded without prompting.

 Update; clicking this icon updates the information displays in the relation graph. Changes to

the hierarchical structure of the objects and the feature's new or removed objects are taken into

account in the process.

 Zoom out/1:1/in; clicking on these icons changes the view of the relation graph by

gradually increasing it, shrinking it or changing it back to its original size.

 Fit to Screen; clicking this icon adjusts the zoom level so that the entire relation graph is

visible at the current tab size.

 Save as image; clicking this icon opens a dialog box for selecting the name and save location

for creating an image file in PNG format. The created picture file contains the entire relation

graph at the selected zoom level.

Grouping size: How many objects are to be displayed at the same time using the "Show linked

objects" context menu function or by double-clicking can be specified in this field.

/ Follow mode; clicking this icon switches to follow mode. Two states can be configured:

▪ Clicking on an object in the feature's tree structure also displays the object in the

workspace and selects it in relation graphs.

▪ Clicking on an object in relation graphs also then displays the object in the workspace.

4.5.2 Display of relation graph

The relation graph displays objects from the stores and their connections to each other. These

connections can be relationships between parent and child objects as well as references

between different objects.

The object that the relation graph was retrieved for is used as the root node for the view and

appears at the far left in the relation graph. When expanding outgoing connections for an object,

the target nodes are arranged to the right of the object. Each link between two objects is

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 36

represented by an arrow that points to the child or referenced objects.

Each object is shown as a rectangle and contains the following information:

▪ Object icon; the same icon that is also displayed in the tree structure of individual stores.

▪ Suitcase symbol (); specifies whether the object is currently included in the feature. It is

placed on the object icon for identification

▪ Display name; the language-dependent display name from the relevant stores is displayed.

Alternatively, the developer can set another text as the display name.

▪ The preview symbol (if present) shows a preview of the object or the included images in the

form of a symbol.

▪ Exclamation mark (/); displayed if missing references exist for the object or a child object.

The color rules match the tree view in the "Included objects" area of the feature combination

(see Chapter 4.3.2, page 28).

Edge lines are drawn between objects that are related to each other. These lines are shown

differently depending on the missing or found status:

▪ Solid line; used for explicitly added objects (references).

▪ Dashed line; used for child elements that are child elements of an explicitly included object.

▪ Gray; used between objects if their connection is intact in the current feature combination (i.e.

always child objects, referenced objects if the reference target is included in the feature).

▪ Red; used between objects if a missing required reference is present.

▪ Yellow; used between objects if a missing optional reference is present.

4.5.3 Context menu on objects

A context menu can be called up on each object. The functions of the context menu are active or

grayed out depending on the state of the object.

Add to feature: The selected object and all of its child elements are included in the feature.

Remove from feature: Explicitly included objects and their automatically included child objects

are removed from the feature.

 Objects that have been added to fulfill the dependencies of a removed object are

not implicitly removed.

Show element in workspace: Calling this function opens a tab with this object's forms in the

SiteArchitect edit area for viewing. The object cannot be edited at this point; this is indicated by a

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 37

 clock symbol on the object icon.

Add all required references: Calling this function integrates all of the required missing

references of the selected object into the feature combination.

Add all optional references: Calling this function integrates all of the optional missing

references of the selected object into the feature combination.

Expand related objects (double click): If there are connections to other objects that are not yet

displayed, calling this function triggers the display of these objects. The maximum number of

objects that are displayed there is specified on the icon bar under "Grouping size". Another group

of objects can be displayed by calling the function (or double-clicking) again.

If not all linked objects were able to be displayed, this is indicated by an extra object with the

label "Show next elements (X total)". Another group of objects can also be displayed by double-

clicking this extra object.

Collapse related objects: All linked objects currently being displayed can be hidden by calling

this function. All of a linked object's subordinate objects are also hidden in the process. Thus, if

an object is hidden and then immediately displayed again, then its subordinate objects continue

to be hidden.

4.6 Transporting project properties

In addition to the project content that has been entered using SiteArchitect and/or

ContentCreator, it is also possible to transport project properties – even across servers. In this

way, the properties of a project can be transferred across to an empty project or the project

configuration settings of several projects can be synchronized with one another.

To select whether project properties should be included in the ContentTransport process – and if

so, which ones – go to the "Project properties" in the overview of the feature concerned (see

Figure 4-7). Click "inactive/active" to open a dialog, where you can select/deselect some (or all)

of the properties as required:

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 38

Figure 4-13: Transporting project properties

All: If you select All, all the project properties are added to the feature and are included when it

is imported into another project. All the boxes are checked.

In addition, the project properties listed below can be selected/deselected for a specific transport

process on a case-by-case basis. Dependencies sometimes exist between project properties and

settings made at the server level ("server properties"). These dependent server properties are

also included in transport processes (and may be created on the target server). Among other

things, it is particularly important to bear this in mind when using the function across server

boundaries.

▪ Resolutions: If this option is selected, the resolutions for a project are added to the feature

("ServerManager / Project properties / Resolutions").

▪ Groups: If this option is selected, the groups for a project are added to the feature

("ServerManager / Project properties / Groups").

▪ Schedule entries: If this option is selected, the schedules and action templates for a project

are added to the feature ("ServerManager / Project properties / Schedule management" and

"ServerManager / Project properties / Action templates"). In this case, server property

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 39

dependencies exist.

▪ Template sets: If this option is selected, the template sets for a project are added to the

feature ("ServerManager / Project properties / Template sets"). In this case, server property

dependencies exist ("presentation channels").

▪ Fonts: If this option is selected, the fonts for a project are added to the feature

("ServerManager / Project properties / Fonts"). In this case, server property dependencies

exist.

▪ Module configurations: If this option is selected, the project and web component

configurations for a project are added to the feature ("ServerManager / Project properties /

Project components / Configuration" and "ServerManager / Project properties / Web

components / Configuration"). In this case, server property dependencies exist. In this

context, please note that no actual project components are exported/imported, only their

configuration settings. The relevant project component must be added to the target project

manually or using the API (FirstSpirit Developer API, ModuleAdminAgent interface in

de.espirit.firstspirit.agency package).

▪ Languages: If this option is selected, the languages for a project are added to the feature

("ServerManager / Project properties / Languages" and "ServerManager / Project properties /

Options / Configure editorial languages"). In this case, server property dependencies exist.

▪ Users: If this option is selected, the users of a project are added to the feature

("ServerManager / Project properties / Users"). In this case, server property dependencies

exist.

Common properties: If Common properties is selected, all the project properties are added to

the feature apart from those listed above.

The "inactive" state indicates that no box has been checked while the "active" state indicates that

one or more of the boxes have been checked.

The target project must have already been created, as the process of transporting project

properties does not result in the creation of a new project.

Anyone wanting to import and export project properties must – as a minimum – have projector

administrator permissions and anyone wishing to import server properties (see list above) must

have server administrator permissions.

If the ContentTransport function is used, the project properties that are to be transported can be

configured using the FirstSpirit Developer API, configurePropertiesTransport method,

FeatureModel interface in de.espirit.firstspirit.feature package.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 40

4.7 Installing a feature in a target project

A ContentTransport feature can be installed in the target project either by using the "Install

feature" entry in the empty feature area or by using the icon on the icon bar of the

ContentTransport area.

After selecting a feature zip file from the file system, a dialog box opens with an overview of the

combination for the selected feature and its included objects. Any project properties that have

been included in the feature (see Chapter 4.6, page 37) are not displayed here.

Figure 4-14: Target project - Installing updates

Feature overview

Server: Specifies the name of the server where the feature was created.

Project: Specifies the name of the source project on the server.

Package revision: The maximum revision for all of the objects included in the feature and the

date and time of the maximum revision are displayed here.

Release status: Specifies whether the objects included in the feature are installed in a released

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 41

version.

Objects | datasets: Specifies the number of objects that are included in the feature.

Errors: Specifies the number of errors that are expected upon installing the feature in the target

project. The number in front of the parenthesis specifies missing references in the feature; the

errors are marked in red and the feature cannot be installed. The number in parentheses

specifies the optional missing references; the errors are marked in yellow and it is possible to

install the feature despite them.

List of included objects

Object: The objects included in the feature are listed in their hierarchical structure sorted by

stores. As in the SiteArchitect tree structure, the individual objects can be expanded or collapsed

here.

Status: Each object can assume the "New" or "Update" state. For "Update", the object is already

present in the target project and may have changed since the last feature installation. The object

can be checked using the Display in SiteArchitect button (see below).

Errors: The type and number of errors can be read for each object here. The number in front of

the parentheses specifies the required missing references and the number in parentheses

specifies the number of optional missing references for this object.

After each object with errors, there is an icon that looks like this: . This can be used to call up a

dialog with a detailed list of the errors.

Figure 4-15: List of object-related errors

Any errors that are due to required missing references are marked in red in this dialog.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 42

General warnings

General warning that do not refer to a specific object are displayed in the lower area of the dialog

box. These warnings include mismatches in the project settings, such as for project languages or

image resolutions.

The Display in SiteArchitect button is only active if an object with the "Update" state is selected

and could be overwritten by installing the feature. Clicking this button displays the selected object

in the SiteArchitect editing area.

Click OK to perform the installation/update process. The button is only active if no required

missing references exist for installing the feature. The user is prompted to select a database

layer if one is not yet present in the target project; then the update is carried out.

 Child objects that have been added implicitly and which are present in the target

project but not the source project may be automatically deleted or moved by the system if

a new update is performed. See Chapter 4.8, page 42, 2nd point for more information.

4.8 Restrictions and notes

▪ Objects that are included via ContentTransport do not have a feature relation or namespace

enhancement and there is no way to prevent them from being overwritten, either. However:

A distinction is also made between explicitly and implicitly added objects when installing a

feature in a target project.

o Explicitly added objects are always created in the target project. If an object

already exists in a target project, then the changes are reset again as soon as

another update is carried out.

o Implicitly added objects are always created in a target project if they were not

present in the project until now. If an object already exists in a target project, then

the changes to the target project remain intact when an update is carried out next.

▪ To ensure that the structure being transported is retained, a parent node must have been

explicitly added to the feature. All the lower-level nodes will then be classed as having been

added explicitly as well.

If a parent node of this kind is updated in the target project and the lower-level structure (child

elements) in the target project differs from that of the source project, the distinctive child

elements in the target project will be dealt with as follows:

a) Child elements will be deleted if they consist of objects with no UID (e.g.

folders in the template store, sections) or objects that cannot be placed in a

folder (queries and table templates).

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 43

b) Other child elements will be moved to a "Lost & Found" folder created by

the system.

c) If a child element, which would be deleted according to the rules outlined

above, is a required reference of at least one other object (e.g. a section of

a section reference), this child element will be retained in the target project

(i.e. it will not be deleted or moved) even though it has not been explicitly

included in the feature.

Optional references are deleted.

If an object cannot be deleted because it is still being referenced, the installation process is

aborted with an error message ("Unable to install feature file: Error installing feature. Unable

to delete element xyz. The element is still referenced by the following elements:.."). Before

the feature can be installed, all the objects referencing the elements that are to be deleted

must themselves be manually deleted from the target project (or the references must be

removed).

▪ If missing references have already been found in a target project, then the feature

combination can be transferred regardless.

▪ The import process cannot be carried out for objects that are in editing mode in the target

project (e.g. templates). Therefore, it should be ensured that no objects are in edit mode.

▪ The source and target projects are allowed to have different numbers of languages when

using the ContentTransport function. If a language channel does not available in the source

project, it is not overwritten in the target project.

▪ Settings that are made in a source project when assigning permissions cannot be applied

to a target project. Permissions have to be assigned in the target project manually. The

permissions in the target project only have to be assigned once; all settings remain intact

during future update processes.

▪ Workflow states are not transported.

▪ Metadata is transported but, depending on the configuration in the target project, can be

incompatible with the selected metadata template.

▪ In terms of the behavior when start node information (start folders/start pages) is transferred,

a distinction is made between explicitly and implicitly added objects:

o If the corresponding information carrier (parent node) is an explicitly added

object, the start node information will be set as it is in the source project.

o If the corresponding information carrier (parent node) is an implicitly added

object, the start node information will not be transported and the corresponding

start nodes in the target project will remain as they are.

o An exception to this behavior may occur in the case of objects that are located

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 44

directly underneath the root node. During the initial installation of a feature in the

target project, the start node information is set automatically if:

- no start node exists yet, or

- the node being transported is a page reference.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 45

4.9 Configuring the storage locations

Different locations can be configured for saving created ZIP files. In addition to the local file

system and network drives, external storage locations can be used, including Internet-based

locations such as Dropbox. To be able to use external storage media, the relevant modules need

to be created. This type of module will then handle Internet service authentication, for instance.

Storage locations are configured in the ServerManager project properties under "Project

components"/"FirstSpirit Content Transport Storage App". Each project must have its own

storage locations configured. The "FirstSpirit Content Transport Storage App" project component

is installed automatically if the license.PACKAGEPOOL license key is present in the

fs-license.conf license file with the value 1. This system project component cannot be

removed.

After clicking "Configure" or double-clicking on the "FirstSpirit Content Transport Storage App"

project component, the following window appears:

Figure 4-16: Configuring storage locations for Content Transport content

A default storage location called "Project-Local-Storage" is offered on the local FirstSpirit server.

Other directories can be configured as an alternative. As with external storage locations, the

following "Add" and "Configure" functions are used for these:

Add: A dialog appears in which the user can select from the available storage locations.

The "File system feature storage" entry can be used to specify a directory that can

be accessed from the FirstSpirit server. Access to external storage locations must

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 46

be modified in the FirstSpirit module. A reference name and a display name can

be specified for the storage location in the following dialog:

 Figure 4-17: Specifying a name for the storage location

 Clicking "OK" opens a dialog where the storage can be configured.

Configure: A dialog appears in which access to the storage location can be configured. If it is

"File system feature storage", the path to the desired directory can be entered in

the following dialog:

 Figure 418: Specifying a path

 Access to external storage locations must be modified in the FirstSpirit module.

The external storage configuration dialog may therefore vary from implementation

to implementation. Advanced configuration of the "Project-Local-Storage" default

storage location is not possible.

Remove: Removes access to the selected storage location by the ContentTransport

function.

The storage locations configured using this project component are then offered as selection

options when generating and installing feature ZIP files in SiteArchitect, for example (see Figure

4-2):

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 47

4.10 Automatic creation, updating and installation of features

FirstSpirit schedule management can be used to set an automatic update of Content Transport

content at predefined times. To do this, the feature ZIP files must be stored in an external

storage location (refer to Chapter 4.9, page 45 for more information).

For this purpose, a schedule with the "Content Transport (create, update, install)" action is stored

in the FirstSpirit ServerManager project properties:

Figure 4-19: New activity

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 48

When using this activity, two options are available to choose from in the following dialog:

▪ Create new feature bundle (refer to Chapter 4.10.1, page 48)

This option allows for regular generation of a feature ZIP file with the current state of the

feature's content, e.g. the current development state of templates, at predefined times. The

feature ZIP file with the current state is then stored at the selected storage location ("push").

From there the content is then made available for import to other projects (on the same or

other FirstSpirit servers).

▪ Install/Update feature bundle (refer to Chapter 4.9.2, page 50)

This option allows the user to regularly import features into the current project at predefined

times ("pull"). If only the local file system is available as a storage location, the features can

be exchanged between projects on a FirstSpirit server using the relevant schedule; if external

storage locations are available (refer also to Chapter 4.9, page 45 for more information), the

exchange can take place across server boundaries.

In schedules were activities are already present, this option is no longer displayed.

4.10.1 Exporting existing feature combinations via a schedule ("Create new feature bundle")

Figure 4-20: ContentTransport activity – Create new feature bundle

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 49

Name: A name for the activity must be specified here. This will be used on the "Actions"

tab of the Content Transport schedule and distinguishes it from the schedule's

other actions.

Feature: The features available on the current FirstSpirit server are listed here.

To ensure that a desired feature appears here, it first needs to be saved on the

server in FirstSpirit SiteArchitect (refer to the "Save feature" function in Chapter

4 for more information).

Storage: This is where you select the location where you want the feature to be stored. A

default storage location called "Project-Local-Storage" is offered on the local

FirstSpirit server.

Additional storage locations can be configured in the project properties (see

Chapter 4.9, page 45).

At the time a feature is created, a check is made to determine if there are any required or

optional references missing (see Chapter 4.3.3, page 30 or Chapter 4.3.4, page 31 for more

information). After creating a feature that is selected in this activity, the content is usually edited

further. In particular deleting or moving nodes can result in new inconsistencies. When a

current feature version is created automatically, the references (dependencies) are therefore

rechecked. The following two options can be used to handle possible inconsistencies:

Halt on missing required references: If this option is active, generation of the selected feature

is canceled if the feature is missing required references.

Halt on missing optional references: If this option is active, generation of the selected feature

is canceled if the feature is missing optional references.

The specified configuration can be tested by clicking on the "Test configuration" button. Clicking

"OK" saves the applied settings.

Execution time(s) and intervals for generating the feature are configured in the schedule on the

"Properties" tab (for more information on schedules, refer to "Schedule entry planning" in the

FirstSpirit documentation for administrators).

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 50

4.10.2 Importing feature combinations via a schedule ("Install/Update feature bundle")

Figure 4-21: ContentTransport activity – Install/Update feature bundle

Name: A name for the activity must be specified here. This will be used on the "Actions"

tab of the Content Transport schedule and distinguishes it from the schedule's

other actions.

Storage: This specifies the location where the feature being imported has been stored. A

default storage location called "Project-Local-Storage" is offered on the local

FirstSpirit server.

Additional storage locations can be configured in the project properties (see

Chapter 4.9, page 45).

Feature: If a storage location from the "Storage" drop-down list is selected, the features

available at the selected storage location will be listed here. To ensure that a

desired feature appears here, it must first be stored in the selected storage

location (via the "Create new feature bundle" schedule (see Chapter 4.10.1, page

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 51

48) or via the "Save feature" function in SiteArchitect, Chapter 4).

Analyze only: When manually installing a feature in the target project, a check is made to

determine if there are any required or optional references missing (refer to

Chapter 4.7, page 40 for more information). If there are required references that

are missing, the feature will not be installed. If the installation of a feature is

automatic due to the schedule described here, this option can be used to handle

it. If this checkbox is active, it will only check for missing references. A script that

follows can then evaluate the results of the analysis, for instance, and then halt or

continue an installation depending on the results.

Figure 4-22: Example of a Content Transport schedule

If there are missing required references, the feature will not be installed.

The specified configuration can be tested by clicking on the "Test configuration" button. Clicking

"OK" saves the applied settings.

Execution time(s) and intervals for generating the feature are configured in the schedule on the

"Properties" tab (for more information on schedules, refer to "Schedule entry planning" in the

FirstSpirit documentation for administrators).

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 52

5 CorporateContent (Package pool)

The "CorporateContent" store is used for creating new packages and for editing existing

packages. It can be opened using the icon on the vertical icon bar in SiteArchitect.

Some functions can also be called up using the "Corporate Content" menu item on the

SiteArchitect menu bar, which works in a similar way to the package pool found in previous

versions.

Creating and combining a package in a source project and creating and editing a subscription in

a target project are described in the following chapters:

▪ Creating or loading a package Chapter 5.1, page 53

▪ Package combination Chapter 5.3, page 70

▪ Flyout menu Chapter 5.4, page 74

▪ Graphical representation of dependencies (references) Chapter 5.5, page 75

▪ Functions using the "CorporateContent" menu item Chapter 5.6, page 78

▪ CorporateContent context menu in stores Chapter 5.7, page 107

▪ Transferring existing projects into package master projects Chapter 5.8, p. 114

▪ CorporateContent for developers Chapter 5.9, page 124

▪ Shared database access Chapter 5.10, page 135

Figure 5-1: CorporateContent store area

The ContentTransport area's icon bar contains entries for creating and editing ContentTransport

features.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 53

 The name of the opened package is displayed after this icon. "No package loaded" is

displayed if no package is loaded.

 Create or edit a package; clicking this icon opens a dialog for creating a new package or

loading a package that already exists (see Chapter 5.1.1, page 53). If another package is already

opened for editing, the newly created or loaded project will be displayed (up to and including

FirstSpirit version 5.2R3 with an appropriate message), the already opened package will be

closed and any modifications to that package will be saved automatically.

 Create version; clicking this icon opens a dialog with an overview of all versions that have

been created from the package (see Chapter 5.1.2, page 64).

 (starting with FirstSpirit version 5.2.312) Refresh package, clicking this icon refreshes the view

of the package.

 Close package; clicking this icon closes the opened package – after affirming a confirmation

prompt.

 Publish; clicking this icon opens a dialog with all of the package versions available for

publication (see Chapter 5.1.3 page 68).

5.1 Creating or editing a package

Clicking the icon or the "Create or edit a package" in the empty package area displays a

prompt for whether a new package is to be created or an existing package is to be loaded.

If another package is already opened for editing, the newly created or loaded project will be

displayed (up to and including FirstSpirit version 5.2R3 with an appropriate message), the

already opened package will be closed and any modifications to that package will be saved

automatically.

5.1.1 Creating a new package

The process of creating a new package follows multiple steps explained below.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 54

5.1.1.1 Selecting a package type

Figure 5-2: Dialog for selecting a package type

The package type for the new package can be assigned here. The package type is also

displayed in the "Edit package properties" dialog box but cannot be modified any further there.

Content package: Clicking this button selects a content package as the package type. A content

package is only allowed to contain objects from the page store, media store and site store and

these are also the only stores displayed when selecting package contents.

Template package: Clicking this button selects a template package as the package type. A

template package is allowed to contain objects from the template store, content store and media

store and these are also the only stores displayed for selecting package contents. The media

integrated here should be limited to media referenced directly in the templates. Other media

objects should be integrated into a content package.

Regardless of which type is selected, the "Create package" dialog then opens. All of the initial

settings for the package are set by the administrator of the master project there.

 If objects from a database schema are to be integrated into the package, the

database configuration has to be adjusted in the target project's project properties (see

Chapter 5.10, page 135). Otherwise a corresponding error message will be output when

importing the package into the target project later on (see Chapter 5.6.6, page 95).

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 55

5.1.1.2 Creating a package – Settings tab

Figure 5-3: Create/edit package - Settings

Package available: The new package is made available to all target projects if this checkbox is

checked. If the checkbox is unchecked, the package is not made available and cannot be

selected for subscribing in target projects.

Package name: Unique name for the package; specified initially during creation and cannot be

changed afterwards.

Comment: Optional comment for the package.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 56

Events: Clicking the Configure button opens the "Configure events" dialog box (see Chapter

5.1.1.2.1, page 57).

Permissions

Editing permissions for the package are configured in this area. A new package is initially created

by the master project's administrator, who also assigns permissions for the package. Package

properties can also be edited by all authorized persons once the permissions have been defined

here.

Responsible: These are the persons responsible for the package in the master project.

Responsible persons are informed via e-mail if a new package version is available or a new

package version has been imported. Using the icon, another user can be added to the list of

responsible persons and they can be removed from the list using the icon.

Qualified: These persons may edit the package properties (permissions, dependencies, etc.)

and make content changes in the package, e.g. by adding events or deleting start nodes. Using

the icon, another user can be added to the list of responsible persons and they can be

removed from the list using the icon.

Publisher: These persons may publish packages and thus make them available for import into

target projects. Using the icon, another user can be added to the list of responsible persons

and they can be removed from the list using the icon.

Type

In this area, the selected package type can be read or a package dependency can be defined.

Package type: Specifies the package type that was selected in the "Select type" dialog box

when creating the package (content or template package).

Depends on: Only active for content packages. Manual dependencies on template packages

are set here. If the content package is subscribed to, then the customer also has to subscribe to

the specified, associated template package here. Template packages do not have any

dependencies. Thus the field is disabled for the template package type. A content package

dependency on an existing template package can be defined using the icon. The desired

template package can either be selected from a list of all packages subscribed to in the same

project (source project) or from another project. Clicking the icon removes the selected

dependency again.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 57

Changeable: Write permission to the imported objects is granted for target projects if this

checkbox is checked. If the checkbox is not checked, the imported objects can be seen and

used in target projects but they cannot be modified.

Starting with FirstSpirit version 5.2R15: If the checkbox' checkmark is removed (removing

write permissions), this setting must be carried over manually into the subscribing projects (see

Chapter 5.6.4.2 page 89). In order to more quickly identify the affected projects, these will now

be displayed in a dialog when deactivating this option.

 Since only one template package can be selected here, it is absolutely essential

that all templates (page, section, link templates, etc.) used as a basis for pages and

sections from the content package are included in this template package. Also refer to

Chapter 5.8.1.2, page 116 in this regard.

 A content package can also have dependencies on other content packages. These

content-related dependencies are not shown here! They are, however, visible in the

version list for a package and in the detailed information for a package.

5.1.1.2.1 Configuring events for a package

Figure 5-4: Dialog - Configuring events

All of the events defined for the package are listed in the table and the scripts or workflows

assigned to the event are shown. There are two types of events: Default events and what are

known as package-specific events. Default events are provided by the system and handle the

most common procedures when importing packages. Default events are:

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 58

• OK: The assigned workflow is carried out after the package version is imported

successfully.

• Error: The assigned workflow is carried out if the package version is imported

incorrectly.

• Conflict: The assigned workflow is started if there is a conflict situation after the package

version is imported.

• Release: The assigned workflow is carried out after the package version is imported

successfully, if no automatic release is configured in the subscription (see Chapter

5.6.4.2, page 89). Thus, for example, all of the objects contained in the package can be

released in the target project automatically.

• Update: The assigned workflow is carried out after the package version is imported

successfully. The selected workflow is initiated for all of the nodes that have not been

newly imported into the project but have been changed instead.

Clicking the Edit button opens a list with all known workflows from the source project. The

desired workflow is selected from this list.

Clicking the OK button saves the changes and closes the dialog.

Clicking the Cancel button closes the dialog; any changes made are not applied.

All events configured in the package pool are taken over in target projects with a subscription.

However, the option of once again changing the event configuration for a package is present in

the subscription store. The workflows that have been defined for the package in the source

project can be changed again in the target projects (see Chapter 5.6.4.4, page 93). These

changes are not visible in the source project and are not applied to other target projects either.

 The workflows from the source project can be assigned to a package. The

workflows are not known in the target project during the first import. In this case, the

required workflows have to be imported into the target project using a template package

first. Only afterwards can events in additional packages be configured and implemented.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 59

5.1.1.3 Creating a package - Advanced tab

Figure 5-5: Creating/editing a package - Advanced

Namespace enhancement:

In this area, namespace enhancement for package contents can be activated or deactivated

globally or for individual element types.

Activate namespace enhancement for all package contents: If this checkbox is checked,

namespace enhancement is enabled for all package contents. This means that if an object is

added to a package, the reference name is provided with a "@PackageName" extension.

Afterwards, potential references to the added object have to be adapted in the project (see

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 60

Chapter 5.8.1.6, page 119 ff.).

If the checkbox is unchecked, namespace enhancement is disabled for all package contents. If

an object is added to the package, the reference name remains unchanged (i.e. the reference

name does not receive a "@PackageName" extension). Whether a master project's package

contents overwrite the objects present in the target project or they are to be created under a

different name in the target project can be defined using conflict handling for importing package

contents into a target project (see Chapter 5.8.1.6, page 119) in this case.

Change settings for specific types of element: Enabling or disabling namespace

enhancement is usually only desired for specific element types. Therefore, the global setting for

package contents can be limited to specific element types.

Store: Representation of the stores as an icon (the same as the tree display in FirstSpirit

SiteArchitect). The column can be sorted.

Type: Representation of the element type as an icon (the same as the tree display in FirstSpirit

SiteArchitect). The column can be sorted.

Type identifier: Name of the element type. The column can be sorted.

Activate: Namespace enhancement can be enabled or disabled for the respective element type

by checking or unchecking this checkbox. If the checkbox is checked, namespace enhancement

is enabled for the selected element type. If an object of the selected type (such as a format

template) is added to a package, the reference name is provided with a "@PackageName"

extension. Afterwards, potential references to the added object have to be adapted in the project

(see Chapter 5.8.1.6, page 119 ff.).

If the checkbox is unchecked, the namespace enhancement is disabled for the selected element

type. If an object of the selected type (such as a format template) is added to a package, the

reference name remains unchanged (i.e. the reference name does not receive a

"@PackageName" extension). Whether a master project's package contents are to overwrite

objects present in the target project or not can be defined using conflict handling for importing

package contents into a target project in this case.

Clicking the Add button opens a dialog for selecting the desired element types that are to be

added to the list (see Chapter 5.1.1.3.2, page 63).

Clicking the Delete button can remove a selected element type back out of the list. The global

settings for namespace enhancement again apply for this element type after it is removed.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 61

Overwrite objects with same UID during import to target project

In this area, overwriting can be enabled in the target project for identically named objects or just

for identically named objects of a specific type (e.g. format templates).

Activate globally: If this checkbox is unchecked, overwriting contents in a target object with

identically named package contents is prevented (default setting). Conventional conflict handling

that is also used when creating identically named objects in a project takes effect in this case: If a

reference name (Uid) that has already been specified in a namespace is used, FirstSpirit

automatically replaces the name with a unique name, usually by attaching a number. Thus, the

package contents are created under another name in the target project in this case.

If the checkbox is checked, identically named contents in the target project are overwritten by

package contents from the master project during importing. Thus, if the package contains a

format template with the unique name "b" and an identically named format template is imported

into the target project, it will be overwritten by the identically named format template from the

master project.

Overwrite package contents with same UID: In most cases, overwriting identically named

contents in a target project is only desired for specific element types. Therefore, the global

setting for package contents can be modified for specific element types.

Store: Representation of the stores as an icon (the same as the tree display in FirstSpirit

SiteArchitect). The column can be sorted.

Type: Representation of the element type as an icon (the same as the tree display in FirstSpirit

SiteArchitect). The column can be sorted.

Type identifier: Name of the element type. The column can be sorted.

Activate: The default settings for import handling can be modified by checking or unchecking

this checkbox. If the checkbox is checked (default setting), overwriting identically named objects

in a target project is enabled for the selected element type. In this case, existing contents in a

target project can be overwritten.

If the checkbox is unchecked, overwriting identically named objects in a target project is

prevented for the selected element type. If an identically named object of the selected type (such

as a format template) already exists in the target project, the object remains intact in the target

project and the new package content is imported into the target project under a different name,

Adjustments in the target project may be necessary in this case.

Clicking the Add button opens a dialog for selecting the desired element types that are to be

added to the list (see Chapter 5.1.1.3.2, page 63).

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 62

Clicking the OK button opens the new package for further editing in the CorporateContent store.

5.1.1.3.1 Namespace enhancement

Overlap between package contents is not permitted when creating packages; each project node

is only allowed to belong to just one package. To make it absolutely clear to which package an

object belongs and to ensure maximum transparency for the package developer, a procedure

known as "namespace enhancement" has been introduced for package objects. This involves

appending an "@" character and the package name to the reference name of a package's

objects ("ObjectName@PackageName").

 The reference names with a namespace enhancement can be displayed in the tree

structure using the option "Display reference names in tree" in the "View" / "Preferred

display language" menu.

After being added to the package, all of the objects receive this namespace enhancement.

Subsequently, all of the objects in the project that use the "old" reference name have to be

changed; this means that the old reference name has to be replaced by a new reference name

(with "@PackageName") everywhere. Sometimes these changes have to be made manually

(see Chapter 5.8.1.5, page 119 to Chapter 5.8.1.7, page 122).

Namespace enhancement is problematic for package contents with identical reference names in

the master and target project. This primarily affects standard format templates ("Bold", "Italics",

etc.) that are present in every FirstSpirit project and combined in one folder under the "Format

templates" node in the template store. They are used for formatting text and are used in the page

store within the DOM editor and DOM table input components, for instance (also see FirstSpirit

Manual for Developers (Basics)). Any assignments to corresponding buttons (e.g. "Bold") within

these input components are lost as a result of the+ namespace enhancement. Namespace

enhancement can lead to errors in the master and target project in this case (see Chapter

5.8.1.6).

The template developer can disable namespace enhancement for standard format templates as

well as for other objects that have identical reference names in the master and target projects.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 63

5.1.1.3.2 Adding new element types

Clicking the Add button opens the "Element selection" dialog:

Figure 5-6: Element selection for namespace enhancement

For a description of the Store, Type and Type identifier columns see Chapter 5.1.1.3.1, page 62.

Selection: Checking this checkbox applies the selected elements to the list of selected element

types. Only element types that are intended to be content for the package later on have to be

selected in the process. Consequently, no element types have to be selected from the template

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 64

or data stores (pink or brown icons) within content packages, for instance.

The default setting for transfer to the table is always the opposite of the global settings that have

been defined via the "Enable namespace enhancement for all package content" checkbox.

This means, if namespace enhancement for package contents is disabled globally, then

namespace enhancement is enabled directly when transferring the selected element types.

If, on the other hand, namespace enhancement for package contents is enabled globally, then

namespace enhancement is disabled directly when transferring the selected element types.

5.1.2 Creating a package version

Clicking the icon opens a dialog with an overview of all of the versions that have been created

from the package.

Figure 5-7: Editing package versions

No.: The unique version number that is assigned automatically when creating a new package

version.

Version: The version designation specified by the package's creator.

Update: This check shows that the most recently released state of the integrated objects was

used for the version.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 65

Date: Date and time the package version was created.

Available: Shows the publication groups that the package version is available to.

Comment: Optional comment on the package version.

Dependent packages: Shows the dependent packages (templates and content packages, also

see Chapter 2.2.2, page 9) for the respective package version.

Log file: The appropriate log file can be displayed in a separate dialog here.

Selecting the Edit availability button or double-clicking the desired package version opens the

"Edit package version" dialog box (see Chapter 5.1.2.1, page 65).

Using the Create version button opens the "Create package version" dialog box (see Chapter

5.1.2.2, page 66).

The selected version is removed from the package using the Delete button.

5.1.2.1 Editing package availability

Figure 5-8: Edit package version dialog

Number: Unique version number. The field is inactive and cannot be edited.

Package version: Manually specified version name that is assigned when a new package

version is created. The field is inactive and cannot be edited.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 66

Comment: Optional comment. An existing comment can be modified or a new comment can be

inserted at this point.

Update version: If this option is enabled (default), the most recent release revision of each

included object will be added to the package version. This allows updating of included objects, as

the package version automatically uses the most recent release revision. If an included object

has never been released (i.e. it does not have a release revision), the object will be ignored

during creation of the package version.

If this option is disabled, included objects must be in a released state at the time the package

version is created. Otherwise, the error message "Could not create version zip file. Found store

elements which are not released." will be displayed when creating a package version. (This

option has been incorporated for compatibility reasons.)

Available for publication groups: All of the available publication groups are shown as

checkboxes here. The availability of the package version for the edited publication group

changes by checking or unchecking a checkbox. If a checkbox is checked, the package version

is available for import. If the checkbox is unchecked, the package version is not available to this

publication group.

Clicking the OK button applies the changes to the existing package version.

5.1.2.2 Create a version

Figure 5-9: Create package version dialog

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 67

Number: In place of a unique version number, the entry "New" is shown here. The version

number is specified by the system automatically when creating a new package version (field is

inactive). Since, at this point, there still is not a new package version, a number cannot be

displayed at this point.

Package version: Optionally, in addition to a version number assigned by the system, a

"descriptive" (more meaningful) version number can be specified here.

Comment: Optional comment for the new package version.

Update version: If this option is enabled (default), the most recent release revision of each

included object will be added to the package version. This allows updating of included objects, as

the package version automatically uses the most recent release revision. If an included object

has never been released (i.e. it does not have a release revision), the object will be ignored

during creation of the package version.

If this option is disabled, included objects must be in a released state at the time the package

version is created. Otherwise, the error message "Could not create version zip file. Found store

elements which are not released." will be displayed when creating a package version. (This

option has been incorporated for compatibility reasons.)

Available for publication groups: All available publication groups are shown as checkboxes

here (see Chapter 5.6.7, page 98). The availability of the package version for the respective

publication group changes by checking or unchecking a checkbox. If the checkbox is checked,

the package version is available for import to that publication group. If the checkbox is

unchecked, the package version is not available to that publication group. A package version

can be available to multiple publication groups; subscriptions, on the other hand, are always

concluded for precisely one publication group (see Chapter 5.6.4.2, page 89). If a package

version is available to the "Test" and "Production" publication groups, a subscription for the

"Test" publication group and a subscription for the "Production" publication group can access the

package version.

 Creation of a new package version may take some time for large packages.

During package creation, if a new object is created within a folder that is included in a

package, this new object will not be added to the package.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 68

5.1.3 Publishing a package

Clicking the icon opens a dialog where the respective most up-to-date package versions are

listed in a tabular overview for known publication groups.

Figure 5-10: Publishing a package – Current version

Group: Publication group for which the package version has been marked as "available".

No: Unique package version number assigned automatically by the system.

Current version: Manually specified version designation.

Last published: Shows the last published version.

Subscribing projects: Shows all of the projects that have concluded a valid, active subscription

for this package version and this publication group.

A package version goes through final publication using the buttons in the lower portion of the

dialog box. Packages can only be published if:

• The person doing editing has publication permissions for the package.

• An active subscription exists for the package version and the publication group.

If the desired package version is marked in the table, it can be published by clicking the Publish

button. Importing contents from the master project starts at this moment in all target projects that

have concluded a valid, active subscription, with automatic updating, for this package version

and the specified publication group.

The button is inactive and publication is not possible if one of the conditions listed above is not

met.

Alternatively, all of the package versions shown in the window can be published together as well.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 69

The Publish all button is always active; however, only package versions that meet all of the

conditions listed above are published.

 Package dependencies should absolutely be determined before publication (see

Chapter 2.2.2, page 9). Dependencies on template packages are defined in the package

properties. These dependencies are checked automatically. If the dependent template

packages are not published or are published in incorrect order, publication is canceled

and an error message is displayed.

Optional dependencies on other content packages are shown in the "Detail info" dialog box (see

Figure 5-22: Detailed information on a package), which can be called up via the package

overview. These dependencies are not checked automatically during publication. If the

dependent content packages are not updated or are not updated in the correct order (1.

importing the dependent content package, 2. importing the package containing the references to

the dependent package), they can cause errors in the target project: For instance, if the

referenced page and page reference are in different packages when publishing page references.

If, in this example, the package with the page reference were published and then the package

with the referenced page, this would cause an error in the target project. In order to resolve the

error, the page reference would have to be locked for editing in the master project and then

directly unlocked again. Then a new package version (from the package with the page reference)

is generated and republished, in the correct order this time.

5.2 Adding objects to a package

5.2.1 Using the tree structure of the stores

Adding new objects for a CorporateContent package can be started directly using the tree

structure in the corresponding store. There is a "CorporateContent – Start adding to package"

entry in the context menu for this purpose.

Clicking this menu entry displays the selected object as a relation graph in the AppCenter area of

SiteArchitect and it can be definitively added to a package using another context menu there

(see Chapter 5.7.1, page 107).

If an object in a store is copied to an area that is already part of a CorporateContent package,

then a prompt appears asking whether this object is to be added to the corresponding package

as well. Confirming this prompt adds the object to the package.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 70

5.2.2 In the package combination

Additional objects can also be added to the package using the areas for necessary or optional

dependencies. The checkbox in front of the respective object just has to be selected for the

desired objects, then the objects are integrated into the package by clicking the Add selected

button (see Chapter 5.3.3 and 5.3.4 starting on page 72).

5.3 Package combination

5.3.1 Overview

Figure 5-11: Package – Overview

Package type: The package type configured when the package was created is specified here.

Depends on: Manual dependencies on template packages are specified here. If the content

package is subscribed to, then the associated template package specified here has to be

subscribed to as well. Template packages do not have any dependencies. Thus the field is

disabled for the template package type.

The package properties set when the package was created can be edited using the

Configuration link. A dialog for editing package properties opens (see Chapter 5.1.1.2 and

5.1.1.3 starting on page 55).

Included content objects: How many objects are integrated into the package from the page

store is specified here.

Included media: How many objects are integrated into the package from the media store is

specified here.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 71

Included structures: How many objects are integrated into the package from the site store is

specified here.

Missing references: How high the number of missing references is in the entire package

combination is specified here. The number of absolutely necessary objects is shown here in red;

the number of optional objects is in yellow.

5.3.2 "Included objects" area

All objects integrated for the package are listed in this area. There is a distinction between

explicitly and implicitly added objects. If an object is added explicitly, then all of the objects at a

lower or higher level are implicitly added to the feature as well.

• Explicitly added objects are shown in normal text; this indicates that they can be removed

from the list again by using the icon.

• Implicitly added objects are shown in text with less contrast and cannot be removed from the

list.

Figure 5-12: Package – Integrated objects

Clicking on an object in the list opens a tab with that object's forms in the SiteArchitect edit area

for viewing.

 Show relation graph; clicking this icon opens a tab in the AppCenter area with a graphical

representation of the hierarchical structure and the references (dependencies) of the selected

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 72

object (see Chapter 5.5, page 75).

 Delete; this icon is only displayed if the associated object was explicitly included by the user.

Clicking this icon removes the selected, explicitly added object from the list along with all

implicitly integrated subobjects, after the user affirms a confirmation prompt. Higher level objects

that are not used by other explicitly included objects are also removed.

 Missing optional references; the yellow exclamation mark indicates that the respective object or

a child object has missing optional references. The objects are listed in detail in the "Optional

missing references" area.

 Missing required references; the red exclamation mark indicates that the respective object or a

child object has missing hard references. The objects are listed in detail in the "Required missing

references" area.

 Object details; clicking this icon opens a flyout menu with object-specific information (see

Chapter 5.4, page 74). Clicking the icon again closes the flyout menu.

5.3.3 "Unfulfilled dependencies (own package)" area

All of the objects that have a dependency and belong to the same package type are shown in

this area. If all of the dependencies are fulfilled then this area remains empty.

Figure 5-13: Package – Unfulfilled dependencies (own package)

Dependent objects are shown in list form, each with a checkbox for selecting each individual

object. Clicking on an object in the list opens a tab with that object's forms in the SiteArchitect

edit area for viewing.

Unfulfilled dependencies (own package): If this checkbox on the top end of the area is

selected, then the checkbox for selecting an object is selected for all of the objects in the list.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 73

Clicking on the Add selected button integrates all of the objects selected in this area into the

package combination.

 Objects can be added only to a package with a suitable package type,

5.3.4 "Missing references (dependent package)" area

All of the objects that have a dependency but belong to a different package type are shown in

this area. If all of the dependencies are fulfilled then this area remains empty.

Figure 5-14: Package – Optional unfulfilled dependencies

Dependent objects are shown in list form, each with a checkbox for selecting each individual

object. Clicking on an object in the list opens a tab with that object's forms in the SiteArchitect

edit area for viewing.

Missing references (dependent package): If this checkbox on the top end of the area is

selected, then the checkbox for selecting an object is selected for all of the objects in the list.

Clicking on the Add selected button integrates all of the objects in the package combination

selected in this area for which a dependency has been defined in the package settings (see

Chapter 5.1.1.2, page 55).

 Objects can be added only to a package with a suitable package type,

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 74

5.4 Flyout menu

The flyout menu contains object-specific information that is shown in the same way as the

information for the package combination.

Figure 5-15: Flyout menu

Just like the feature overview, the flyout menu always contains a tabular list of object-specific

data as a bare minimum.

• Icon and language-dependent display name for the displayed object

• "Include subobjects" checkbox – If this checkbox is selected, then the unfulfilled

dependencies for the displayed object are displayed along with all of the object's subobjects.

If the checkbox is not selected, then only the missing references of the displayed object are

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 75

shown.

• Number of child objects

• Number of unfulfilled dependencies (own package and foreign package)

• A tab with a graphical representation of an object's dependencies can be displayed using the

Show dependencies button in the AppCenter area (see Chapter 5.5, page 75).

The Required and Optional unfulfilled dependencies areas are the same as the areas in the

package combination with the same name (see Chapter 5.3.3 and 5.3.4 starting from page 72).

5.5 Graphical representation of dependencies

The graphical representation is used to provide a flexible view of the hierarchical structure and

dependencies of a package's embedded objects.

Figure 5-16: Show dependencies

The relation graph is integrated as a reusable tab in the SiteArchitect AppCenter area.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 76

5.5.1 Icon bar

 Layout; clicking this icon automatically arranges the displayed objects in a uniform layout. In

the process, layout changes made by the user are discarded without prompting.

 Update; clicking this icon updates the information displays in the relation graph. Changes to

the hierarchical structure of the objects and the package's new or removed objects are taken into

account in the process.

 Zoom out/1:1/in; clicking on these icons changes the view of the relation graph by

increasing it, shrinking it or changing it back to its original size.

 Fit to Screen; clicking this icon adjusts the zoom level so that the entire relation graph is

visible at the current tab size.

 Save as image; clicking this icon opens a dialog box for selecting the name and save location

for creating an image file in PNG format. The created picture file contains the entire relation

graph at the selected zoom level.

Grouping size: How many objects are to be displayed at the same time using the "Show linked

objects" context menu function or by double-clicking can be specified in this field.

5.5.2 Display of relation graph

The relation graph displays objects from the stores and their connections to each other. These

connections can be relationships between parent and child objects as well as references

between different objects.

The object that the relation graph was retrieved for is used as the root node for the view and

appears at the far left in the relation graph. When expanding outgoing connections for an object,

the target nodes are arranged to the right of the object. Each link between two objects is

represented by an arrow that points to the child or referenced objects.

Each object is shown as a rectangle and contains the following information:

▪ Object icon; the same icon that is also displayed in the tree structure of individual stores.

▪ Suitcase symbol (); specifies whether the object is currently included in the feature. It is

placed on the object icon for identification

▪ Display name; the language-dependent display name from the relevant stores is displayed.

▪ Preview symbol; if present, a preview of the object or included images is shown as a symbol.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 77

▪ Exclamation mark (/); displayed if missing references exist for the object or a child object.

The color rules match the tree view in the "Included objects" area of the feature combination

(see Chapter 4.3.2, page 28).

Edge lines are drawn between objects that are related to each other. These lines are shown

differently depending on the missing or found status:

▪ Solid line; used for explicitly added objects.

▪ Dashed line; used for implicitly added objects that are subelements of an explicitly included

object.

▪ Gray; used between objects if their connection is intact in the current feature combination (i.e.

always child objects, referenced objects if the reference target is included in the feature).

▪ Red; used between objects if a missing required reference is present.

▪ Yellow; used between objects if a missing optional reference is present.

5.5.3 Context menu on objects

A context menu can be called up on each object. The functions of the context menu are active or

grayed out depending on the state of the object.

Add to package "xyz": The selected object and all of its subelements are integrated into the

package.

Show element in workspace: Calling this function opens a tab with this object's forms in the

SiteArchitect workspace for viewing.

Expand related objects (double click): If there are connections to other objects that are not yet

displayed, calling this function triggers the display of these objects. The maximum number of

objects that are displayed there is specified on the icon bar under "Grouping size". Another group

of objects can be displayed by calling the function (or double-clicking) again.

If not all linked objects were able to be displayed, this is indicated by an extra object with the

label "Show next elements (X total)". Another group of objects can also be displayed by double-

clicking this extra object.

Collapse related objects: All linked objects currently being displayed can be hidden by calling

this function. All of a linked object's subordinate objects are also hidden in the process. Thus, if

an object is hidden and then immediately displayed again, then its subordinate objects continue

to be hidden.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 78

5.6 Functions via the "CorporateContent" menu item

Some of CorporateContent's functions can also be called up in the FirstSpirit menu bar under the

"CorporateContent" menu item and its submenu items.

5.6.1 Overview menu item

This menu function opens the "Overview Package Management" dialog box. The same

information is shown here in the master project and target project(s).

Figure 5-17: Overview Package Management

The window shows the most important information about packages, projects and the current

state of subscriptions in an overview window. All of the projects on the server are shown on the

vertical axis and all packages that are known server-wide are shown on the horizontal axis here.

The intersection between a package and a project displays quick information about the state of

the subscription for the package in the corresponding project.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 79

Figure 5-18: Quick information on a subscription in a target project

Subscriptions in target projects are shown with the following information:

Active – A checked checkbox indicates that the subscription to the package is active. The status

can be modified directly in this overview by double-clicking the subscription or using the Edit

button; this opens a dialog box with detailed information (see Chapter 5.6.1.1, page 81). The

detailed information can also be opened using the Details button in the "Edit subscriptions"

dialog box (see Figure 5-33).

Up to date – A checked checkbox indicates that the current package version has already been

imported into the target project. The checkbox is only checked for subscriptions marked in green;

the checkbox is unchecked for subscriptions marked in orange or red (see below for subscription

color coding).

Automatic – A checked checkbox indicates that the package contents are updated in the target

project automatically as soon as a more up-to-date package version is made available (push

process, also see Chapter 2.2.5.1, page 15). The state can be changed using the Update

parameter in Figure 5-29: Creating a subscription for package 'xyz'.

Packages from master projects are displayed with the following information:

Figure 5-19: Quick information on a package in a master project

Packages from master projects show the last three package versions in the blue box. This allows

the user to see at a glance how up-to-date the package version is in the respective project and

which package version should be updated in the target projects. A tool tip with the associated

publication groups is shown as additional information if the user hovers the mouse over the blue

box.

If the intersections between package and project are empty, there is no subscription to the

package in the target projects (for information on creating a new subscription: see Chapter 5.6.4

starting on page 88). If only an empty blue box is shown, then no package version has been

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 80

created for the package in the master project.

In order to show the state of a subscription in a clear and concise manner, color coding has been

introduced in addition to quick information. This is shown as a colored box in the overview.

Figure 5-20: color coding for the state of a subscription

Blue box – Marks the master project for the respective package.

Green box – Means that the currently most up-to-date package version has already been

imported into the target project successfully.

Red box – Marks an import into the target project that has an error. In this case, the log file from

the detailed information (see Chapter 5.6.1.1, page 81) should be called up (see Chapter 5.6.1.3,

page 84).

Orange box – Means that a more up-to-date package version has become available for import

but the target project has not yet been updated (for information on updating the subscription

starting from a target project: see Chapter 5.6.6, page 95, for information on updating the

subscription starting from a master project: see Chapter 5.6.3, page 87).

Clicking the Edit button or double-clicking the desired package-project relationship opens the

"Project/Package detailed information" dialog box. Information in addition to that from the

overview can be viewed here for each intersection in the overview. A distinction is made here

between information on subscriptions (green, orange and red boxes, see Chapter 5.6.1.1, page

81) and information on packages (blue box, see Chapter 5.6.1.2, page 83).

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 81

5.6.1.1 Detailed information on subscriptions

Figure 5-21: Detailed information on a subscription

The name of the target project being subscribed to and the subscribed package with ID are

shown on the window's title bar and as a header in the content area.

Subscription activated: If this checkbox is checked, then the subscription is active for the

package. This means that all new package versions are made available for importing in this

project (also shown in the quick info). The checkbox is active and can be edited in this dialog

(also see Chapter 5.6.4.2, page 89).

Automatic: If this checkbox is checked, the target version is updated to a new package version

automatically. The checkbox is disabled and is only used to provide information. The state can

be modified in the subscription properties (see Chapter 5.6.4.2, page 89).

Last update: Shows the date and time of the last update to the package in the target project.

Version: In the first field, shows the unique version number for the package version assigned by

the system. In the second field, a version number manually specified by the master project's

package developer is shown as well.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 82

Update status: Shows the status of the update in the target projects. The information follows the

color coding in the overview window. The three known states for a subscription are specified

here:

• Up to date – The most up-to-date package version has been imported successfully.

• Out of date – A more up-to-date package version is available for import.

• Error – Incorrect import into the target project.

Clicking the Show protocols button opens the "View log file" dialog box. The log file records the

specific process while the packages are imported and, if an import has an error, is of particular

interest for being able to evaluate the error that occurred. Additional information in Chapter

5.6.1.3, page 84.

Publication group: Shows the publication group(s) for which the subscription has been

concluded.

Package publisher project: Shows the master project, i.e. the project where the package was

created.

Clicking OK closes the "Detailed info" dialog box; any change to the "Subscription active"

checkbox is applied to the subscription.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 83

5.6.1.2 Detailed information on packages

Figure 5-22: Detailed information on a package

Additional information on a package can be called up in the blue box in the "Overview Package

Management" dialog box by double-clicking.

 Before updating subscriptions in a target project (see Chapter 5.6.6, page 95), the

detailed information about the package should be checked using this dialog in order to

discover any dependent content packages ("Dependent packages" column) that may

have to be imported before the content package that contains the references to the

dependent objects.

The name of the master project being subscribed to and the subscribed package with ID are

shown on the window's title bar and as a header in the content area.

The table shows the created package versions for the different publication groups (see Chapter

2.2.3, page 11). The most up-to-date package version is shown at the top by default in the

process.

No: Shows the unique version number assigned by the system.

Version: Shows the manually specified version name.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 84

Date: Shows the date of version creation.

Available: Shows the publication group(s) that this package version is "available" for.

Comment: Optional comment on the package version.

Dependent packages: Shows the dependent packages (templates and content packages, also

see Chapter 2.2.2, page 9) for the respective package version.

Log file: The log file for package version creation can be viewed here.

Import protocols: The "View logfile" dialog box is opened using the Display button (see

Chapter 5.6.1.3, page 84).

5.6.1.3 Showing a log

Figure 5-23: Show log file

A log file is created each time a package version is imported into a target project. The log file

records all of the information during the import process and is important for correcting any errors.

A log file can be selected for each subscription and each imported package version using the

"Show log file" dialog box. The table can be sorted by clicking the respective column.

Subscriber: Specifies the target project where the package was imported.

Version: Shows the version number assigned by the system.

No: Shows the number of attempts to import into a target project. The number is normally "0" if

automatic importing is configured. However, if an error occurs when importing a package version,

the import is initiated again and the number is increased by "1".

Date: Shows the date and time of the import.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 85

File name: Shows the name of the log file. The name is a combination of:

Figure 5-24: Log file name combination

Double-clicking an entry opens the associated log file:

Figure 5-25: Log file

Log entries with the ERROR state are of particular interest here. If there is an error during

importing or updating, you may be able to find out here whether additional referenced objects

from the master project are needed so that the import can then run successfully.

The log outputs can also be opened in an external editor. To do so, all of the outputs first have to

be highlighted using the key combination Ctrl+A and then copied to the clipboard using Ctrl+C.

Then the external editor is opened and the content in the clipboard is pasted into the editor using

Ctrl+V. This process is particularly advantageous when analyzing larger files.

5.6.2 Package menu item - Edit packages

This menu function opens the "Edit package" dialog. All of the packages present in the source

project are shown in this dialog box.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 86

Figure 5-26: Edit package – Package list

The table provides the following information on each package:

Package: Unique package name.

Type: Shows whether this is a content package or template packages.

Available: If this checkbox is checked, the package is available for target projects and can be

subscribed to. A subscription can even be created if no package version exists for a package. If

the checkbox is unchecked, the package is available to be subscribed to in the target projects.

Comment: Optional comment for the package.

Clicking the Edit button (or double-clicking the table row) opens the selected package for further

editing in the CorporateContent store (see Chapter 5.3, page 70).

Packages can be deleted from the table using the Delete button. In order to prevent a package

from being deleted accidentally, a confirmation prompt is displayed before it is permanently

deleted.

 Deleting a package also removes all of the package versions! Therefore, it is not

possible to directly delete packages where subscriptions have already been concluded. In

this case, the following confirmation prompt is displayed first.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 87

Affirming the confirmation prompt first deletes all existing subscriptions to the package and then

the package itself.

The package cannot be deleted if a dependency on a template package is present. In this case,

the link to the template package has to be removed in the content package's properties first. Only

then can the content package be deleted.

 If namespace enhancement has been enabled, the extended reference names

("ObjectName@PackageName") remain intact after a package is deleted; they are not

reset to their original reference names.

5.6.3 Package menu item - Publish packages

This menu function is used for updating package content in target projects using what is know as

the "push" process (also see Chapter 2.2.5.1, page 15). The "Publish package" dialog box opens

listing all of the existing packages in one table.

Figure 5-27: Publish package – Overview

Package: Unique package name.

Type: Shows whether this is a content package or template packages.

Available: If this checkbox is checked, the package is available for target projects and can be

subscribed to. A subscription can even be created if no package version exists for a package. If

the checkbox is unchecked, the package is available to be subscribed to in the target projects.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 88

Comment: Optional comment for the package.

Clicking the Properties button opens a dialog with the package properties that were set when

the package was created (see Chapter 5.1.1.2 and 5.1.1.3 starting on page 55). The package

properties cannot be modified at this point; they are only for informational purposes.

Clicking the Publish button opens a dialog where the most up-to-date package versions for each

known publication group are listed in a tabular overview. This dialog can also be called up using

the icon in the "CorporateContent" store (see 5.1.3, page 68).

5.6.4 Subscription menu item - Create subscription

A new subscription in a target project can be created using this menu function. Creating a new

subscription takes a multi-step process; the steps are explained below. Only a target project's

administrator can carry out the initial creation of a subscription.

5.6.4.1 Selecting a package

Figure 5-28: Selecting a package

The "Create subscription" menu item opens the "Select a package" dialog box. All of the

packages available on the server are shown in this dialog box. Only one package can ever be

selected at a time. The table provides the following information on each package:

Package: Unique package name.

Type: Specifies whether this is a content package or a template package.

Comment: Optional comment for the package.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 89

Publisher: Shows the name of the master project where this package was created.

Clicking Cancel closes the window. A dialog for editing the subscription opens (see Chapter

5.6.5, page 94).

Clicking OK opens another dialog box for creating a subscription (Chapter 5.6.4.2, page 89).

 No new subscriptions can be created if no packages are available for subscribing. A

dialog box appears with a corresponding error message.

5.6.4.2 Creating a subscription for a package

Figure 5-29: Creating a subscription for package 'xyz'

All of the settings for the subscription are set by the administrator of the target project in the

"Create subscription for package 'xyz'" dialog box:

Subscription activated: An update that can be initiated manually or automatically is provided for

each new package version if this checkbox is checked. If the checkbox is unchecked, the

package is not updated automatically in the target project. If a manual update is planned for the

subscription, the administrator of the target project can update the subscription even if it is not

"active" (see Chapter 5.6.6, page 95).

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 90

 A subscription can only be deleted from the source project. Therefore, in order to

"cancel" a subscription, the "Subscription active" option should be unchecked here. In this

case, the subscription can only still be updated manually; this prevents an update initiated

from the master project.

Publication group: A publication group can be selected for the subscription in the drop-down list

(see Chapter 2.2.4, page 13). All available publication groups are shown. If a publication group

for which no package version has been made "available" is selected at this point, a subscription

can, in fact, be created. However, an update (see Chapter 5.6.6, page 95) only takes place if a

package version for that publication group exists as well:

Update: The type of the update for the package in the target project can be selected in this drop-

down list. If automatic update is set, importing is initiated from the master project and runs in

the target project automatically. If, on the other hand, manual update is set, the import process

is initiated from the target project using the "Update subscription" menu item (see Chapter 5.6.6,

page 95). A manual update can still be carried out even if the subscription is not "active".

Release: Release control for the package can be adjusted using this drop-down list. The release

can be automatic, i.e. all included objects are released in the target project automatically after

importing the package. However, the release can also be configured via a workflow. Both

settings only apply if the target project is also working with releases (see Chapter 2.2.5.3, page

16). If this is not the case, then the entries are simply ignored.

 Different release states can occur when using the "Release" function in a target

project if a package is imported again after the "Release" workflow is started. At this point,

the newly imported object no longer corresponds to the initial released state.

Conflict handling: This drop-down list controls the process in the event of a conflict when

importing a package. These conflicts can only arise if the "Changeable" checkbox is active (see

below). This means that the package contents may be changed locally in the target project. A

conflict situation could occur during the next update due to these local changes. The conflict is

triggered only if the change status for an object is set to "Modified" or "Locked" (see Chapter

5.7.4, page 110). The change status is configured manually using the context menu for the

respective objects.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 91

Depending on the change status that is set and the way conflict handling is configured, changes

to objects are overwritten, copied or the update for the entire subscription is prevented.

• Overwrite – The local changes are overwritten by the new package contents.

• Cancel – The import is canceled.

• Copy – A copy of the node where the conflict occurred is created. An exception is made

for nodes in the site store: Copies of the node are not created here, instead they are

overwritten.

The exact results of conflict handling, depending on the change status that is set, are described

in Chapter 5.7.4 on page 110.

Changeable: Write permission to the imported objects is granted for the target project if this

checkbox is checked. If the checkbox is unchecked, the imported objects can be seen and used

in the target project but they cannot be modified. An error message appears when trying to block

the object in a target project. This setting also affects the order when importing objects into target

projects (see Chapter 5.6.8.3, page 103).

Starting with FirstSpirit version 5.2R15: If write permissions are removed in the master project

(deactivation of the option "Changeable" in the dialog in Figure 5-3), this checkbox is deactivated

(i.e. the checkbox' checked state cannot be modified). The tooltip associated with the checkbox

indicates that the currently stored setting (package is changeable) does not comply with the

package setting in the master project (package is not changeable); this may be confirmed by

closing the dialog via OK, thereby storing the package subscription as not changeable. The

package's objects can then no longer be edited in the target project.

Package content: The Delimitate button opens the "Choose node list" dialog box for restricting

the package content during an import (see Chapter 5.6.4.3, page 91).

Events: The Configure button opens the "Configure events" dialog box for editing or deleting

events already present in the package (see Chapter 5.6.4.4, page 93).

Clicking the OK button creates a new subscription.

5.6.4.3 Limiting package content in a subscription

Clicking the Delimitate button in the package content row opens the "Select node list" dialog

box:

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 92

Figure 5-30: Selecting a node list

All of the objects included in a package version are listed in the dialog box.

Import: This checkbox is checked by default for each object. If specific objects are not intended

to be imported into the target project, then the associated checkbox has to be unchecked. Pages

from the page store can only ever be deactivated together with the child elements (sections) in

this context.

 Caution: If package contents are limited manually here, then the dependencies

between package contents absolutely have to be taken into account (see Chapter 2.2.2,

page 9). If nodes that have to be included in the package are deleted manually here, then

this will result in errors during importing.

Name: Shows the name of the object from the master project. Objects integrated into a package

are provided with a namespace enhancement.

Figure 5-31: Namespace enhancement for package contents

It is possible to deactivate namespace enhancement (see Chapter 5.1.1.3.1, page 62). In this

case, the objects are shown without the appended "@PackageName".

ID: Shows the object ID from the master project.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 93

Path: Path to the object in the master project's project tree

5.6.4.4 Configuring events for a subscription

Clicking the Configure button in the Events row opens the "Configure events" dialog box.

Figure 5-32: Configuring events (in a target project)

Events, such as errors or releases, that have already been defined in a source project when

creating a new package version can be assigned new workflows here. The workflows can be

deleted for the target project or be replaced by other workflows using this dialog. New events

cannot be created.

 deletes an existing workflow from the event table.

Clicking the Edit button opens a dialog for selecting a new workflow.

Clicking the OK button saves the changes and closes the dialog.

Clicking the Cancel button closes the dialog; any changes made are not applied.

5.6.4.5 Subscription is created

Once existing configurations have been made (as explained in Chapters 5.6.4.1 to 5.6.4.4), the

subscription is initially shown in an overview (see Figure 5-33: Edit subscriptions) with orange

highlighting (see Chapter 5.6.6, page 95 for color coding subscriptions) and initially created using

the Update button.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 94

5.6.5 Subscription menu item - Edit subscription

The "Edit subscription" menu item opens the "Edit subscription" dialog box. A list of all packages

subscribed to for the project is shown in this window.

Figure 5-33: Edit subscriptions

Active: This checkbox is identical to the "Subscription active" box in the "Creating a subscription

for package 'xyz'" dialog. If it is checked, then the subscription for the corresponding package is

active and can be updated if a new package version is available (orange marking). If the

checkbox is unchecked, then the subscription can no longer be updated (starting from the

master project, see Chapter 5.6.3, page 87). The state in the "Active" column can be changed in

this view by clicking on the checkbox. Refer to Chapter 5.6.6, page 95 and Chapter 5.6.1, page

78 for subscription color coding.

Package: Unique package name.

Type: Specifies the type of the package (content package or template package – see Chapter

2.2.1)

Last update: Date and time of the last subscription update in the target project using a new

package version. If no entry has been made there, then an import has not yet taken place in the

target project.

Version: Both the unique version number (assigned by the system) and the self-defined version

number during package creation are shown here. The number assigned by the system is in

parentheses here (e.g. "MyVersionA(No.12)"). If there is no entry present here, then there is not

yet a package version for this package in the specified publication group.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 95

Comment: Optional comment on the package version.

Publication group: Each subscription is concluded for precisely one publication group. Then a

package version can only be imported if the subscription is active and the package has been

marked as "Available" for the specified publication group.

Clicking the Details button opens the "Detailed info: project/package" dialog box. The window

corresponds to the detailed information for the subscription from the "Overview Package

Management" (see Chapter 5.6.1.1, page 81). The window is used only for information; the

displayed values cannot be modified.

Clicking the Add button opens the "Select package" dialog box; a new subscription is added to

those already present in the list. The sequence is the same as for the "Create subscription" menu

item (see Chapter 5.6.4, page 88).

Clicking the Edit button opens the "Edit subscription for 'PackageName' package" dialog box. All

of the settings for the subscription are defined in this dialog box (see Chapter 5.6.4.2, page 89).

Clicking the Update button allows you to update a subscription directly from the "Edit

subscription" menu item. The specific procedure for updating a subscription is described in

Chapter 5.6.6, page 95.

 Subscriptions are also initially created using this button.

5.6.6 Subscription menu item - Update subscription

The "Update subscription" menu item is only required for the purpose of manually updating (see

Chapter 5.6.4.2, page 89) a subscription in a target project. However, all of the subscriptions can

be updated this way depending on whether a manual or automatic update has been configured in

the subscription or whether a subscription is marked as active or inactive. Thus, this function is

used for updates that are performed via what is known as the pull process (also see Chapter

2.2.5.1, page 15).

If a subscription is active and set to Automatic update, then the "Update subscriptions" button is

not normally needed. In the event of an automatic update, the import is initiated from the master

project by publishing a new package version (see Chapter 5.6.3, page 87). However, if an error

occurs during automatic updating in a target project, the update can be repeated easily using a

manual update in the target project.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 96

If a subscription is, in fact, set to automatic update, but was in the inactive state at the time of a

new package publication, then the update is not carried out automatically. In this case, the

subscription is marked as "Not up to date" and has to be updated manually.

If a subscription is set to manual update, the update always has to take place in the target

project. The active or inactive status is not relevant for a manual update.

The "Update subscription" menu item opens the "Edit subscriptions" dialog box (see Figure 5-

33). The window should already be familiar from the "Edit subscriptions" menu item (see Chapter

5.6.5, page 94). Only the "Update" button is relevant for manually updating a subscription at this

point.

 Before updating, the package dependencies should be checked (see Chapter 2.2.2,

page 9). Dependencies on template packages are defined in the package properties.

These dependencies are checked automatically. If the dependent template packages are

not updated or not updated in the right order, then the update is canceled and a

corresponding error message is displayed.

Optional dependencies on other content packages are shown in the "Detail info" dialog box,

which can be called up via the package overview. These dependencies are not checked

automatically during updating. If the dependent content packages are not updated or are not

updated in the correct order (1. importing the dependent content package, 2. importing the

package containing the references to the dependent package), they can cause errors in the

target project: For instance, if the referenced page and page reference are in different packages

when updating page references. If, in this example, the package with the page reference were

updated and then the package with the referenced page, this would cause an error in the target

project. In order to resolve the error, the page reference in the target project has to be deleted

and then the package with the page reference has to be updated again.

 If the subscription is for a template package that contains objects from a database

schema, then the database configuration in the target project's project properties has to

be adjusted before updating (see Chapter 5.10, page 135). Otherwise a corresponding

error is output.

Clicking the Update button initiates a manual update of a subscription starting from the target

project (see Chapter 2.2.5.1, page 15). Since updating a subscription is a sensitive step, a

confirmation prompt appears before updating.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 97

Affirming this confirmation prompt starts the subscription update. An update only makes sense

for subscriptions that do not have an up-to-date status. The update status can be easily identified

from the color coding used for the subscriptions in the "Edit subscriptions" dialog box (see Figure

5-33).

The default setup for an update is:

 (orange) – The subscription is currently not up-to-date. A new package version is available

for the subscribed package and the configured publication group that can be imported into

the target project.

 The orange color coding (or green for "up to date", see below) only refers to

content; the package properties (see Chapter 5.1.1.2, page 55) or even the subscription

properties (see Chapter 5.6.4.2, page 89) may have been modified since the last update

even though a "green" state is displayed.

The log for the package import into the target project can be displayed as needed after running

an update. All possible errors are listed in detail here.

Then click on the icon on the top right-hand edge of the window in the "Edit subscriptions"

window. The new color coding for the subscription is displayed only after updating the view. The

subscription is either set to the "red" or the "green" state at the end of the update process.

From (orange) to (green) = subscription was updated successfully.

From (orange) to (red) = an error occurred during the update. The subscription is not in an

updated state. In this case, the log for the import should be displayed and evaluated.

A special case for an update occurs if the color coding is orange but no package version is

available for importing yet. This error can occur if a subscription has already been created even

though no package version is exists, likely because there are not any package versions but also

because there are no available package versions for the subscribed publication group. An error

message is displayed in this case:

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 98

 If a new package version has been imported into the target project successfully, the

editing environment for the target project still shows an old view of the project. Therefore,

the view should be updated using F5 or the button after each import. Only after this are

all contents contained in the package shown with a corresponding symbol in the project

tree. The symbol is only visible if the "Show symbols (metadata, packages, permissions)"

option has been enabled under the "View" menu item.

For additional information on color coding subscriptions see Chapter 5.6.1 starting from page 78.

5.6.7 Publication groups menu item

The "Publication groups" menu item makes it easier for users to publish and import packages in

complex operating environments (see Chapter 2.2.4, page 13). For instance, by separating into

three publication groups, Development, Production and Test, packages can be published in a

test environment first and only then be implemented in a live environment as a tested, stable

package version.

The publication groups are defined server-wide and thus are available in both master projects

and target projects. Thus there are two different implementation areas for working with

publication groups:

Publication groups in a source project: Which publication groups a package version is to be

available for is assigned to each new package version during creation. (See Chapter 5.1.2.1,

page 65). The package versions can then be published for all of the publication groups or just for

individual available ones. They are then ready for import into target projects.

Publication groups in a target project: Each subscription is concluded for exactly one

publication group (see Chapter 5.6.4.2, page 89). Thus, the most up-to-date package version

available for this publication group is always imported into the target project. If, for instance, a

subscription is concluded for the "Test" publication group, then only the most up-to-date package

version made available to the "Test" publication group is imported.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 99

5.6.7.1 Editing a publication group

The "Publication groups" menu item opens the "Edit publication groups" dialog box:

Figure 5-34: Editing publication groups - Overview

All publication groups present on the server are shown here in a table with the following

information:

Default: The checked checkbox indicates the default (server-wide) publication group. This is

selected by default when creating a subscription (Chapter 5.6.4.2, page 89, "Publication group").

Exactly one publication group has to be defined as the default group at all times. This publication

group cannot be deleted without first selecting a new publication group as the default group.

Name: Unique name for the publication group.

Description: Optional description of the publication group.

Clicking the Add button opens the "Create new publication group" dialog box. The rest of the

process is described under the "Add publication group" menu item (see Chapter 5.6.7.2, page

100).

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 100

Clicking the Delete button deletes a publication group. The rest of the process is described under

the "Delete publication group" menu item (see Chapter 5.6.7.3, page 101).

Clicking the Edit button opens the "Edit publication group" dialog box. The publication group

highlighted in the table can be edited here.

Figure 5-35: Editing a publication group

The information from the "Edit publication groups" dialog box can be edited at this point for the

selected publication group.

Default group: If this checkbox is checked, then this publication group is set as the default

group. Exactly one publication group has to be defined as the default group at all times.

Name: A new name for the publication group can be specified in this field. Existing subscriptions

under the publication group's old name remain intact and are now concluded for the new

publication group name automatically. Thus, if needed, the publication group name only has to

be changed here; manual adjustments at other points are not needed.

Description: A new optional description can be specified in this field.

Clicking OK confirms the changes and closes the window.

5.6.7.2 Adding a publication group

Clicking the Add button in the "Edit publication groups" dialog box opens the "Create new

publication group" dialog box.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 101

Figure 5-36: Create new publication group.

Default group: If this checkbox is checked, then this new publication group is created as the

default group. The previous default group then loses this status since only one publication group

at a time can be defined as the default group.

Name: Unique name for the new publication group. The new group cannot be added if the

desired name is already assigned. The "Name" label is marked in red at this point in order to

show the source of the error and, at the same time, the OK button is not active. Thus it is not

possible to input two publication groups with the same name.

Description: Optional description of the new publication group.

Clicking the OK button creates the new publication group. It then appears in the "Edit publication

groups" dialog box.

5.6.7.3 Deleting a publication group

After highlighting a publication group, you can delete it by clicking the Delete button in the "Edit

publication groups" dialog box. In order to prevent a publication group from being deleted

accidentally, a confirmation prompt is called up before it is permanently deleted.

Figure 5-37: Deleting a publication group - Confirmation prompt

Clicking the Yes button deletes the publication group.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 102

Clicking the No button cancels the dialog; the publication group is not deleted.

 Publication groups can be deleted only if they are not used in any subscriptions.

A publication group that has been defined as the default group cannot be deleted. If a default

group is to be deleted, a new publication group first has to be defined as the default group in the

"Edit publication group" dialog box.

5.6.8 Combining package and target project contents

5.6.8.1 General

Contents can be transferred from a master project to multiple target projects using

CorporateContent. To do so, objects from a package are imported into the respective target

project. In the target project, the package contents mix with the contents already present in the

target project in the process. Thus, for instance, a page from the page store is maintained

directly in the target project, however, another page is maintained in the master project and just

imported into the target project. For most types of content, no problems will arise when

combining package and target project content in this way, provided that certain rules are followed

(e.g. dependencies). However, structures that normally cannot be created by themselves in a

target project can also be combined using CorporateContent, such as an individual section (see

following chapter).

5.6.8.2 Combining sections

In the target projects, contents that are imported from a package can be supplemented by adding

individual content, such as adding any number of sections to an imported page from a package.

To enable this, the "Changeable" checkbox has to be checked in the subscription (see Figure 5-

29) and in the package settings. This setting grants write permission to imported objects for the

target project.

For instance, company-wide uniform terms and conditions pages can be distributed to individual

subsidiaries using CorporateContent. These pages and sections can then be supplemented

within the subsidiaries by adding additional company-specific sections that are included in the

target projects (subsidiaries) but not in the package. The general portion of the contents, the

terms and conditions pages in this example, is maintained using CorporateContent and updated;

the specific sections are added in the target projects and maintained there as well. Sections

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 103

inserted into the target projects remain intact when updating the subscription. If the order of the

sections changes in the master project, then this can also affect the order of sections in the

target project (see Chapter 5.6.8.3, page 103).

Package contents can also certainly be reduced instead of being expanded. The package

contents to be imported are simply restricted in the subscription for this purpose (see 5.6.4.3,

page 91).

5.6.8.3 Order when importing objects into target projects

The order in which the objects in the master project are present in the object chain is taken into

account as well when importing objects (such as sections) into target projects. This has to be

adhered to to the greatest extent possible during the initial import into a target project as well as

when importing modified objects, as well as in cases where object chains in a target project are

expanded (see Chapter 5.6.8.2, page 102).

Changes to imported objects in a target project can only be made if the "Changeable" checkbox

has been checked for subscriptions (see Chapter 5.6.4.2, page 89). This setting also affects the

order when importing objects:

If a subscription is marked as "Not changeable", the content from the master project cannot be

modified in the target project (no write permission in the target projects). Change authority is in

the master project in this case. This setting affects the import order of objects in the target

project. If the order – such as the sections of a page – in a master project changes, then this

modified order is also applied in the target project when updating a subscription. This applies to

both the first roll-out of contents into a target project as well as updating content that already

exists into the target project.

If a subscription is marked as "Changeable", the content from the master project can be

modified in the target project. The content editors in the target project can add additional objects

to imported package contents (such as a new section for an imported page) and modify the order

of objects in the target project as well. These changes are not normally lost when updating a

subscription again. Therefore, after initially importing package contents, the following applies:

▪ New objects added to already imported package contents in a target project (such as

a new section to an imported page) remain intact when updating package contents in

the target project.

▪ New objects added to existing package content in a master project (such as a new

section added to a page that is already part of a package) are applied to the target

project. Sorting into existing package contents occurs following specific rules in the

process:

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 104

The link to the previous object ("predecessor") has priority when sorting objects from

the master project in the target project. This means that:

o If a predecessor and a successor exist, then the new object is inserted

after the predecessor.

o If only a predecessor exists, it is inserted after the predecessor.

o If only a successor exists, it is inserted before the successor.

Previously, objects were more closely linked with the subsequent object ("successor") if a

successor was available.

The order defined for package contents in the target project (such as by the initial roll-out

or resorting package contents in the target project) remains intact even if the package

contents are resorted in the master project and are rolled out again.

Example 1 – Initial import of package contents into target projects:

A page with 3 sections (1, 2, 3) in the following order is contained in the master project:

Figure 5-38: Example 1 - Page with three sections

If a package with these objects is rolled out to the target project, then the order of the sections is

retained. This applies to the initial import into the target projects (regardless of whether the

subscription is changeable or not).

Example 2 – Updating package contents (without modification in the target project):

Now additional sections (a, b, c, d) are added to the page.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 105

Figure 5-39: Example 2 - Inserting new sections

The order from the master project (a, 1, b, 2, c, 3, d) is applied to both target projects when

updating. For target project 1, this is the standard behavior since the master project's order is

retained. For target project 2, the behavior only takes effect because no changes to the package

contents have taken place.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 106

Example 3 – Updating package contents (in the event of a change in the target project):

Figure 5-40: Example 3 - Combined sections in the target project

Three sections are added to the page in the master project (Absatz_Master_x through

Absatz_Master_z). In contrast to the second example, this time changes are made to the page

before the updated package is rolled out in the target project. These changes originate from the

master project (only possible if the package content has been marked as "Changeable" in the

subscription).

▪ The order of imported sections in the target project is changed by hand (1, 2, 3, a, b,

c, d).

▪ Two new sections are inserted at the first and last positions (Ziel_x, Ziel_y)

After the renewed update of the package contents, the differences with example 2 are easy to

see:

▪ The modified order of the sections (1, 2, 3, a, b, c, d) defined in the target project for

the package contents remains intact even if the sections are arranged differently in

the master project (a, 1, b, 2, c, 3, d)

▪ The new sections from the master project are inserted into the target project's existing

contents based on the following rules:

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 107

o Absatz_Master_x only has a successor (Absatz_a) and thus is inserted in

the target project before the successor

o Absatz_Master_y only has a predecessor (Absatz_d) and thus is inserted

into the target project after the predecessor

o Absatz_Master_z has a predecessor (Absatz_c) and a successor

(Absatz_3) and is inserted in the target project after the predecessor since

the predecessor is given priority.

▪ The new sections from the target project remain intact.

5.7 CorporateContent content menu in the stores

The "CorporateContent" context menu provides some functions for editing packages directly at

objects in the project tree. It is called up by right-clicking directly on an object or a node from the

project tree. The "CorporateContent" functionality is located under the corresponding menu entry

in the context menu. The "CorporateContent" context menu is divided into five submenu items,

which are described in the following chapters.

▪ Starting adding to a package (Chapter 5.7.1, page 107)

▪ Removing from a package (Chapter 5.7.2, page 108)

▪ Undoing a package relation (Chapter 5.7.3, page 109)

▪ Change status (unmodified/modified/locked) (Chapter 5.7.4, page 110)

▪ Newly integrating an original (Chapter 5.7.5, page 113)

If the submenu items are shown in a gray font instead of black then the specific function is not

available on the highlighted object, such as on the store's roots.

5.7.1 Starting adding to a package (master project)

A node or object can be added directly to an existing package using the "Start adding to

package" menu item. This function is only available in master projects if the selected object is not

already part of another package.

If no package is open when the menu entry is called up, then a package selection dialog for

opening a specific package appears first. Only packages with the suitable package type are

listed in this selection dialog. Then the selected object is displayed in the SiteArchitect

AppCenter area as a relation graph.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 108

Figure 5-41: Adding an object - Dependency chart

Right-clicking the object in the dependency chart causes another context menu to appear. The

selected object is added to the package using the entry "Add to package 'xyz'".

 Adding to a package is only possible if a package of suitable type is loaded.

(Content package  template package)

 If the context menu is called up at a folder, then all of the lower level objects are

added to the package. If the folder contains objects already integrated into another

package then those objects are not added to the new package.

5.7.2 Removing from a package (master project)

A node or object can be removed directly from a package using the "Remove from package"

menu item. The "Remove from package" function is, of course, only available for objects that are

already part of a package. Clicking the menu item opens a confirmation prompt.

Affirming the confirmation prompt with Yes removes the highlighted element from the package

and closes the window. A package symbol is no longer displayed after the object name in the

tree view and the highlighted object is no longer part of the package.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 109

Clicking the No button cancels the process. The object is not removed from the project and the

window is closed.

 If an object is removed from a package, then the namespace enhancement

remains, but the package symbol after the name indicating assignment to a package

disappears. The object can now be added to a new package. In this case, the namespace

enhancement also changes (a @ with the name of the new package is appended) and a

symbol once again appears after the name in the project tree.

It is certainly possible to disable namespace enhancement (see Chapter 5.1.1.3.1, page

62). In this case, the reference name remains unchanged when removing the object.

5.7.3 Undoing a package relation (target project)

While the first two context menu items are only relevant for source projects, i.e. for projects

where packages are created, the third one ("Undo package relation") is used in target projects.

The menu item can be carried out on all subscribed objects that have been imported into a target

project from a package. These objects are shown in the target project with a package symbol

after the name in the project tree.

Clicking the menu item removes the package relationship for an imported object. This means an

object's relationship to a package is removed. This makes it possible to import objects from one

package and to modify them in a target project even though write protection has been defined for

the subscription.

If the Overwrite identically named objects when importing in a target project package property is

enabled, then changes made are overwritten the during the next update. If this option is disabled,

then the object is created again in the target project as a copy during the next update. The

modified object continues to remain intact.

 Permission to undo a package relation is only available to project administrators.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 110

 The "Undo package relation" context menu function only removes the currently

highlighted object – not any subordinate objects.

 If the package property Overwrite objects with same UID during import to target

project (see Chapter 5.1.1.3 page 59) is activated, changes made will be overwritten with

the next update. If this option is deactivated, the object will be recreated as a copy within

the target project with the next update. The changed object will be remained further on.

5.7.4 Change status (target project)

The change status for a node or object can be set in this area. This option is only available in

target projects and only for objects that are already part of a package. The options for the change

status are only active if a package is marked as "Changeable"; otherwise the corresponding

options are grayed out.

The state values set in the target project are required for conflict handling when importing the

package (see Chapter 5.6.4.2, page 89, "Conflict handling" option). If, for example, changes

are made to an imported page, a conflict can be triggered during the next subscription update as

a result of the "Modified" change status being set. Conflict handling always depends on the

status value set here:

• Unmodified: This status is set as the default for each object that is content for a

package. The object is overwritten with the contents from the package the next time the

package is updated. A conflict cannot occur with this setting.

• Modified: Setting this value triggers a conflict when the package is updated regardless of

whether or not the package version has changed. Subsequent actions during conflict

handling depend on the subscription's conflict settings (see Chapter 5.6.4.2, page 89).

o "Overwrite" conflict handling: The conflict is resolved by overwriting the object

modified in the target project with the object from the package version imported

during the update (this can be a new version with contents that have been

modified in the master project or the same version that has already been

imported). Changes made to the object in the target project are lost. After

overwriting, the object in the target project matches the object from the master

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 111

project.

o "Cancel" conflict handling: The conflict is resolved by canceling the update to

the subscription with an error message. No objects are updated.

o "Copy" conflict handling: The conflict is resolved by creating a copy for the

object being modified in the target project before the object is imported from the

package version during updating. Numbering is appended to the object's

reference name. The original object from the target project remains intact;

however, it is removed from the package link automatically (also refer to 5.7.3,

page 109).

• Locked: The object is locked for updating with this setting; this means it is explicitly

excluded from the subscription update. A copy of the object is created if a new package

version is imported into the target project. The modified object remains intact in the target

project, but it is removed from the package link automatically (also refer to Chapter 5.7.3,

page 109). The new object is imported into the target project as a copy.

 If the package property Overwrite objects with same UID during import to

target project (see Chapter 5.1.1.3 page 59) is activated, changes made will be

overwritten with the next update. If this option is deactivated, the object will be

recreated as a copy within the target project with the next update. The changed

object will be remained further on.

 A change status can be set only if the package is marked as "Changeable",

otherwise the corresponding options are grayed out.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 112

The results of conflict handling and the change status in brief:

Change

status

Conflict

handling

Result

Unmodified All Only when modifying the package version:

The object is updated; changes are lost.

Modified Overwrite When updating with a package version that is new or

has been imported already:

The object in the target project is updated with the

contents from the master project; changes made to

the object in the target project are lost.

Modified Cancel When updating using a package version that is new

or has been imported already: The import is

canceled; the object is not updated; changes from

the target project remain intact.

Modified Copy When updating with a package version that is new or

has been imported already: The object in the target

project is removed from the package relationship and

changes remain intact; a new object is created as a

copy from the master project.

Locked All Only when changing the package version:

The object in the target project is removed from the

package relationship and changes remain intact; the

new object is created as a copy from the master

project.

The change status is required for such tasks as conflict handling when importing contents into

different project languages (see Chapter 5.9.2.1.2, page 126). If, for instance, a master project

contains English as the project language but the target project contains both German and

English, the English content will only be imported into the relevant target project language (i.e.

English). The English contents then have to be translated into the German target project

language. In this case, the change status for the translated pages should be set to "Modified" or

"Locked". Otherwise the contents that have already been translated are overwritten again during

the next subscription update.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 113

 If no change status is set for the object, then the changes are overwritten in the

event of a subscription update.

5.7.5 Reintegrating an original (target project)

In contrast to the "Start adding to package" (see Chapter 5.7.1, page 107) and "Remove from

package" (see Chapter 5.7.2, page 108) context menu items, this function is only available in

target projects that have subscriptions and only for objects that have a package link. The

"Reintegrate original" function removes the object node from which it was called from the

package link and integrates a new object node into the package in its place. The object

concerned should be an object that was part of this package previously but that does not

currently have a package link.

The object node newly integrated into the package is selected from a list of all of the target

project's objects. The combo box is limited by only displaying the store where the context menu

was called (see Figure 5-42).

The "original" has to be compatible with the object node that is removed from the package link.

This means, it has to be the same type of object node, such as a page from the page store that is

based on identical templates.

 The object node selection is not reviewed automatically, but rather is the

responsibility of the editor. Removing or adding a package link is a sensitive action. If the

wrong object is "reintegrated" (perhaps an object that was never a part of the respective

package) this can lead to errors in the target project, since the page and section

templates may not be appropriate for the new object, for example.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 114

Figure 5-42: Selecting the original node to be reintegrated

One potential application would be the reintegration of objects, such as pages, after they have

been translated into a language not contained in the package. In order to prevent this page from

being overwritten again during translation, the change status for the section in the target project

is set to "Modified" or "Locked" (see Chapter 5.7.4, page 110). This means that the "Copy"

conflict handling setting that has been configured in the subscription takes effect when the

subscription is updated and creates a copy of the newly imported page. As a result, the changes

on the translated page remain intact while the "old" page is removed from the package link. The

page should be put back under package control after translation. The "Reintegrate object"

function is required for this. The function is called on the currently imported page, i.e. the copy.

The translated original page is then selected in the "Select original" list. The page is put back

under package control after confirming the selection. The imported copy of the page loses the

package link and can, if desired, be deleted from the target project (for translations, see Chapter

5.9.2, page 125).

5.8 Transferring existing projects into package master projects

Generating a separate master project where package contents are managed exclusively is

necessary in order to utilize the functionality of CorporateContent. Each existing FirstSpirit

project can take on the role of a master project and prepare package contents for import into

other projects. Thus, a company subsidiary could take over maintaining the company display for

its own web presence, thus becoming the master project for the corresponding package. Other

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 115

subsidiaries would then subscribe to the company display package from this project. Afterwards,

the master project continues to exist as a normal project.

Transferring an existing project to a package master project has to be planned carefully since

temporary inconsistent intermittent states can occur due to the restructuring. It is also possible

that references in the form and output tabs of templates and the like may have to be changed

manually so that the master and target project work without error. This is because reference

names can change due to package functionality. The process explained below (from Chapter

5.8.1.1 through to and including Chapter 5.8.1.8) should be followed precisely to avoid problems

as part of the conversion.

5.8.1.1 Using the relation graph

As already explained in Chapter 2.2.2, page 9, packages can only be imported successfully and

used in a target project if they contain all required objects. In addition to the objects that the

package developer explicitly adds to a package, there can also be dependent objects that are

necessary for successfully working with the package in the target project. Content dependencies

are automatically resolved in the so-called relation graph. This means that if objects from the

page and site store are added to a package ("content package"), all dependent objects from the

site store, page store and media store are transferred to the package as well ("implicitly").

In contrast, dependencies to objects from the template store and the Data Store for this content

package are not resolved automatically. Dependent objects from the template and data store –

e.g. a section template which is required for maintaining a section from the content package –

have to be packed into their own package. The dependency between the content package and

the template package is then defined in the content package. In order to be able to identify all

dependences between contents package and template package, the relation graphs can also be

used.

Relation graphs can be requested via the context menu Extras / Display dependencies. The

relation graphs for individual datasets of the Data Store are queried via the context menu of the

respective dataset.

 This function is only available to project administrators.

The tab in which open windows are located shows the dependencies of the object in the form of

incoming and outgoing edges, for the current state (tab current state) and for the last state

released (tab release state), as long as the project uses the release option:

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 116

Figure 5-43: Display of dependencies via the relation graph

Each object for which a dependency exists is shown with ID and the object icon that belongs to it.

To show further dependent elements, double-click "Show the next element". By double-clicking

on an element, the references to this object are also shown.

Additional information on relation graphs is in the FirstSpirit Handbook for Editors.

5.8.1.2 Structuring the package contents

In order to simplify creation of a package, all content that is to later be integrated into one

package is to be moved to a separate folder in the master project. This is possible for all objects

from the page, media, and template stores (but not for objects from the site store). The folders

later serve to aid in structuring the content in the target project. With the aid of the folders, it is

more quickly visible what content was imported from a master project, and the content bundled in

the folder is more clearly differentiated from the original content of the target project. All objects

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 117

that are not bundled into packages in folders are added to the highest level in the respective

store in the target project, and with that, the structure is lost. Likewise, structuring with folders is

also beneficial for the clarity and transparency of the master project.

Alongside the explicitly added objects, there can also be objects implicitly added to the package

if there are dependencies between objects (see Chapter 2.2.2, page 9 and Chapter 5.8.1.1, page

115). These implicitly added objects must be checked by the package creator and likewise stored

in separate folders.

Firstly, all necessary templates must be stored in their own folders in the template store; this also

applies to every subnode ("page templates", "section templates", "format templates", etc.). Media

from the media store can be referenced within templates. These media objects which belong to a

template, so-called technical media, can be integrated into a template package and contain, for

example, JavaScript files (*.js), cascading style sheets (*.css) or graphic layout files (see Chapter

2.2.1, page 9). In addition, in the media store, all technical media belonging to a template are

collected in a folder. Non-technical media are integrated in content packages, and should, for

example, also be stored in separate folders for this purpose.

 Every object can only be contained in a maximum of one package.

If, for example, technical media is needed in more than one package, then a second folder has to

be created for this package, which contains a copy of this object, in the media store.

 A requirement for a successful package creation is therefore always comprehensive

project knowledge.

5.8.1.3 Limitation of image selection in templates

Because dependencies are resolved automatically within content packages, media files that are

integrated into a section via the DOM editor input component (for example) are added to the

package implicitly as soon as the page containing the relevant section is included in the package.

Under certain circumstances, this may mean that a very large number of implicitly referenced

media files get integrated into a package because they are available at different points in the

master project (for example, in different (sub)folders in the media store). This is both non-

transparent and can lead to conflicts when importing the packages. One solution is to impose

limitations on the "DOM editor" and "FS_REFERENCE" input components in terms of which

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 118

images can be selected.

The limitation is imposed for the "FS_REFERENCE" input component with the aid of the

<FOLDER> and <SOURCES> tags within the section or page template. The <SOURCES> tag can

be used to limit selection or display to defined folders (including subfolders). This involves a

positive list; in other words, only the indicated folders are permitted. To allow a folder, a FOLDER

tag must be specified in conjunction with the name parameter and a valid folder name.

If, in addition to limiting the selection of images, you also want to restrict the ability to upload

media by specifying a particular folder, the uploadfolder attribute is also required1:

<FS_REFERENCE ...upload="yes" useLanguages="yes">

...

 <PROJECTS>

 <LOCAL name="." uploadFolder="test">

 <SOURCES>

 <FOLDER name="test" store="mediastore"/>

 <FOLDER name="test2" store="mediastore"/>

 </SOURCES>

 </LOCAL>

 </PROJECTS>

</FS_REFERENCE>

The limitation is imposed for the "DOM editor" input component via the link templates for

internal links.

In this way, image selection can be limited to the folders which are actually available in the

package or which have been structured for a package (see Chapter 5.8.1.2, page 116).

1 see FirstSpirit online documentation ./vorlagenentwicklung/formular/cmsinput/cms_input_picture/picture.html

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 119

 With this limitation, it should be noted that the folder names can be changed

through the namespace enhancement, and in this way would have to be manually

adapted later.

5.8.1.4 Preventing language-dependent structures in templates

In general, multilingualism of templates is not supported by CorporateContent. As long as the

packages contain unified languages from the master project and the target projects subscribed

to, such language-dependent structures present no problems. Multilingualism in templates

always leads to problems if a language used in the target project does not appear in the master

project, and thus was also not implemented in the templates. If in such a project environment

templates have to be exchanged via CorporateContent, then it must absolutely be ensured that

no multilingualism is implemented in the templates. An exact explanation is given in Chapter

5.9.2.3, page 129.

5.8.1.5 Automatic conversion in the Page Store

With the transfer of an existing project into a package master project, the reference names

change through the namespace enhancement (as long as the namespace enhancement is not

deactivated, see Chapter 5.1.1.3.1, page 62). Reference names with namespace enhancement

likewise have to be modified at all locations at which they are referenced in the project. In the

Page Store, these references are automatically adapted to the package contents.

If, for example, a link to an object from the Site Store is stored within a page, then this reference:

<CMS_LINK language="EN" linktemplate="Internal_Link.standard"

sitestoreref="pageref:thisPage" text="This link" type="Internal Link"/>

is automatically adapted to the namespace enhancement when the "thisPage" page is added to

a content package:

<CMS_LINK language="EN" linktemplate="Internal_Link.standard"

sitestoreref="pageref:thisPage@package" text="This link" type="Internal

Link"/>

5.8.1.6 Manual conversion of templates

The behavior of the automatic conversion of references described in Chapter 5.8.1.5 is not

available in the template store. These must be adapted manually to the new package

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 120

namespace enhancement.

If, for example, a page template (here: "onlycontent") is transferred into a package which

references a link template (here: "WEBeditIncludeJS"), then the references within the template

are automatically added to the template package:

Figure 5-44: Package content when adding a page template with references

The references within the template are not adapted automatically. Consequently, the

"onlycontent" page template still references:

$CMS_RENDER(template:"WEBeditIncludeJS")$

The references within templates have to therefore be adapted manually from the package

developer:

$CMS_RENDER(template:"WEBeditIncludeJS@package")$

The adaptation has to be run for all applications of the link template in the master project. The

applications in the project can best be determined via the relation graphs (see Chapter 5.8.1.1,

page 115). For the example mentioned, three references have to be manually edited later in

three different page templates in the master project:

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 121

Figure 5-45: Dependencies of a format template

References in presentation channels: In templates, all references within the presentation

channels that are indicated via the instruction $CMS_REF(...)$ or $CMS_RENDER(...)$ have to

be edited manually. This affects the following object types:

• Media (media:...)

• Page references (pageref:...)

• Scripts (script:...)

• Templates (template:...)

Example:

src="$CMS_REF(media:"logo",abs:3)$"

has to be manually adapted after adding the "logo" media file to the "package" package.

src="$CMS_REF(media:"logo@package",abs:3)$"

References in the form area: Within the form area, references likewise have to be edited later.

If, for example, a format template that is referenced within a DOM input component is added to a

package, then the reference in the form area is manually adapted to the new reference name:

 <CMS_INPUT_DOM name="st_text" rows="8">

 <FORMATS>

 <TEMPLATE name="format@package"/>

 </FORMATS>

With standard format templates, the namespace enhancement has to be viewed critically. If

references to standard format templates are changed (e.g. "b@package"), these are also no

longer recognized within the input component even if the <TEMPLATE name="b@package"/>

template is adapted. This means, for example, that the assignment to the corresponding buttons

in the DOM editor (here: "Bold") is lost. There can be errors in the master and in the target

project.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 122

5.8.1.7 Manual conversion in the Data Store

As in the template store, references are not automatically converted in the Data Store. That

means that, within the Data Store, all references to package contents have to be adapted

manually.

If, for example, in an input component in the Data Store a link to an object from the site store is

stored, then this reference:

<CMS_LINK language="EN" linktemplate="Internal_Link.standard"

sitestoreref="pageref:thisPage" text="This link" type="Internal Link"/>

is not automatically adapted to the namespace enhancement when the "thisPage" page is added

to a content package. The namespace enhancements have to be adapted manually by the

template developer (compare to the example in Chapter 5.8.1.5).

If the previous steps were carried out successfully, all requirements are fulfilled to transfer the

existing project to a package master project. In the next step, the first package can be created in

the new master project (Chapter 5.1.1.1, page 54).

5.8.1.8 Checking the function in a test project

Creating and importing packages is a complex task. Before importing packages to a live

environment is used, the function is therefore to first be tested in a test project.

After the first package is created in the master project (Chapter 5.1.1.1, page 54), the package

properties were configured and the package content was added, and finally, a first package

version was generated (Chapter 5.1.2, page 64); then it must first be checked in the master

project that the project still works correctly.

If implicit or explicit objects are added to a package, there is always extensive restructuring, for

example through the name extension (Chapter 5.1.1.3.1, page 62). If the name of a media object

changes, the reference to the media file is also adapted in all pages, sections, templates, etc. For

content packages, this restructuring is automatically adapted in the project via the relation graph

(Chapter 5.8.1.1, page 115). However, in individual cases, it can happen that references cannot

automatically be resolved by the system or that the manual adaptation of the templates is faulty

(see Chapter 5.8.1.6, page 119). In this case, the master project no longer works as intended. If

a media file is no longer referenced according to the namespace enhancement, then there will be

errors when displaying the page.

If errors occur during generation in the master project after a package has been created, the

master project must first be repaired, e.g. by changing reference names. If the master project is

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 123

functioning flawlessly, the package can first be imported into an "empty" target project. In the

target project, as well, it is then checked whether the import was carried out properly and

completely or whether possible required templates or referenced objects are missing in the

package. If that is the case, these objects have to be added to the package and a new package

version created and imported.

Only after this initial test is the master project to provide packages for the actual target project.

Afterward, as well, there are to be comprehensive tests on every package version. These are not

to be omitted (publication groups: Chapter 2.2.4, page 13).

5.8.2 For similar projects

If multiple projects share the same content, the structure of a preconfigured project for the roll-out

makes sense (here: division across multiple, similar target projects). In this roll-out project, a

standard project structure and all required subscriptions can be centrally configured once. The

project can then be exported, thereby making it available as the base project for all target

projects (e.g. subsidiaries of a company). When importing the project, all required subscriptions

in the project are created directly with it. In the case that all company subsidiaries would like to

maintain their own website, but want to use the templates to create the pages and the entire,

company-wide, unified company profile via a centrally administered package content, the use of

a roll-out project makes sense.

5.8.3 Import / export

Export and import via ServerManager is also possible for package master projects and

subscribed projects. These functions however have effects on the existing package and

subscription structure.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 124

5.8.3.1 Package master projects

 If a package master project is exported and then re-imported, all previous package

information gets lost. After importing the project, the symbols behind the object names in

the project tree continue to be displayed and the namespace enhancements are

preserved (as long as these were not deactivated). However, the package information (as

shown in Figure 5-26: Edit package – Package list) is no longer present. No more

packages are displayed in the package overview. Thus the project is no longer a master

project.

Therefore, the existing, original master project should by no means be deleted. If it is, both the

package information and the subscriptions in the target projects will be lost.

The only way to recover the package information and, in turn, the master project is via a file

system backup.

If subscriptions to contents of other projects in the package master project exist, these remain

even after the import, but have to be manually updated (see the following Chapter 5.8.3.2).

5.8.3.2 Subscribing projects

If a subscribing project is exported and then re-imported, the contents subscribed to from other

projects are retained and continue to be displayed with a blue color coding behind the object

name in the project tree. The subscriptions that existed prior to the import are all set to the "not

up to date" state and are color-coded orange, even if no version change has occurred in the

master project (see Figure 5-33: Edit subscriptions).

 The subscriptions have to be updated manually after importing the target project.

5.9 Corporate Content for developers

5.9.1 Individualization of the package contents in the target projects

Corporate Content can be used to import contents of a master project into different projects. In

many cases, however, these contents are supposed to be displayed differently in the individual

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 125

target projects. It is possible to make a direct intervention using the templates.

The layout in the target projects can be changed afterwards by directly modifying the templates.

The package content must not be write-protected; that is, it must be set as "changeable "in the

package version and in the subscription.

If templates from a template package in the target projects are modified, that can lead to

problems. On the one hand, the project-specific modifications have to be redone after every

update of the subscription; on the other hand, conflicts can arise when updating with a new

package version, because innovations in the master project cannot be linked by force also with

the modified states in the target project. One solution for these problems is an appropriate

conflict resolution, which can be configured in the subscription (see Chapter 5.6.4.2, page 89).

Here, the "Copy" option has to be selected under "Conflict handling"; this is used to create a

copy of the modified template in the target project. This copy now has to be manually revised by

the developer in the target project. Thus the modifications in the layout have to be done manually

in the new template. If the old template is retained here, it can cause the project to stop

functioning correctly.

 Modifications to templates in the target projects should be carried out only in

exceptional cases! The safe way to individualize contents in the target projects is to adapt

them using structure variables.

5.9.2 Support for multiple languages

Since the implementation of FirstSpirit was designed very consistently for multilingual projects,

these are also supported in CorporateContent. However, the different languages do not have to

be maintained in the master project; translations can also be made in the individual subsidiaries

in the respective local language. In doing so, projects with a homogeneous language structure

and projects with a heterogeneous language structure are differentiated.

5.9.2.1 Page contents

5.9.2.1.1 For projects with a homogeneous language structure

With a homogeneous language structure, the package supports the unifying quantities of all

languages used in the projects subscribed to.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 126

Figure 5-46: Packages with a homogeneous language structure

For example:

• Office Germany: DE, EN

• Office France: FR, EN

• Office Switzerland: DE, EN, FR

The package with a homogeneous language structure contains all three languages. Import

into the target projects is thus uncomplicated, because each of the languages needed in the

project is also contained in the package. If there are more languages in one package than are

used in a target project, the extra languages are simply ignored in the target project. In the

example above, the project of Office Switzerland is the ideal candidate for the role of the master

project.

5.9.2.1.2 For projects with a heterogeneous language structure

With a heterogeneous language structure, not all of the languages used in the projects

subscribed to are also contained in the package.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 127

Figure 547-: Packages with a heterogeneous language structure

For example:

• Office Germany: DE, EN

• Office Spain: ES, EN

Only the languages German (DE) and English (EN) are contained in the package. This means

that when importing a package into the Spanish target project (ES), the Spanish-language

content has to be specially translated. If this content is to be translated for the target project, that

can be realized via a workflow which is started directly upon package import.

In addition, the following settings have to be configured:

1) First, the project settings in the target project with the untranslated language have to be

configured. In ServerManager, select the "Use master language" option for "Language

substitution" under the "Substitutions" item in the project properties. The master

language has to be a language contained in the package, such as English. If objects that

are not available in the proper language are now imported into the project, only the

English language objects will be imported and these will have to be translated.

2) The actual translation can be started after the initial import via a workflow. A "Translate

new page" workflow can, for example, be used to send the newly imported page to a

translation agency in the form of an XML export and subsequently import the translated

results back into the project. In this case, it is important whether or not the check marks

on the language tabs (for the setting "Page for this language completely translated") are

activated on pages of the Page Store.

o For all new pages that are initially imported into the project, the language option

must be deactivated! The workflow should configure this setting for all new pages

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 128

before the import. If the translation has been done, then the language option is

reactivated for all new pages.

o For untranslated changes to a page already in the target project, the language

option has to be activated. If the language option is deactivated, the contents are

overwritten again in the next import.

5.9.2.2 Menu structures

All menu structures in a package, thus menu levels and page references, are taken over into the

target projects from a package. There is a critical difference here between projects with a

homogeneous language structure and projects with a heterogeneous language structure.

5.9.2.2.1 For projects with a homogeneous language structure

For projects with a homogeneous language structure, all menu structures contained in the

package, including the language-dependent labels, are taken over for each language. If a menu

level from the Site Store is integrated into a content package, the page references below the

package and the accompanying pages from the Page Store are also added to the package. If the

accompanying pages are moved from the Page Store into folders, only the referenced pages are

taken over into the package with them, not the higher-level folders.

If there are more languages in one package than are used in a target project, the extra

languages are simply ignored in the target project.

5.9.2.2.2 For projects with a heterogeneous language structure

For projects with a heterogeneous language structure, the same problems arise for menu

structures as for page contents (see Chapter 5.9.2.1.2, page 126). The target project supports

languages for which there are menu structures in the package, but the respective menu labels

are not translated.

In this case, a language substitution setting does not affect the master language available in the

package. When importing menu structures of a package (only EN) into a target project (EN and

DE), no substitution of the German menu names takes place. For the languages not included in

the package (here, DE), the menu names are preassigned by the display name from the master

language of the target project (here, EN). For projects with a heterogeneous language structure,

the menu structures are not permitted to be displayed in either the navigation menu or the

navigation overview for all languages that are in the target project, but not incorporated in the

package. Therefore, the "Displays" setting must be deactivated at the folder level within the site

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 129

store. This setting is automatically configured for every structure folder that the package contains

for the unsupported language when the menu structures are imported into a target project.

Figure 548-: Display options at the folder level of the Site Store

After translating the labels, the boxes have to be manually checked again in order to make the

navigations visible.

5.9.2.3 Templates

In general, Corporate Content does not cover multiple languages for templates. If templates are

supposed to be exchanged via Corporate Content, it is imperative to ensure that the templates

are not multilingual. Multiple languages always lead to problems if a language used in the project

was not implemented in the templates, thus in target projects without a heterogeneous language

structure.

5.9.2.3.1 Via common database access

One option for centrally maintaining language-dependent return values is to use a translation

table in the Data Store.

Unlike the usual procedure for maintaining multilingual contents in the Data Store, here all

languages are maintained via their own form fields. To do so, a column must be created for each

individual target project language in the data source schema of the master project, and an input

component has to be assigned to this column. Labeling of the individual input components is

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 130

supported in the master language only, usually "English". Now the language-dependent return

values can be maintained centrally in the master project. Via a common database access, all

target projects can gain (read) access to these language-dependent contents (see Chapter 5.10,

page 135).

If we take the previous example of the combo box as our starting point, the master project initially

has two input components of the "Text" type for the languages DE and EN. For each language

that is included in the target projects, the language-dependent display value (such as "red") is

assigned to a language-independent return value (such as "1") in the table. Now the language-

independent return value "1" is all that is stored in the template. Then the language-dependent

assignment is made for each language based on the translation table in the CData Store:

Example: Return value in template "1" and key "DE" = Return value "red"

 DE EN

1 Rot Red

2 Blau Blue

If a new language is added (due to a new Spanish subsidiary, for example), the table schema in

the master project has to be expanded by one column for ES and another input component of the

"Text" type has to be added. Then the table looks like this:

 DE EN ES

1 Rot Red ZERO

2 Blau Blue ZERO

Now the language-dependent return values for ES can be added in the master project. No more

changes have to be carried out in the templates.

 DE EN ES

1 Rot Red Rojo

2 Blau Blue Azure

 The master language of the target project must be in the package.

 For all target projects, a common database layer has to be specified in the project

settings in ServerManager. For the database layer, the boxes for "No schema sync" and

"Read-only" must also be checked (see Chapter 5.10.1).

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 131

Again, substitution of the label is possible only via a template change.

5.9.2.3.2 Local differences in the same language

In principle, it can also happen that conflicts arise when importing templates if the same

language is used in both the package and the target project. While different countries can use a

common language, for example English, there is nevertheless a number of aspects that can

differ in the countries. A prominent example is local formatting differences, such as different date

or currency formats in countries that otherwise have the same language.

Example:

• Date Germany: Tuesday 14.08.2001 16:47:48

• Date Switzerland: Tuesday 2001-08-14 16:47:58

When a package is imported from a German master project into a "Swiss" target project, the

system merely detects that the same language ("DE") is involved. Country-specific formats,

however, are not taken into account here.

These problems can be circumvented by introducing a "new" language that takes these kinds of

local differences into account; in the example, the new language "CH" would be introduced in the

target project.

5.9.3 Using workflows and events

Within Corporate Content, "standard events" can be assigned to workflows. The assigned

workflows are then carried out when the event occurs during or after the updating of a

subscription in the target project (see Chapter 5.6.4.4, page 93).

One way to apply this is to use a workflow to release all objects imported via a subscription.

Since a workflow can always be started for one object only instead of for several objects

simultaneously, a script is required to determine all nodes affected (see Chapter 5.9.3.1, page

132).

 So that both the workflow and the script can be carried out in the target project, both

the workflow and the script also have to be in the target project.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 132

5.9.3.1 Determining the nodes affected

Within a script in a workflow, one is in the WorkflowScriptContext.

First, the current session is required. This is obtained with

m_session = context.getSession();

Then get the ImportInfo object from the session:

m_importInfo = m_session.get("importInfo");

Finally, the UserService is required and the ImportInfo object is initialized:

m_userService = context.getUserService();

m_importInfo.setUserService(m_userService);

With the initialized ImportInfo object, now it is possible to determine the number of

▪ new nodes (getNewNodeCount()),

▪ modified nodes (getUpdatedNodeCount()),

▪ deleted nodes (getRemovedNodeCount()), and

▪ the nodes, at which a conflict arose (getConflictNodeCount())

The number determined is required in order to iterate across all nodes using a loop and to return

nodes in index-related form.

NewNode = m_importInfo.getNewNode(index);

If, for example, the script is supposed to return the first new node, the call looks like this:

firstNewNode = m_importInfo.getNewNode(0);

Other actions can be carried out at the nodes determined using Access API.

Please refer to the API documentation for the complete syntax of ImportInfo.

After all actions have been carried out, the workflow has to be advanced by the script. To do so,

use the method doTransition:

context.doTransition(NAME OF THE TRANSITION);

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 133

5.9.3.2 Exemplary workflow for the release

An exemplary workflow for the release of imported objects can be seen in the release workflow.

Figure 549-: Release workflow

In order to use the release via a workflow in the release target project, the release has to be set

in the subscription via a workflow (see also Chapter 5.6.4.2, page 89):

Figure 5-50: Setting the release in the subscription

In addition, under "Events", you have to click the Configure button to specify the workflow shown

in Figure 549 for the "Release" event (refer to Chapter 5.6.4.4, page 93):

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 134

Figure 5-51: Configuring events

If, in the release target project, the release is configured via a workflow, this is started as a

context-free workflow as soon as there are new or updated nodes in the project. This means that

the release does not take place in context-related form on an object in the project tree, but in

context-free form via the task list.

If the editor advances the workflow with "Review", the "packagePoolRelease" script determines

how many new or modified nodes there are in the target project. If there is at least one new or

modified node, a list dialog opens in which the modified nodes are shown.

If the release is granted by confirming this dialog, all listed objects are released at once. (By

double-clicking a node, the associated object can be displayed beforehand.)

If the release is not granted in this dialog, the listed objects are not released. However, they can

be reviewed "again" in the task list (see Figure 549-: Release workflow).

 If the newly imported nodes have been released, an update of the stores should be

carried out, after which the new or modified nodes are then shown as "released" (black

font).

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 135

5.10 Shared database access

FirstSpirit has powerful mechanisms for connecting databases (see FirstSpirit Handbook for

Administrators). Within the editing environment, the connected databases are identified as data

sources. The datasets that are managed in the data sources can be integrated into web pages

(via the page store and site store) and edited seamlessly in FirstSpirit (via the data store) without

leaving the editing environment.

The tables that are displayed within the Data Store are only views of the database. To do so, it is

first necessary to create a database schema in the FirstSpirit template store (new or generated

from an existing database). Using a graphic editor, the project administrator can create the

required tables in the selected database with FirstSpirit SiteArchitect and can place them in

relationship to each other (or transfer them across from a connected database). For each table

modeled within the schema, a table template can be generated (below the schema node). These

table templates contain definitions of which input elements the editor can use later to enter the

data into the corresponding tables or which input elements the editor can use to take over data of

a reference table. In addition, the "Mapping" tab can be used to assign the content maintained

via the input component to a database table in the physical database.

Depending on what settings have been made by the project administrator for the configured

database, any changes that are made to a schema in SiteArchitect (such as the addition of a

table to the physical database) can be applied ("Sync") or prevented ("No sync"). The contents

maintained by the editors within the Data Store can also be written back to the database;

alternatively, they can also not be written (write-protected). This is likewise dependent on the

configuration.

For more information, see FirstSpirit Handbook for Developers (Basics).

The following contents can be integrated into a Template package and distributed to other

FirstSpirit projects via CorporateContent:

▪ FirstSpirit database schemata

▪ FirstSpirit table templates

▪ FirstSpirit database queries

The following content can be integrated into a Content package and distributed to other

FirstSpirit projects via CorporateContent:

▪ Views of the database (nodes of the Data Store)

▪ Pages or page references that have a reference to a data source of the Data Store

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 136

The following applies here:

Shared access to the database (read-only): In order for database content to be

exchanged via CorporateContent, shared access must be configured in the project

settings (ServerManager) of all participating projects (master project and target projects).

CorporateContent supports distribution of database views (nodes of the Data Store) into

multiple target projects for shared, read-only access to the corresponding database

content. This means that the "Read-only" and "No schema sync" boxes must be checked

for the target projects when configuring the relevant database layer. The configuration for

joint use is described in the following chapters (see Chapter 5.10.1 starting on page 137

ff.).

Consider dependencies: If database views (nodes of the Content Store) are to be

distributed via CorporateContent to multiple target projects, it is first necessary to ensure

that dependent objects, such as the corresponding database schemata, table templates

and queries from the master project, are also part of the package (or a dependent

package). Here, the sequence of adding can also be critical. If these dependencies are

not considered, mistakes can appear when packing or importing a package. Example: A

section template that contains an input component for selection and output of datasets is

added to a template package. If the corresponding database schema was not added to

the package earlier, an error occurs.

These dependencies cannot be removed automatically, as they can be for the content

packages (see Chapter 2.2.2), as this would have very far-reaching effects. Continuing

with the example above, when adding the section template, for example, the schema and

all table templates and table queries below it would become part of the package.

However, this behavior is usually not desirable. Therefore, the package developer should

give some thought in advance to making the package structure as effective as possible.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 137

5.10.1 Configuring the target projects (read-only DB access)

Figure 5-52: Configuring a database layer in the target projects

First, the database layer of the master project (indicated by the red frame in the figure) must be

enabled under the "Databases" item. To do this, check the corresponding box in the "Selected"

column.

 For this database layer, the boxes for "No schema sync" and "Read-only" must also

be checked.

If "No schema sync" is set, the database tables are not recreated in the database when a

template package is imported.

Checking the box for "Read-only" prevents shared write access from the target projects to

the database. Read-only access to the database contents is then possible in all target

projects (views of the database); however, changes to the database contents cannot be

initiated from target projects.

For more detailed information about the "Multilingualism" use case in relation to shared database

access via CorporateContent, refer to Chapter 5.9.2.3.1, page 129.

 Changes to the database schema always have to be made in the master project, as

the "No schema sync" option is not enabled here, and the changes have to be distributed

to the target projects from there.

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 138

 Incompatible schema changes in the master project lead to problems in target

projects, even if no subscription update has yet taken place!

 The master and target project should always use the same database schema.

 The following applies for multilingual projects: When transferring a schema to a

package, the language structures of both the master project and the target project must

be taken into account in the master project (see Chapter 5.10.5.1, page 140 and Chapter

5.10.5.2, page 141).

5.10.2 For existing databases

If shared database access is to be implemented for projects with an already existing database

and/or existing datasets, some adjustments are necessary.

Assume for instance that a dataset that references an object from the media store by name

exists in the database. Let's also imagine, then, that the "test" media file was selected when

entering a dataset, that this media file is not yet part of a package and that it is referenced by

"media:test" in the dataset. If shared database access for multiple projects is to be implemented

at this point, all of the referenced objects have to be available in one package as well. As soon

as the "test" media file is added to a package, the name changes to "test@PackageName"

(unless namespace enhancement has been disabled, see Chapter 5.1.1.3.1, page 62). However,

the existing reference in the dataset continues to reference "media:test" with the result that the

media file for this dataset can no longer be found. In order for the media file to be displayed

again when displaying the dataset, the reference has to be adapted in line with the new name

("media:test@PackageName"), either manually or automatically with a script.

All objects referenced in an existing database have to be available in the target projects.

Therefore, it is recommended that all objects be made available to target projects using a

package when sharing a database. Then the references are subsequently adjusted in the

database. In this case, the media selection limitation explained previously in Chapter 5.8.1.3,

page 117 should be implemented for all of the templates used in the Content Store. These media

may only be selected from defined package directories (see 5.8.1.1, page 115) since this is the

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 139

only way to ensure that the required media are available in all projects.

If new objects, such as media, are to be inserted, then these are to be imported in the master

project and made available to the target projects by creating a new package version. This can be

achieved using automatic updating via publishing (Chapter 5.1.2, page 64 and Chapter 5.6.3,

page 87) or by updating in the target project manually (Chapter 5.6.6, page 95).

In addition, the mapping of languages for the master project and target projects should be taken

into account when transferring a schema for a multilingual project into a package in the master

project (see 5.10.5, page 140).

5.10.3 New databases

In contrast to using an existing database, referential integrity does not come into play for a new

database since the database does not yet contain any data.

The mapping of the master project's languages has to be taken into account when transferring a

multilingual project's schema to a package (see 5.10.5, page 140). Even for new databases, the

media selection limitation explained previously in Chapter 5.8.1.3, page 117 is recommended

for all of the templates used in the Content Store. These media may only be selected from

defined package directories (see 5.8.1.1, page 115) since this is the only way to ensure that the

required media are available in all projects.

5.10.4 "contentSelect" function

Special attention must be paid to the "contentSelect" function in the case of projects with shared

database access. Adjustments in the <CMS_PARAM> tags within a function have to be made

manually. This applies to all of the master project's templates, i.e. including templates that are

not integrated into a package. The reason for this is the namespace enhancement for the jointly

used database schema. If namespace enhancement has not been disabled, then the schema

name changes if the schema is distributed to target projects using CorporateContent.

<CMS_PARAM name="schema" value="News"/>

becomes:

<CMS_PARAM name="schema" value="News@MyPaket"/>

All of the master project's templates that use the "contentSelect" function have to be adapted

manually in this case. Even templates that are not used in a package have to access the

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 140

News@MyPackage schema immediately.

Advantage: If the templates have been adjusted in the master project once, then the target

projects do not need any further changes. They take on the already updated templates via

CorporateContent.

<CMS_FUNCTION name="contentSelect" resultname="fr_sc_news">

 <CMS_PARAM name="schema" value="News"/>

 <QUERY entityType="News">

 <ORDER>

 <ORDERCRITERIA attribute="Date" descending="1"/>

 </ORDER>

 </QUERY>

</CMS_FUNCTION>

becomes:

<CMS_FUNCTION name="contentSelect" resultname="fr_sc_news">

 <CMS_PARAM name="schema" value="News@MyPackage"/>

 <QUERY entityType="News.Overview@MyPackage">

 <ORDER>

 <ORDERCRITERIA attribute="Date" descending="1"/>

 </ORDER>

 </QUERY>

 </CMS_FUNCTION>

5.10.5 Language-dependent content

The data from individual input components visible in the Data Store is stored in a database table

when using shared database access. Since the schema should not be modified in the target

project, the languages for an input component have to be defined in the master project.

You can choose between two different processes for mapping languages:

1. Implicit modeling of language-dependency

2. Explicit modeling of language-dependency

5.10.5.1 Implicit modeling of language-dependency

For implicit modeling of language-dependency, all of the languages for the target projects have to

be added to the master project languages. This set union of all project languages is then taken

into account when creating a database schema.

The languages are added under the "Languages" item in the "Project properties" within

ServerManager. The "Generate language" option should be disabled to prevent languages

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 141

added via target projects from also being used when generating the master project.

Then a column for each language has to be created in the database schema and the columns

are referenced in the mappings for the table template.

Figure 5-53: Implicit modeling of language dependency

Example:

If a master project has German and English, the first target project has Spanish and English and

the second target project has French and English, then:

1. The languages Spanish and French have to be added to the master project's properties,

2. Columns for German, English, French and Spanish have to be created in the database

schema for the input component and they have to be referenced in the mappings for the

input component.

5.10.5.2 Explicit modeling of language dependency

In contrast to implicit modeling, languages are not mapped using a project property for explicit

modeling; this is done using a database schema instead. This means, a column is created in the

database schema for each language's input component. Then an input component has to be

defined on the table template's form tab for each column and referenced in the mappings.

5.10.6 Different database layers in the master and target project

Direct access to a database via target project is rarely desired in a live environment. If the target

projects are not intended to access a database directly but to access a copy of that database

instead, then the master project's database layer is managed by FirstSpirit in most cases and the

copy for the target projects is managed by a database administrator via an export. In this case,

the master project works on a database layer managed by FirstSpirit and the target projects are

FirstSpirit™ CorporateContent

 FirstSpirit™ V 5.2 ▪ CONT52EN_FirstSpirit_CorporateContent ▪ 1.41 ▪ RELEASED ▪ 2022-08-11 142

managed on a layer that has to be updated manually by the database administrator. This often

results in asynchronous master and target project states and leads to errors in the target

projects.

 During an initial import, the "No schema sync" option has to be disabled under the

"Databases" item in the project settings (ServerManager). This option must then be re-

enabled after the initial import (see Chapter 5.10, page 135).

If the target projects are to work off of a copy of the original database, the database schema

should be duplicated in the master project. A separate database layer is assigned for target

projects for this database schema. If just the duplicated database schema is deployed now, then

master and target projects always work on one state.

In order to circumvent this problem, the original database schema should be duplicated in the

master project and another layer should be assigned to the duplicate. Only the duplicate schema

is then made available to the target projects during deployment.

Advantage: The database is managed using FirstSpirit.

6 Legal notices

The "CorporateContent" and "ContentTransport" functions are products of Crownpeak

Technology GmbH, Dortmund, Germany.

Only the license agreed upon with Crownpeak Technology GmbH is valid with respect to the user

for using the functions.

Details regarding potential third-party software products in use not created by Crownpeak

Technology GmbH, their separate licenses and, if applicable, their update information can be

found on the start page of every FirstSpirit Server in the "Legal notices" area.

	1 Introduction
	2 Terms and concepts
	2.1 ContentTransport functionality
	2.1.1 Feature combination in ContentTransport
	2.1.2 Cross-server transport of features

	2.2 CorporateContent functionality
	2.2.1 Package types in CorporateContent
	2.2.2 Package dependencies in CorporateContent
	2.2.3 Package definition and package version
	2.2.4 Publication groups
	2.2.5 Subscription
	2.2.5.1 Updating packages in the subscription
	2.2.5.2 Subscribing to metadata and project setting templates
	2.2.5.3 Release

	2.2.6 Integrating workflows and scripts

	3 Configuration
	3.1 Checking the license file
	3.2 Starting the "PackageManager" service

	4 Content Transport
	4.1 Creating or loading a feature
	4.2 Adding objects to a feature
	4.2.1 Using the tree structure of stores
	4.2.2 Adding data sources and datasets
	4.2.3 Within the feature combination

	4.3 Feature combination
	4.3.1 Overview
	4.3.2 "Included objects" area
	4.3.3 "Required missing references" area
	4.3.4 "Optional missing references" area

	4.4 Flyout menu
	4.5 Graphical representation of dependencies
	4.5.1 Icon bar
	4.5.2 Display of relation graph
	4.5.3 Context menu on objects

	4.6 Transporting project properties
	4.7 Installing a feature in a target project
	4.8 Restrictions and notes
	4.9 Configuring the storage locations
	4.10 Automatic creation, updating and installation of features
	4.10.1 Exporting existing feature combinations via a schedule ("Create new feature bundle")
	4.10.2 Importing feature combinations via a schedule ("Install/Update feature bundle")

	5 CorporateContent (Package pool)
	5.1 Creating or editing a package
	5.1.1 Creating a new package
	5.1.1.1 Selecting a package type
	5.1.1.2 Creating a package – Settings tab
	5.1.1.2.1 Configuring events for a package

	5.1.1.3 Creating a package - Advanced tab
	5.1.1.3.1 Namespace enhancement
	5.1.1.3.2 Adding new element types

	5.1.2 Creating a package version
	5.1.2.1 Editing package availability
	5.1.2.2 Create a version

	5.1.3 Publishing a package

	5.2 Adding objects to a package
	5.2.1 Using the tree structure of the stores
	5.2.2 In the package combination

	5.3 Package combination
	5.3.1 Overview
	5.3.2 "Included objects" area
	5.3.3 "Unfulfilled dependencies (own package)" area
	5.3.4 "Missing references (dependent package)" area

	5.4 Flyout menu
	5.5 Graphical representation of dependencies
	5.5.1 Icon bar
	5.5.2 Display of relation graph
	5.5.3 Context menu on objects

	5.6 Functions via the "CorporateContent" menu item
	5.6.1 Overview menu item
	5.6.1.1 Detailed information on subscriptions
	5.6.1.2 Detailed information on packages
	5.6.1.3 Showing a log

	5.6.2 Package menu item - Edit packages
	5.6.3 Package menu item - Publish packages
	5.6.4 Subscription menu item - Create subscription
	5.6.4.1 Selecting a package
	5.6.4.2 Creating a subscription for a package
	5.6.4.3 Limiting package content in a subscription
	5.6.4.4 Configuring events for a subscription
	5.6.4.5 Subscription is created

	5.6.5 Subscription menu item - Edit subscription
	5.6.6 Subscription menu item - Update subscription
	5.6.7 Publication groups menu item
	5.6.7.1 Editing a publication group
	5.6.7.2 Adding a publication group
	5.6.7.3 Deleting a publication group

	5.6.8 Combining package and target project contents
	5.6.8.1 General
	5.6.8.2 Combining sections
	5.6.8.3 Order when importing objects into target projects

	5.7 CorporateContent content menu in the stores
	5.7.1 Starting adding to a package (master project)
	5.7.2 Removing from a package (master project)
	5.7.3 Undoing a package relation (target project)
	5.7.4 Change status (target project)
	5.7.5 Reintegrating an original (target project)

	5.8 Transferring existing projects into package master projects
	5.8.1.1 Using the relation graph
	5.8.1.2 Structuring the package contents
	5.8.1.3 Limitation of image selection in templates
	5.8.1.4 Preventing language-dependent structures in templates
	5.8.1.5 Automatic conversion in the Page Store
	5.8.1.6 Manual conversion of templates
	5.8.1.7 Manual conversion in the Data Store
	5.8.1.8 Checking the function in a test project
	5.8.2 For similar projects
	5.8.3 Import / export
	5.8.3.1 Package master projects
	5.8.3.2 Subscribing projects

	5.9 Corporate Content for developers
	5.9.1 Individualization of the package contents in the target projects
	5.9.2 Support for multiple languages
	5.9.2.1 Page contents
	5.9.2.1.1 For projects with a homogeneous language structure
	5.9.2.1.2 For projects with a heterogeneous language structure

	5.9.2.2 Menu structures
	5.9.2.2.1 For projects with a homogeneous language structure
	5.9.2.2.2 For projects with a heterogeneous language structure

	5.9.2.3 Templates
	5.9.2.3.1 Via common database access
	5.9.2.3.2 Local differences in the same language

	5.9.3 Using workflows and events
	5.9.3.1 Determining the nodes affected
	5.9.3.2 Exemplary workflow for the release

	5.10 Shared database access
	5.10.1 Configuring the target projects (read-only DB access)
	5.10.2 For existing databases
	5.10.3 New databases
	5.10.4 "contentSelect" function
	5.10.3 New databases
	5.10.4 "contentSelect" function
	5.10.3 New databases
	5.10.4 "contentSelect" function
	5.10.3 New databases
	5.10.4 "contentSelect" function

