

FirstSpirit™ AppCenter
FirstSpirit™ Version 5.2

Version 0.53

Status in process

Date 2016-09-20

Department FS-Core

Copyright 2016 e-Spirit AG

File name APPC_EN_FirstSpirit_AppCenter

e-Spirit AG
Stockholmer Allee 24
44269 Dortmund | Germany

T +49 231 . 477 77-0
F +49 231 . 477 77-499

 info@e-spirit.com
 www.e-spirit.com

http://www.e-spirit.com/
mailto:info@e-spirit.com
http://www.e-spirit.com/en

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 1

Table of contents

1 Introduction ... 4

1.1 FirstSpirit AppCenter – FirstSpirit as an integration platform 4

1.2 Differences between ContentCreator and SiteArchitect 5

1.2.1 Project-specific input components .. 6

1.2.2 AppCenter – integrating web applications ... 8

1.2.3 Reports – integrating external databases and services 10

1.2.4 Exchanging data using drag-and-drop motions 13

1.3 Enhancement of application integration in version 5.1 15

1.4 Classification ... 19

1.5 General information .. 21

1.6 Restrictions .. 21

1.7 License model .. 23

1.8 Preview ... 24

1.9 Topics covered in this document .. 25

2 Concept: Integrating a web application into FirstSpirit 26

2.1 Communication: FirstSpirit SiteArchitect – web application 26

2.1.1 Controlling the integrated browser ... 26

2.1.2 Communication between the browser instance and SiteArchitect 27

2.1.3 Converting data types .. 30

2.1.4 Return by means of callback function ... 31

2.2 DOM access: access to the data of the integrated browser 32

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 2

3 Standard enhancements .. 34

3.1 Interface: ApplicationService ... 35

3.2 Interface: ApplicationTab .. 37

3.3 Interface: ApplicationTabAppearance ... 39

3.4 Interface: ApplicationTabConfiguration .. 42

3.5 Interface: TabListener .. 44

3.6 Abstract Class: ApplicationType ... 45

3.7 Interface: BrowserApplication .. 45

3.8 Interface: BrowserListener .. 48

3.9 Interface: BrowserApplicationConfiguration .. 49

3.10 Interface: ClientServiceRegistryAgent .. 52

4 Example: Integrating Google Maps in FirstSpirit 53

4.1 First steps .. 54

4.1.1 Note on the FirstSpirit license model ... 54

4.1.2 Note regarding legal implications ... 54

4.1.3 Generate Google Maps API key ... 54

4.1.4 Note on configuring the FirstSpirit server ... 55

4.1.5 Installing the Google Earth plug-in ... 56

4.1.6 Example project ... 56

4.2 Application areas of the Google Maps integration 57

4.2.1 Address search with geolocalization ... 57

4.2.2 Changing the coordinate using the Google Maps integration 58

4.2.3 Showing additional information (Google Balloons) 59

4.2.4 3D display using Google Earth .. 60

4.2.5 Route directions ("How to find us") .. 61

4.3 Implementation: Application integration for Google Maps 63

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 3

4.3.1 (SwingGadget) input component CUSTOM_GEOLOCATION 65

4.3.2 MapsPlugin – Generating a new instance of the type MapsPlugin66

4.3.3 MapsPlugin – Opening the application within a tab 68

4.3.4 MapsPlugin – run JavaScript (Java » JavaScript) 72

4.3.5 MapsPlugin - GeolocationUpdater (Injection Java » JavaScript) . 76

4.3.6 Show markers and assign an input component 79

4.3.7 Listener – responding to changes .. 88

4.3.8 Updating the geodata of the input component (JavaScript » Java)93

4.3.9 Responding to tree navigation events (Java » JavaScript) 101

4.3.10 Updating the browser instance (Java » JavaScript) 103

4.3.11 MapsPlugin – Address search (Google-Geolocation) 107

4.3.12 maps.html – Introduction ... 113

4.3.13 Excursus: HTML and JavaScript .. 114

4.3.14 maps.html - Loading the Google Maps API 115

4.3.15 maps.html - Initializing the container for the map display 116

4.3.16 maps.html – Creating a new map object .. 117

4.3.17 maps.html - Center map (center point or display area) 118

4.3.18 maps.html – define map type ... 120

4.3.19 maps.html - load map object via events ... 122

4.3.20 maps.html – converting address data (Geocoding) 123

4.3.21 maps.html – GeolocationUpdater (Injection Java / JavaScript) .. 124

5 Listings ... 128

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 4

1 Introduction

 This document is provided for information purposes only. e-Spirit may change the

contents hereof without notice. This document is not warranted to be error-free, nor

subject to any other warranties or conditions, whether expressed orally or implied in law,

including implied warranties and conditions of merchantability or fitness for a particular

purpose. e-Spirit specifically disclaims any liability with respect to this document and no

contractual obligations are formed either directly or indirectly by this document. The

technologies, functionality, services, and processes described herein are subject to

change without notice.

1.1 FirstSpirit AppCenter – FirstSpirit as an integration platform

From the outset, FirstSpirit has been conceived and implemented as an integration platform. This

includes consistent focusing of all in-house implementations on the core components of the

"FirstSpirit" product and deliberate outsourcing of specific functions to third party products of the

respective market leaders. The success of such a best-of-breed strategy stands and falls with the

capability of the system integration. The decisive requirement, to enable successful

implementation of this popular outsourcing idea in a software product, is "seamless integration":

there must be no break between the products used for the end user. The user prompting must be

fully integrated, seamless and visually appear to the user as a unified whole.

This idea of seamless integration of third party applications in the FirstSpirit environment is called

"AppCenter".

The FirstSpirit AppCenter provides an area within the editing system, within which independent

applications can run, which are not part of FirstSpirit (so-called "AppCenter applications").

Examples of AppCenter applications are the integration of Microsoft Office or the functions for

integrated image editing. The integrated web browsers Mozilla Firefox and Microsoft Internet

Explorer are also AppCenter applications; they are called "integrated preview". All these

AppCenter applications were implemented by e-Spirit as parts of its product. There is also a

range of AppCenter applications, which are implemented as FirstSpirit modules. These

AppCenter modules can be developed by e-Spirit itself, as well as by a partner.

The following examples, which have already been successfully integrated by e-Spirit within the

scope of the AppCenter, give an impression of the options the AppCenter provides in addition to

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 5

the applications currently implemented as product components:

 by integrating Google Maps or Google Earth, geocoordinates can be easily and intuitively

used in FirstSpirit SiteArchitect and in ContentCreator (see Chapter 4 page 53).

 by integrating the online video offering of MovingImage24, videos can be selected and

integrated into FirstSpirit with the click of the mouse.

From a technical point of view, the AppCenter consists of a set of interfaces, which have been

released by e-Spirit for use by partners, so that they can implement and integrate individual

applications within the scope of the AppCenter, in order to adapt the FirstSpirit environment to

their special needs. The implementation of AppCenter applications and their integration into

FirstSpirit is generally called "application integration". This term is used to describe the most

seamless integration possible of third party software, even if it based on completely different

technology, in the editorial interface of SiteArchitect.

To sum up:

 The editor finds a fully-integrated desktop, in which they can immediately work with the tools

they are familiar with (for example, office applications).

 Existing, customized applications can be integrated without a lot of time or effort, even if they

are non-Java applications.

 New mini-apps can be quickly and effectively developed for the customer, tailored to their

use case and based on existing technology. These can be small .NET-based web

applications or Flash applications.

1.2 Differences between ContentCreator and SiteArchitect

FirstSpirit provides all users, regardless of their tasks, a working environment that is tailored

precisely to their needs.

In terms of usability, the browser-based FirstSpirit ContentCreator (formerly "WebClient") offers

an optimized editing environment for efficient content management. FirstSpirit SiteArchitect

(formerly "JavaClient") provides a convenient, Swing-based user interface for the complex needs

of project developers.

Despite the completely different technologies (Java vs. web application), e-Spirit

has succeeded in providing ways to seamlessly integrate "best-of-breed" products into both

environments. Slightly different integration solutions were implemented for the two applications

for technical reasons as well as due to different user prompting and guidance concepts. Newer

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 6

customers will not notice the difference between the two environments despite the way they were

originally developed.

Starting with FirstSpirit 5.1, the features mentioned are generally available both in SiteArchitect

and in ContentCreator. e-Spirit will naturally strive to continue to offer integration solutions for

both environments as long as it is technically feasible.

1.2.1 Project-specific input components

The flexible FirstSpirit component model offers interfaces that make simple (new) implementation

and functional expansion of input components possible. The implementation of input components

in this case only has to include the desired interface (or the abstract basic implementation) and

fulfill the requirements specified there for the implementation. The surrounding FirstSpirit Gadget

framework then automatically handles all other functions, such as drop handling or highlighting of

search terms in a component.

(For more information on implementing project-specific input components in SiteArchitect, refer

to the section on "Gadgets, Aspects, Brokers and Agents" in the FirstSpirit Manual for

Component Developers).

The input components can be used to copy information in a simple way from third-party systems

to FirstSpirit and to further process them once there. Usually, the input component takes control

of the integrated third-party application and the storage and processing of data. An example of a

client-side application integration via an input component is the integration of Google Maps. In

conjunction with an input component which saves the geo-coordinates, the integrated Google

Maps web applications are used to determine the desired geographic information and to share

the information with FirstSpirit. FirstSpirit then uses the geo-coordinates to develop travel

directions, including a route planning page (for an application example, refer to section 4.3.1,

page 64).

The development of project-specific input components requires a client-side and server-side

implementation, where the client-side implementation is limited strictly to display and control logic

and thus represents the View and Controller areas of the classic MVC pattern.

Particularly when implementing project-specific components for ContentCreator, special

requirements must be fulfilled:

 View (GUI): an attractive graphical representation is crucial for acceptance of a component.

For this purpose, the input components use the standard browser tools, which means that the

GUI is defined using HTML and CSS.

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 7

 Controller (operation): in terms of form and subform handling as well as displaying

validation information and changes, it must be possible to integrate the input component into

the existing FirstSpirit forms. A strict Java implementation would be too slow for the frequent

client/server calls. For this reason, this functionality must be provided using a JavaScript

implementation that enables communication with ContentCreator while also providing access

to associated HTML elements and for their part providing functionality in the form of client-

side features. However, access to the Access API is not possible here.

The value medium (i.e. the model from the MVC pattern) is implemented across the clients in

order to ensure compatibility between the two clients. For ContentCreator, data representation is

also required, including serialization and deserialization functions in a JavaScript-compatible

format. This serialization, like some other functions (e.g. drag-and-drop or gadget request

handling), is provided on the front-end server in the form of server-side features, as is already the

case with input components in SiteArchitect. Even if these SiteArchitect and ContentCreator

interfaces are not identical, it is possible to have a common code base and use the Access API.

Figure 1-1: ContentCreator - Control of input component (1) and web application (2)

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 8

1.2.2 AppCenter – integrating web applications

The client-side application integration is implemented differently in FirstSpirit ContentCreator and

in FirstSpirit SiteArchitect. This is due to the different technical requirements of the two

environments and to the different user guidance concepts.

Integration of external web applications in ContentCreator initially appear to be easier than the

integration of a web application in SiteArchitect, since the web browser is already part of the

ContentCreator runtime environment.

Upon closer inspection, however, a number of integration problems arise primarily due to the

web browser's JavaScript security model. For instance, accessing the HTML content of another

web application (with a different URL) is difficult, even if it "appears" to be seamlessly integrated

via an IFrame. In principle, each whitebox integration in the context of application integration is

not included for FirstSpirit ContentCreator, i.e. the applications to be integrated have to be

prepared specifically for it and the required functions have to be available as a JavaScript-

capable interface.

This is a fundamental difference from the integration of web applications in SiteArchitect, since

the web browser itself is integrated in SiteArchitect and the JavaScript security model can thus

be completely avoided.

Integrated applications are displayed in FirstSpirit SiteArchitect in a permanently visible

"application area" (see Figure 1-2: Pixlr integrated web application). A new tab is generated in the

right-hand side of the window for this purpose and access to the integrated browser is required.

The corresponding interfaces are shown in section 0. In the example shown here, the editor can

edit an image in SiteArchitect in which the actual image editing function is handled by the Pixlr

web application (see Figure 1-2), which is seamlessly integrated in the FirstSpirit user interface.

The editor will hardly even notice that the image editing here is handled by an integrated web

application.

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 9

Figure 1-2: Image editing via the integrated Pixlr application in SiteArchitect

In ContentCreator, the difference in user prompting and guidance is slight, since, unlike

SiteArchitect, work here is exclusively done in the preview.

To edit the image, a new browser tab is opened (8) in which the image can be edited using the

corresponding Google Drive application, which is once again Pixlr (9) in this case. After

completing the editing process, the changed image data is copied back over to FirstSpirit (5) and

the preview in ContentCreator (7) is updated.

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 10

Figure 1-3: Image editing using Google Drive App Pixlr in ContentCreator

This example very clearly demonstrates that it is possible to integrate a web-based application to

edit images in SiteArchitect as well as in ContentCreator and the functionality appears to be very

similar to the editor even though completely different technologies are used for the respective

application integration.

1.2.3 Reports – integrating external databases and services

Reports are a key source of information in the project. They provide the display of project data or

data from other sources (e.g. web services). The data can be clearly arranged (Snippet view)

and filtered within the report.

The interfaces are provided for this purpose which allow customers and partners to create their

own reports, design how result entries are displayed and thus, for example, expand the default

search options in FirstSpirit SiteArchitect and ContentCreator for specific projects. Project-

specific report implementation based on these interfaces can be implemented with almost

identical functionality in both FirstSpirit environments.

In addition to the standard ContentCreator reports (1), Figure 1-4 shows three additional reports:

"Google Drive Search" (2), "Google Web Search" (3) and "Fotolia" (4).

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 11

Figure 1-4: Integration of additional search options in FirstSpirit ContentCreator

The reports are able to accept a high volume of input parameters set by the user (in, for instance,

search terms via a search field (2) and a filter option to limit searches to particular file types (3) –

in this case web content, images and videos) and thus analyze a sufficient number of results.

Access to Google Search is available primarily for research assistance during the editorial

process and is based on the Google Search API. This means that the search can be configured

for a specific project so the user can limit browsing to only specific areas of the Internet, for

instance. The FirstSpirit application then handles the display of the results in the form of a

uniform, seamless list integrated in the UI (see Figure 1-5 (4)). This displayed list features,

among other things, a thumbnail preview and continuous scrolling so that the report author does

not have to manage it himself.

In addition, the report interface handles the insertion of report elements into the ContentCreator

via drag-and-drop. For instance, an element from a report (e.g. an image from the Google

Images search) can be added to a FirstSpirit element (such as an image input component or an

FS_BUTTON component). Figure 1-5 shows an example of a Google Images search with the

subsequent drag-and-drop of a search hit (4) from the report onto an image input component (5).

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 12

Figure 1-5: Drag-and-drop from the integrated Google Images search (ContentCreator)

While reports in ContentCreator are always opened using the icon bar in the right-hand side of

the window, the report function in SiteArchitect is opened in the left-hand side of the window in

the Organize area (see Figure 1-6). The functionality, including drag-and-drop, is almost the

same in both environments.

The main difference between the report function in SiteArchitect and that in ContentCreator is in

the different client-specific context. While a report in ContentCreator runs on the front-end server

(e.g. Tomcat), a report in SiteArchitect is also instantiated in SiteArchitect (and not on the

FirstSpirit server). Due to these different contexts, certain client-specific information and

functions (e.g. particular agents) in one FirstSpirit environment are not available in the other.

These differences must be taken into account when implementing the report function.

A function that was previously not available in SiteArchitect is the optional detail view, which can

be displayed when mousing over a report entry; it is currently only available for use with

FirstSpirit ContentCreator.

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 13

Figure 1-6: Report in SiteArchitect (left) and in ContentCreator (right)

For more information on implementing reports and for an example of a report implementation,

refer to the FirstSpirit online documentation (path: ... / Plug-in Development / Universal

Enhancements / Reports /…).

1.2.4 Exchanging data using drag-and-drop motions

A key user concept in ContentCreator and in SiteArchitect is the ability to exchange data easily

using drag-and-drop motions, for instance between input components and the AppCenter area

as well as from a report or from the (Windows) Desktop.

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 14

Version 5.1 now provides a basis for moving and/or referencing a wide range of data (types) in

FirstSpirit using drag-and-drop. This now makes it possible, for example, to drag report data not

only to certain areas of the preview, but into open forms as well. The following use cases are

possible:

Media (e.g. images) can be dragged

 from the Report area (e.g. from the search) to

o the input element for reference selection (FS_REFERENCE) in the edit dialog (cf.

Figure 1-7)

o the input element for image galleries (images only; FS_LIST, type: DATABASE,

media mode) in the edit dialog

o a different medium in the preview

and referenced in the new location.

 can be dragged from the desktop to

o the input element for reference selection (FS_REFERENCE) in the edit dialog (cf.

Figure 1-7)

o the input element for image galleries (images only; FS_LIST, type: DATABASE,

media mode) in the edit dialog

o a medium in the preview

in order to create links.

If the media do not come from the project, the project developer may be able to upload them

using the drag-and-drop process, depending on the configuration.

Pages can be dragged

 from the Report area (e.g. from the search) to

o the input element for reference selection (FS_REFERENCE) in the edit dialog (cf.

Figure 1-7)

o the rich text editor (CMS_INPUT_DOM) or the rich text editor for tables

(CMS_INPUT_DOMTABLE)

in order to create links.

Datasets can be dragged

 from the Report area (e.g. from the search) to

o the input element for dataset selection (FS_DATASET)

o the input element for creating dataset lists (FS_LIST, type: DATABASE)

and referenced in the new location.

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 15

Possible drop zones are highlighted in color to make operation more intuitive. Drag actions

involving data types which do not match the drop zone are rejected.

Figure 1-7: Drag-and-drop from report to input element

 If an editing window is open, no information on report entries will be shown in tool

tips and no functions can be performed for the entries (e.g. jump to an object in the

project).

1.3 Enhancement of application integration in version 5.1

The majority of application integration options for both SiteArchitect and ContentCreator have

been enhanced in FirstSpirit version 5.1.

Reports in ContentCreator and in SiteArchitect: In FirstSpirit version 5.1 new interfaces for

reports have been created that can be used both in ContentCreator and SiteArchitect. This

means that a project-specific report implementation based on these interfaces can be

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 16

implemented with almost identical functionality in both FirstSpirit environments (see section

1.2.3, page 10).

Migration from version 5.0 to version 5.1: The original interfaces for implementing reports in

ContentCreator have been retained for the time being as part of FirstSpirit deprecation

management. Reports based on these interfaces can continue to be used in version 5.1 without

having to adapt them to the present functional environment (only in ContentCreator). However, it

is recommended that the existing reports be adapted to the new interfaces in order to be able to

take full advantage of their functions. The adaptation should be limited for the most part to giving

the package a new name. Methods and return values in the old and new interfaces should

largely still be identical:

API homepage prior to version 5.1 (@deprecated since 5.1.5):

Interface WebeditReportPlugin<T>

Package: de.espirit.firstspirit.webedit.plugin)

API homepage for version 5.1 and higher:

Interface Interface ReportPlugin<T>

Package: de.espirit.firstspirit.client.plugin)

For more information on the new interfaces and for an example of a report implementation, refer

to the FirstSpirit online documentation (path: ... / Plug-in Development / Universal

Enhancements / Reports /…).

New detailed view for report entries: Mousing over a report entry now gives users the option to

display a detailed view of the report (currently only available for FirstSpirit ContentCreator). For

this purpose, the DataRenderer interface (the DataRenderer interface replaces the

ReportPluginRenderer interface) features the method DataRenderer.getDetails(T):

API homepage for version 5.1 and higher:

Interface DataRenderer<T>

Package: de.espirit.firstspirit.client.plugin.report)

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 17

Figure 1-8: Detailed view for a report entry in ContentCreator

For more information on the new DataRenderer interface and for an example of a report

implementation, refer to the FirstSpirit online documentation (path: ... / Plug-in Development

/ Universal Enhancements / Reports / Code Example / DataRenderer...).

Drag-and-drop of complex data: The ability to exchange complex data and objects between

reports, input components and forms was previously not available (or was limited). Version 5.1

offers the basis for enhanced drag-and-drop support (see section 1.2.4, page 13). The new

interfaces provide the following functions:

 Processing of complex data for project-specific reports using drag-and-drop.

 Implementation of (project-specific) input components that can accept complex objects,

including from reports, using drag-and-drop.

API homepage for version 5.1 and higher:

Interface TransferHandler<T>

Package: de.espirit.firstspirit.client.plugin.report

Interfaces for input components in ContentCreator: New interfaces are available for

implementing project-specific input components in ContentCreator (see section 1.2.1, page 6).

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 18

Comparison of version 5.0 to 5.1:

5.0 SiteArchitect Reports are not supported.

Implementation of project-specific input components

with processing of complex data for drag-and-drop is

possible, but can only be used with limitations due to

the lack of reports.

5.1 SiteArchitect Reports are supported. Implementation is based on

interfaces across clients. Processing of complex data

(via TransferHandler) for drag-and-drop is also

supported.

Implementation of project-specific input components

with processing of complex data for drag-and-drop is

supported.

This makes the exchange of data between reports

and input components possible.

5.0 ContentCreator Reports are supported. Preparing simple drag-and-

drop functions (using strings) is also possible within

reports. Implementation is based on ContentCreator-

specific interfaces.

Implementation of project-specific input components

is not supported.

5.1 ContentCreator Reports are supported. Implementation is based on

interfaces across clients. Processing of complex data

(via TransferHandler) for drag-and-drop is also

supported.

Implementation of project-specific input components

with the ability to receive complex data (drop only)

is also supported.

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 19

1.4 Classification

A differentiation is made between the following variants of web application integration:

a) Blackbox integration:

The web application to be integrated provides an interface, of whatever kind, which is

used for the integration. This interface can either be defined in the form of an API, via

HTTP parameters or JavaScript or can also exist in the form of defined HTML or URL

constructs. In all cases, however: the inner structure of the application to be

integrated does not have to be known, instead, the interaction takes place solely via

the defined API interfaces.

b) Graybox integration:

The Graybox integration assumes that the interface between the web application and

the FirstSpirit Client use the HTML code in the web browser. This HTML code must be

analyzed and if necessary manipulated, in order to reach the information required

(see Chapter 2.2 page 32). This means, knowledge about the internal structure of the

web application to be integrated is required, which is not necessary in the case of

blackbox integration.

c) Whitebox integration:

Whitebox integration exists if the web application has been especially developed or

modified for use within the scope of FirstSpirit application integration. That is to say, in

a whitebox integrated web application, specific FirstSpirit interfaces are addressed or

entry points suitable for FirstSpirit are provided, in order to implement the application

integration. This type of integration naturally not only requires access to the source

code of the web application, but also the possibility of changing the application.

A blackbox integration is therefore especially suitable for the integration of web

applications, which already exist and cannot or should not be changed (enterprise-

specific web application) – however, the absolute requirement is for the necessary

interfaces to be available.

If the web application to be integrated does not provide the necessary interfaces, or the

source code of the web application to be integrated is not to be or cannot be changed, a

graybox integration is the right solution – although here it must be noted that if a change

is made to the web application (e.g. relaunch) adjustments will probably have to be made

to the integration. Graybox integration is therefore only suitable for integrating web

applications, which are only subject to a few (e.g. Wikipedia) or even no changes (legacy

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 20

enterprise web applications).

The form of integration with the most options is whitebox integration, which enables very

deep integration between the web application and FirstSpirit – on the one hand the web

application can be controlled from SiteArchitect and vice versa, SiteArchitect can be

controlled from the web application. Whitebox integration offers enormous potential,

especially in conjunction with FirstSpirit modules, as parts of the module's user interface

can be implemented in the form of a web application, which provides advantages

especially if specific interfaces only are available for web applications.

To sum up: In principle, within the scope of application integration, all types of web

application can be seamlessly integrated into the user interface of FirstSpirit SiteArchitect

– especially within the scope of graybox integration, even for web applications which were

not actually intended for integration. However, (due to the underlying principle) an

integration without explicit API involves greater dependency on the specific

implementation of the integrated application, i.e. changes in the application to be

integrated potentially result in the need to adjust the integration code. The techniques and

methods of the FirstSpirit graybox integration reduce these dependencies as far as

possible, but principally cannot completely remove the change dependencies.

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 21

1.5 General information

When integrating and using individually customized AppCenter applications it must be noted that

FirstSpirit provides the interfaces necessary for the application integration, but in general does

not have any influence on the integrated applications themselves.

Integrated external applications are not part of the FirstSpirit product. Among other things, this

means that responsibility for the function of the integrated applications lies with the manufacturer

of the application or with the customer or partner who implements the application.

Problems can be reported within the scope of the FirstSpirit product support and (where

possible) are corrected, if they lie on the level of the integration interface. However, e-Spirit is not

obliged to provide debugging within the integrated third party applications.

Use of the user's own applications in the AppCenter requires a license. For further information

see Chapter 1.7 page 23.

1.6 Restrictions

The application integration is based on the existing web browser integration, of the Microsoft

Internet Explorer and Mozilla Firefox browsers, in FirstSpirit SiteArchitect (see Chapter 2.1 page

26). When using the web browser integrations in SiteArchitect, in principle, restrictions can occur,

e.g. because several of the integrated applications do not fully work with all platforms or bit

versions (32 or 64 bit).

Use of Internet Explorer Version 8 or higher is recommended. Internet Explorer up to Version 8

does not support Base64 decoding. This can cause problems when image elements are injected

within the scope of the application integration (e.g. with the display of the FS_BUTTON

component in the integrated preview or the integration of an image database).

For details of the requirements and restrictions of application integration, see FirstSpirit™

Release Notes for Version 4.2R4.

In FirstSpirit version 5.1.209 Google Chrome has been integrated and can now be used as

browser engine, especially under Mac OS.

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 22

 The integration of Google Chrome is currently in the BETA test phase and has not

yet been officially released

Known restrictions for Google Chrome:

 The integration of Chrome is based on a special application and does not use any existing,

locally installed version of Google Chrome, or any user data that is used for this purpose. No

automatic updates are carried out either.

 No plug-ins can be installed (e.g., Adobe PDF plug-in for displaying PDFs, Adobe Flash

Player plug-in for displaying Flash files). This also means, for example, that no help PDF files

can be displayed either (“Help /Users (SiteArchitect)”, “Help / Users (ContentCreator)” and

“Help /Administrators” menu items).

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 23

1.7 License model

The license parameter license.APPTAB_SLOTS specifies how many different application

integrations can be used. These include applications which are available in the AppCenter of

SiteArchitect as well as applications in ContentCreator, for example self-implemented reports.

With license.APPTAB_SLOTS=5, for example, five different applications can be used. Which

applications these are is immaterial. Because unlike the licensing of FirstSpirit (module) add-ons,

here it is not the function that is licensed, but the number of integrated applications.

Each of these application integrations licensed through this parameter can be opened in any

number of FirstSpirit environments (SiteArchitect or ContentCreator), moreover in any number of

tabs in SiteArchitect. The first Client, in which an application integration is opened fills a license

("AppTab Slot") for this application (the application is "registered") and increases the counter of

the license parameter by 1.

 The following applies: An AppTab slot is assigned for one calling instance, e.g. a

script, and the opening of one URL. For example, if several URLs are opened within a

script, this is an infringement of the FirstSpirit AppCenter license conditions.

The registration continues to exist, even after the respective Client has been exited. If the value

of the license.APPTAB_SLOTS parameter has been reached, another application integration can

be started in the respective client for test and demo purposes. A corresponding warning will be

shown in the Clients and a warning will be logged in the file fs-server.log. In addition, no

other applications can be started.

Several applications, which are displayed in the AppCenter of SiteArchitect, but are delivered

with the FirstSpirit core product as a standard, or are licensed via a separate parameter (e.g. the

office integration for FirstSpirit), do not fall under the licensing parameter

license.APPTAB_SLOTS and are not counted as an application integration; at present, these

are:

 Integrated WYSIWYG preview (via Mozilla Firefox or Microsoft Internet Explorer) (Google

Chrome from FirstSpirit version 5.1.206)

 Integrated preview of media

 Integrated display of the FirstSpirit online Help

 Integrated, enhanced image editing in SiteArchitect

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 24

The input component FS_BUTTON (see online documentation for FirstSpirit) enables the

integration of the user's own applications in the AppCenter of SiteArchitect. If FS_BUTTON is

used, each script and each class referenced from FS_BUTTON is counted as an application,

which requires licensing via the license.APPTAB_SLOTS parameter.

The type and number of applications currently licensed through the license.APPTAB_SLOTS

parameter can be checked in Server Monitoring, sub-menu "AppCenter Licenses" below the

"FirstSpirit" / "Control" menu.

The "Reset Uses" button can be used if necessary to reset the number of registered applications

to 0. Registered applications, which are currently open in Clients, can continue to be used until

the application or the corresponding application tab is closed. The server does not have to be

rebooted.

1.8 Preview

Development with regard to web application integration is currently not yet completed in

FirstSpirit: Enhancements in the implementation should enable deeper integration.

Following the application integration for the editing workstation, the intention is to shift the focus

to the developer workstation (e.g. integration of development environments) in a further

development stage. The integration complexity will probably be significantly higher.

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 25

1.9 Topics covered in this document

Having explained the term "application integration" in this introductory chapter and compared the

terms "Blackbox" vs. "Graybox" vs. "Whitebox" integration, in the following the technical

principles for customized integration of web applications are described. Equally, the underlying

interfaces, packages and classes are listed and explained. All concepts as well as the necessary

FirstSpirit API interfaces are introduced by way of example implementations.

This document focuses on client-side application integration (see Chapter 4 page 53, section 3)

with FirstSpirit. Concepts as well as the necessary FirstSpirit API interfaces are introduced by

way of example implementations.

 The documentation is currently being edited. Several aspects and interfaces are not

yet documented or are not yet completely documented.

Chapter 2: In this chapter, the concepts behind the application integration are explained first. In

particular, communication between the integrated web application and FirstSpirit SiteArchitect

(from page 26) is discussed.

Chapter 3: This chapter introduces the standard enhancements of the FirstSpirit Access API for

application integration. Among other things, the interfaces for the control of the application tabs

and the integration of web applications are presented (from page 33).

Chapter 4: This chapter describes the example implementation for integrating Google Maps into

FirstSpirit SiteArchitect. The implementation introduced creates a simple and intuitive option for

working with geographic coordinates within the FirstSpirit environment. To do this, a

SwingGadget input component is developed, which is closely linked to the Google Maps web

application (from page 53).

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 26

2 Concept: Integrating a web application into FirstSpirit

2.1 Communication: FirstSpirit SiteArchitect – web application

FirstSpirit SiteArchitect has had a seamlessly integrated web browser, which not only displays a

direct preview of the editorial content in SiteArchitect, but also visualizes the relationship

between the content entered in the Client and its effect or display on the website. The Mozilla

Firefox, Microsoft Internet Explorer and Google Chrome (from FirstSpirit version 5.1.206) web

browsers are optionally available for this.

This browser integration is also used for the integration of web applications. For a web

application to be integrated in FirstSpirit SiteArchitect, the following aspects must be covered

first:

 Controlling the integrated browser (see Chapter 2.1.1 page 26)

 Communication between the browser instance and SiteArchitect (see Chapter 2.1.2 page 27)

 Converting data types (see Chapter 2.1.3 page 30)

 Return by means of callback function (see Chapter 2.1.4 page 31)

2.1.1 Controlling the integrated browser

In order to integrate a web application into FirstSpirit SiteArchitect, it is necessary to control the

browser integrated in FirstSpirit. The FirstSpirit AppCenter API provides the necessary interfaces

in order, for example, to open a new tab (or a new browser instance) within the application area

in which the required web application can be opened (for a description of the interfaces, see

Chapter 3, page 34ff.).

The entry point for the control of a tab is the ApplicationService (see Chapter 3.1 page 34).

This service can be used to open a new application of a specific type within the application area.

The required ApplicationType is passed on opening the application (Abstract Class:

ApplicationType see Chapter 3.6 page 45). Integration of a web application requires the

ApplicationType BrowserApplication, which provides an interface for opening and

controlling a new browser instance in the application area (Interface: BrowserApplication see

Chapter 3.7 page 45).

The openApplication(…) method of the ApplicationService interface returns an

instance of the type ApplicationTab. The ApplicationTab interface provides general

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 27

methods for controlling the tab, for example, the tab can be brought to the front or closed using

the corresponding method invocations (Interface: ApplicationTab see Chapter 3.2 page 37). In

addition, the instance of the type ApplicationTab can be used to get the (browser)

application, which was opened within the application tab. This instance then provides access to

other specific options for controlling the integrated application (Interface: BrowserApplication see

Chapter 3.7 page 45). To track changes, suitable listeners can also be registered, an instance of

the type BrowerListener, which responds to changes within the web application (Interface:

BrowserListener see Chapter 3.8 page 48) and an instance of the type TabListener, which

responds to changes within the tab (e.g. selection or deselection by the user (Interface:

TabListener see Chapter 3.5 page 44).

2.1.2 Communication between the browser instance and SiteArchitect

The integrated browser engines are of course not implemented in Java, but native for the

respective Client operating system. The most important point for the integration of a web

application in FirstSpirit is therefore the communication between the Java level of FirstSpirit

SiteArchitect and the native browser level of the web application. Two communication channels

have to be considered:

1) SiteArchitect » Web application: Changes or events, which are triggered via FirstSpirit

SiteArchitect must be made known to the web application. For example, if a certain address

is searched for within the geolocation input component (entry of an address string and click

the Search button), a request for geocoding of this address string must be sent to the web

application (Google Maps) and the map section adjusted within the integrated browser (see

example Address search with geolocalization in Chapter 4.2.1 page 57).

2) Web application » SiteArchitect: The reverse path, i.e. the adoption of a change or event

within the web application in SiteArchitect must also be possible. For example, the coordinate

determined by Google Maps and the complete address information should also be updated in

the geolocation input component (see example Address search with geolocalization in

Chapter 4.2.1 page 57).

The FirstSpirit Client API (Java) communicates with the integrated browser engine via

JavaScript. The requirement is therefore to enable bidirectional communication between the Java

and the JavaScript level. Specifically, three options have been created for setting up bidirectional

communication:

1) Run JavaScript: targeted, unidirectional communication in the direction Java »

JavaScript.

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 28

2) Run JavaScript and evaluated returned value: see above, however, with the ability to

evaluate the returned value.

3) Provide Java object in the JavaScript environment: is mainly used for unidirectional

communication, however, in the direction JavaScript » Java.

Re. 1) For the first communication direction Java » JavaScript an interface is provided for

calling a JavaScript method from Java. Basically, this only involves running JavaScript code in

the form of a string. The BrowserApplication interface has been extended to include the

void executeScript(String script) method, which runs the passed JavaScript code in

the currently open browser document (Interface: BrowserApplication see Chapter 3.7 page 45).

Re. 2) The second option is somewhat more complicated. This also involves running JavaScript

code, but also tries to evaluate the returned value and to convert it into suitable Java objects.

The BrowserApplication interface has been extended to include the Object

evaluateScript(String script) method, which runs the passed JavaScript code in the

currently open browser document and returns a return value. (Interface: BrowserApplication see

Chapter 3.7 page 45). A range of conversion rules are applied to the returned value as, unlike

Java, JavaScript only supports a limited set of simple data types (see Chapter 2.1.3 page 30).

Re. 3) For the second communication direction JavaScript » Java another interface is

provided, in order to make methods of a Java object accessible in a JavaScript environment.

Specifically, a Java object is injected into the JavaScript environment (web browser) to generate

a substitute object (proxy) in the form of a JavaScript object, whose (JavaScript) methods

correspond to those of the Java object. Following the injection the corresponding methods can

be invoked from the JavaScript. The internal FirstSpirit implementation generates a

corresponding JavaScript method for each method of the Java object instances. When called

from the JavaScript environment, this method sends an event, which is evaluated on the Java

side. The suitable Java method is determined from the method signature and the passed

parameters and is called accordingly.

Basically, any Java object can be injected into the JavaScript environment, however, restrictions

must be noted and observed (see Chapter 2.1.3, page 30). The relevant method void

inject(Object object, String name) is provided via the BrowserApplication interface

of the FirstSpirit AppCenter API (Interface: BrowserApplication see Chapter 3.7 page 45).

A further, minor restriction concerns the parameter passing. As synchronicity cannot be

guaranteed for event generation/evaluation, returned values of the Java methods are returned by

means of callback (see Chapter 2.1.4 page 31)

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 29

...

executeScript

...

executeScript

 API Injection

Parameter

Marshaling

Callback Method

Parameter

Unmarshaling

JavaScript

...

methodB

API Injection

JavaScript
...

methodB

 JavaScript

Evaluation

Parameter

Marshaling

Parameter

Unmarshaling

Java JavaScript Bridge

FirstSpirit™
SiteArchitect

FirstSpirit™ Interface
(ACCESS-API, client-sided)

Operation API gotoElement

FirstSpirit™ Script

Modul: Application
Integration (Java)

Custom API methodA

Application
Integration API

FirstSpirit™ Browser Engine

Native Code

HTML Document

Operation API gotoElement

Custom JavaScript Code

Custom API methodA

Figure 9: Java - JavaScript communication (Java-JavaScript bridge)

A prototype for this integration is introduced in the already mentioned example of the geolocation

input component. Here a call interface is implemented between the FirstSpirit Client API and a

web application, which runs in an instance of the integrated browser (Implementation: Application

integration for Google Maps see Chapter 4.3 page 63).

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 30

2.1.3 Converting data types

In this case too, two communication directions must be considered:

1) Injecting a Java object into the JavaScript environment: The API injection interface can be

used to inject any Java object into a JavaScript environment. All methods of the Java

object are adopted, but no attributes (e.g. name attribute). As, unlike Java, JavaScript

only supports a limited set of data types, certain restrictions also apply to the methods of

this object. Only a range of simple, atomic data types, and lists and maps can be

converted. Complex object types not known in JavaScript on the other hand are not

supported. In addition, the method adoption and mapping of the Java data types on

JavaScript data types is only possible on the highest level, this means:

MyJavaObject {
 void helloWorld(String message);
}

can be called on the JavaScript page as follows, after calling inject(MyJavaObject,

"myObject") :

window.myObject.helloWorld("Hello!")

But a nested structure is not possible, this means:

MyJavaObject {
 MyComplexObject getMyComplexObject();
}
MyComplexObject {
 void helloWorld(String message);
}

cannot be called on a JavaScript page as follows after calling inject(MyJavaObject,

"myObject") :

window.myObject.getMyComplexObject().helloWorld("Hello!");

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 31

2) Parameter passing from the JavaScript into the Java environment: Apart from the

injection of a Java object in the JavaScript environment, it is also possible for parameters

to be passed from the JavaScript environment into the Java environment, for example, for

the evaluation of a returned value. All parameters passed from the JavaScript

environment, are elevated in the Java environment, analogous to the object conversion to

date (see Figure 9).

In addition: The converted Java objects are merely copies of the JavaScript objects.

Therefore, a change to the Java object has no effect on the JavaScript environment.

An overview of the possible transformation of the data types (or parameters) on changing

between the Java and the JavaScript environment, is provided by the convertToScript(…)

method of the BrowserApplication interface (see Chapter 3.7 page 45), for example:

 js:number «» Double

 js:boolean «» Boolean

 js:string «» String

 js:object «» Map<String, Object>

2.1.4 Return by means of callback function

As synchronicity cannot be guaranteed for event generation or evaluation, the returned values of

the Java methods must be returned by means of the callback function. Therefore, a Java method

String getName(), becomes the void getName(function:callback)method in the

JavaScript environment. The last parameter passed always names the relevant callback function,

which is to be called when the calling function has been dealt with (see Figure 9).

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 32

2.2 DOM access: access to the data of the integrated browser

As already explained in Chapter 2.1, the integrated browser engines are a native implementation,

which cannot be readily reached from the Java environment. This means, access to the data of

the integrated browser or the data of the web application (the HTML or the browser document) is

initially not possible in Java. Especially within the scope of a seamless graybox integration, it is

however necessary to access the inner structures of the web application from the Java

implementation, as here either an API is not provided at all or only limited API access

(JavaScript) is provided.

The FirstSpirit AppCenter API has therefore been extended to include an interface, which

enables access to the DOM tree of the integrated browser. The task of this interface is to enable

a Java program (FirstSpirit SiteArchitect or a module) read and write access to precisely the data

currently displayed in the integrated web browser. The Document getCurrentDocument()

method of the BrowserApplication interface returns the current browser document as w3c-

DOM1 (see Chapter 3.7 page 45). Therefore, the complete content of the web browser is made

available as a document model within the Java environment. The HTML structures of the

integrated web application can then be run through and analyzed on this document. The

document model made available to the Java application is however not limited to read access,

but can also be manipulated, whereby all changes to the document immediately become visible

in the integrated browser.

The technical sequences for use of the DOM facade are clearly illustrated in the following figure:

1
 http://en.wikipedia.org/wiki/Document_Object_Model

http://en.wikipedia.org/wiki/Document_Object_Model

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 33

<H1>Hello World</H1>

<H1>modified by FS</H1>

Mozilla Native Peer

Internet Explorer
Native Peer

.getElementsByTagName('H1')

.firstChild.nodeValue=

 'modified by FS'

FirstSpirit™
SiteArchitect

DOM Facade

Modul: Application
Integration (Java)

FirstSpirit W3C DOM
Fassade

Application
Integration API

FirstSpirit™ Browser Engine

Native Code

HTML DocumentW3C DOM

Figure 10: DOM access

The access to the data shown in the web browser and manipulation of this data is relatively easy

to do via the interface, but in this case there are also principally restrictions.

The document model changes itself dynamically. A change within the web application is

therefore, for example, immediately traced in the DOM. In practice, use of the DOM object can

result in too many "non-reproducible" errors of the class NPE or AIIOB; for example, if child

iteration takes place within the implementation, but the child object "soon thereafter" no longer

exists.

 Therefore, in the implementation of an (graybox) application integration for

FirstSpirit SiteArchitect, suitable error handling is of central importance for the stability of

the implementation.

For the implementation of this DOM interface, particular attention was paid to the aspect of fully

transparent synchronization of all concurrencies (parallel processing), as otherwise deadlock

situations would have been unavoidable in the connection of native running processes and

changing operations.

Note: DOM access to Flash or Silverlight applications is NOT possible, as the (accessible) HTML

code does not contain all the relevant parameters and an insight into the Flash application itself

is not possible!

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 34

3 Standard enhancements

From a technical point of view, the AppCenter consists of a set of interfaces ("FirstSpirit

AppCenter API"), which have been released by e-Spirit for use by partners, so that they can

implement and integrate specific applications within the scope of the AppCenter.

At present, the FirstSpirit AppCenter API is limited to the infrastructure needed for the integration

of web applications as well as Swing-based Java applications (see integration for Java image

editing, Java Image Editor). Appropriate interfaces for the integration of native applications (see

integration of Microsoft Office) have already been realized, but are not (yet) publically available.

Interfaces for configuring and controlling the application tab:

 Interface: ApplicationService (see Chapter 3.1 page 35)

 Interface: ApplicationTab (see Chapter 3.2 page 37)

 Interface: ApplicationTabAppearance (see Chapter 3.3 page 39)

 Interface: ApplicationTabConfiguration (see Chapter 3.4 page 42)

 Interface: TabListener (see Chapter 3.5 page 44)

Interfaces for integrating a web application or a browser:

 Abstract Class: ApplicationType (see Chapter 3.6 page 45)

 Interface: BrowserApplication (see Chapter 3.7 page 45)

 Interface: BrowserListener (see Chapter 3.8 page 48)

 Interface: BrowserApplicationConfiguration (see Chapter 3.9 page 49)

 All the interfaces introduced in the following are part of the FirstSpirit Developer

API. In contrast to the Access API, the requirements concerning the stability for the

Developer API are lower: The Developer API remains stable within a minor version line,

i.e. methods, classes and functions may be changed in case of a minor version change.

The documentation is currently being edited. Several aspects and interfaces are not yet

documented or are not yet completely documented.

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 35

3.1 Interface: ApplicationService

Package: de.espirit.firstspirit.client.gui.applications

The entry point for controlling a tab is always the ApplicationService. This service can be

requested from the FirstSpirit Framework via different brokers. To do this, the typified

SwingGadgetContext (see Developer Manual for Components) must be used to request an

instance of the type SpecialistsBroker with the help of the SpecialistsBroker

getBroker()method.

SwingGadgetContext<…> _context;

final SpecialistsBroker _specialistsBroker = _context.getBroker();

On the SpecialistsBroker, with the help of the <S> S

requireSpecialist(SpecialistType<S> type) method, can then be used to request a

specialist of the type ServicesBroker . By calling the method <T> T

getService(Class<T> serviceClass), this broker returns an instance of the type

ApplicationService (see Chapter 4.3.2).

final ServicesBroker servicesBroker =

 _specialistsBroker.requireSpecialist(ServicesBroker.TYPE);

final ApplicationService service = servicesBroker.getService(ApplicationService.class);

final BrowserApplication app = service.openApplication(BrowserApplication.TYPE,

 configuration).getApplication();

ApplicationService can be used to open new applications of a certain type within the

application area (see Interface: ApplicationTab) or to get the applications from existing browser

instances (see Interface: BrowserApplication). The ApplicationService can only be used within

FirstSpirit SiteArchitect.

The ApplicationService provides access to the following methods:

 ApplicationTab<T> openApplication(final ApplicationType type, final

C configuration): The method opens an application of a certain type

(ApplicationType) in a new tab in the application area of FirstSpirit SiteArchitect. The

type (Abstract Class: ApplicationType) of the required application and the configuration for

the integrated browser are passed to the method (see Interface: ApplicationTabConfiguration

and Abstract Class: ApplicationType). The method returns a typified instance of the type

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 36

ApplicationTab (for example implementation see Chapter 4.3.3 page 68).

Note: For the passing parameter ApplicationType: FirstSpirit currently only provides an

interface of the type BrowserApplication and SwingApplication, via which the new

browser instances can be opened in the application area of SiteArchitect (see Abstract Class:

ApplicationType).

Note: For the passing parameter ApplicationTabConfiguration: If an

ApplicationTab is to be reused within the implementation, the

ApplicationTabConfiguration should be used to define an identifier (see Interface:

ApplicationTabConfiguration). The tab can then be got later using the method

ApplicationTab<T> getApplication(final ApplicationType<T, C> type,

final Object tabIdentifier) (see below).

 ApplicationTab<T> getApplication(final ApplicationType<T, C> type,

final Object tabIdentifier): This method returns an instance of an

ApplicationTab, which was opened in the application area of SiteArchitect, or null if no

ApplicationTab is found, which corresponds to the passed parameters. The type

(Abstract Class: ApplicationType) of application and the identifier for the ApplicationTab are

passed (see Interface: ApplicationTabConfiguration). The method returns a typified instance

of the type ApplicationTab (see Chapter 3.6 page 45).

 boolean isVisible(): The method determines whether the application area is visible in

SiteArchitect (true) or not (false).

 void setVisible(final boolean visible): The method opens (true) or closes

(false) the application area in SiteArchitect.

The following example beanshell script demonstrates access to the ApplicationService and

the opening of an ApplicationTab.

import de.espirit.firstspirit.client.gui.applications.*;

import de.espirit.firstspirit.client.gui.applications.browser.*;

apps = context.connection.getService(ApplicationService.class);

tab = apps.openApplication(BrowserApplication.TYPE, "Browser");

browser = tab.getApplication();

browser.openUrl("www.e-spirit.com");

tab.setTitle("e-Spirit AG");

tab.close();

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 37

For an example of use of the ApplicationService see Chapter 4.3.3 page 68.

3.2 Interface: ApplicationTab

Package: de.espirit.firstspirit.client.gui.applications

Each page or media preview is displayed in the application area of FirstSpirit SiteArchitect in a

preview tab. On requesting a new preview (for example, a new page view), the view of the

preview tab is automatically updated by the FirstSpirit Framework.

To integrate a web application, first, a new tab must be opened in the application area of

SiteArchitect. This Application tab is independent of the actual Preview tab. This means that if

the web application is integrated, for example, via an input component in FirstSpirit (see

geolocation input component), alongside the actual page preview, another tab with the integrated

application can be opened within the application area.

Figure 11: Preview tab and Application tab

Access to the application tab (and the applications contained in it) is controlled by the

ApplicationTab interface. Unlike the preview tab, which is controlled by the FirstSpirit

Framework, the application tab must be controlled by the developer. When the user requests the

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 38

web application, the developer must first open a new browser instance. To do this, the

openApplication(…) method is called on the ApplicationService (see Interface:

ApplicationService). The method returns an instance of the type ApplicationTab, via which

the new instance of the integrated browser can be controlled (e.g. closing the tab).

To track changes within the tab (e.g. selection or deselection by the user), an instance of the

type TabListener must be added (see Interface: TabListener).

The ApplicationTab interface provides the following methods:

 void addTabListener(@NotNull final TabListener listener): The method

adds a TabListener to an instance of the type ApplicationTab. A TabListener

responds to events within the application tab, for example, the closing or deselection of a tab

by the user (see Interface: TabListener in Chapter 3.5 page 44) (for an example, see

Chapter 4.3.3 page 68).

 void removeTabListener(@NotNull final TabListener listener): This

method removes an existing TabListener.

 void close(): This method closes the instance of the ApplicationTab on which it was

called.

 boolean isClosed(): this method checks whether or not the instance of the

ApplicationTab has been closed. The method is closely related to the void

tabClosed()method from the TabListener interface (see Chapter 3.5 page 44). On

closing an application tab, these methods are called to enable correct reply to the "Tab has

been closed" status. For example, this information is required if an existing application tab is

to be reused. In this case the developed must be able to decide whether an

ApplicationTab opened once is available for a new request (tab has already been opened

and can be used for the new request) or not (tab has been closed – a new tab must be

opened for the request).

 void setAppearance(ApplicationTabAppearance appearance): This method

affects the display of the ApplicationTab in the application area. An instance of the type

ApplicationTabAppearance is passed to the method, which enables configuration of the

outer appearance, for example, the addition of an icon to the tab (see Chapter 3.3 page 39).

 T getApplication(): This method returns the instance of the application, which was

integrated in the application area. The returned value is standardized (see Chapter 3.6 page

45).

 boolean isSelected(): The method returns whether the ApplicationTab actively

appears in the foreground (true) or is only opened in the background (false). This

information is relevant, for example, if a change is made to the corresponding SwingGadget

input component, which affects the integrated web application. As long as the relevant tab is

in the background, the change should not have an effect within the application.

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 39

 void setSelected(): The method marks the instance of the application tab on which it

was called as being active. This means that the corresponding tab is displayed in the

foreground in the application area of SiteArchitect.

For an example of use of the ApplicationService see Chapter 4.3.3 page 68.

3.3 Interface: ApplicationTabAppearance

Package: de.espirit.firstspirit.client.gui.applications

The display of a tab in the application area of the FirstSpirit SiteArchitect is influenced using the

ApplicationTabConfiguration (see Chapter 3.4 page 42) and

ApplicationTabAppearance interfaces. These interfaces, for example, can be used to define

a text or a specific icon, which are to be displayed within the tab. In addition, the

ApplicationTabAppearance interface provides further configuration options, for example, the

possibility of changing the font weight (plain/bold) for the title lettering of the tab (see Figure 12).

Figure 12: Example of the ApplicationTabAppearance

The methods of the two interfaces partly overlap. For example, an icon can be added to an

ApplicationTab not only using the ApplicationTabConfiguration.icon(…) method

but also using the ApplicationTabAppearance.Builder icon(…) method.

To simplify the configuration, the ApplicationTabAppearance interface provides a builder

implementation (ApplicationTabAppearance.Builder interface) with the following

methods:

 ApplicationTabAppearance.Builder borderType(final Store.Type

borderType): The bar, which separates a higher-level ApplicationTab from its lower-

level tabs, can be displayed in color (see Figure 12). The display depends on the Store type.

The default behavior in SiteArchitect displays the strip for a page preview (in the Page Store),

for example, in green, while in a preview of a page reference (in the Site Store) it is shown in

blue. This method can be used to define a Store type (Store.Type), to adjust the color of

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 40

the bar. If a Store type is not defined, a colorless bar is displayed.

 ApplicationTabAppearance.Builder fontStyle(final FontStyle

fontStyle): This method can be used to influence the font weight, which is applied to the

lettering within an ApplicationTab. To do this, the method of the required

ApplicationTabAppearance.FontStyle can be passed. At present, the types

FontStyle.PLAIN (default value) and FontStyle.BOLD are supported (see Figure 12).

 ApplicationTabAppearance.Builder icon(Icon icon): This method can be used

to pass an icon (preferred size: 20x20 pixels), which is shown within the ApplicationTab (see

Figure 12).

 ApplicationTabAppearance.Builder title(String title): This method can be

used to pass a text, which is displayed as lettering within the ApplicationTab (see Figure 12).

 ApplicationTabAppearance get(): This method returns the instance of the type

ApplicationTabAppearance, which is built on this building.

A new instance of the type ApplicationTabAppearance can be created by calling

ApplicationTabAppearance.GENERATOR.invoke(). The configuration then takes place

using the simplified builder pattern. In order for the changed parameters to subsequently have an

effect on the display of the ApplicationTab, the ApplicationTabAppearance must be

passed to the ApplicationTab using the ApplicationTab.

setAppearance(ApplicationTab Appearance appearance) method (see Chapter 3.2) .

Example:

...

private ApplicationTab<BrowserApplication> _tab;

 final ApplicationTabAppearance appearance =

ApplicationTabAppearance.GENERATOR.invoke()

 .title("e-Spirit AG")

 .borderType(Store.Type.PAGESTORE)

 .fontStyle(ApplicationTabAppearance.FontStyle.BOLD)

 .icon(IconLibrary.firstSPIRIT)

 .get();

 _tab = service.openApplication(BrowserApplication.TYPE,

(BrowserApplicationConfiguration) null);

 _tab.setAppearance(appearance);

...

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 41

An instance of the type ApplicationTabAppearance can also be got directly from an

instance of the type ApplicationTabConfiguration by calling the

ApplicationTabConfiguration.appearance() or ApplicationTab

Configuration.getAppearance() methods (see Chapter 3.4). In this case the

ApplicationTabAppearance is part of the ApplicationTabConfiguration and can, for

example, easily be passed when a new ApplicationTab is opened. Example:

...

private ApplicationTab<BrowserApplication> _tab;

final BrowserApplicationConfiguration configuration =

BrowserApplicationConfiguration.GENERATOR.invoke();

 final ApplicationTabAppearance appearance = configuration.appearance()

 .title("e-Spirit AG")

 .borderType(Store.Type.PAGESTORE)

 .fontStyle(ApplicationTabAppearance.FontStyle.BOLD)

 .icon(IconLibrary. firstSPIRIT)

 .get();

 _tab = service.openApplication(BrowserApplication.TYPE, configuration);

...

The ApplicationTabAppearance interface provides the following methods for querying the

values, which have been configured for the display of an ApplicationTab:

 Store.Type getBorderType(): This method returns the Store type (Store.Type),

which was previously set using the

ApplicationTabAppearance.Builder borderType(Store.Type borderType)

method of the builder implementation. If no Store.Type has been designed, the method

returns null.

 FontStyle getFontStyle(): This method returns the font style, defined for the lettering

within the ApplicationTab . The font style can be influenced using the

ApplicationTabAppearance.Builder fontStyle(ApplicationTabAppearance.

FontStyle fontStyle) method. If a special font style has not been defined for the

lettering, a normal font style is used (default value FontStyle.PLAIN).

 Icon getIcon(): This method returns the icon, which was previously defined using the

ApplicationTabAppearance.Builder icon(Icon icon) method of the builder

implementation or was set using the

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 42

ApplicationTabConfiguration.icon(Icon icon) method for the display within the

ApplicationTab.

 String getTitle(): This method returns the text, which is displayed as lettering within

the ApplicationTab. The text is defined using the ApplicationTabAppearance.

Builder title(String title) method of the builder implementation.

3.4 Interface: ApplicationTabConfiguration

Package: de.espirit.firstspirit.client.gui.applications

The display of a tab in the application area of FirstSpirit SiteArchitect is influenced using the

ApplicationTabConfiguration and ApplicationTabAppearance interfaces (see

Chapter 3.3 page 39). These interfaces, for example, can be used to define a text or a specific

icon, which are to be displayed within the tab (see Figure 12).

Other configuration options exist, depending on the type of application, which is opened within an

ApplicationTab. The BrowserApplicationConfiguration interface, for example, extends

the ApplicationTabConfiguration, interface to include methods for the configuration of the

web application. This means an address line can be shown within the application area, or a

specific browser engine can be specified for opening the web application (see Chapter 3.9 page

49).

The following applies: The ApplicationTabConfiguration interface merely forms the base

class. This base class is extended by other configuration interfaces, which are precisely tailored

to the respective application type. When a new ApplicationTab is generated (call the method:

ApplicationTab<T> openApplication(final ApplicationType type, final C

configuration)the required application type is passed. An application-specific instance is

also expected for the passing of the configuration. Therefore, if an application of the type

BrowserApplication, is opened within the ApplicationTab, the configuration passed must

be an instance of the type BrowserApplicationConfiguration.

FirstSpirit currently only offers interfaces for the application type web applications

(BrowserApplication) and Swing-based Java applications (SwingApplication) and the

corresponding configuration interfaces BrowserApplicationConfiguration and

SwingApplicationConfiguration. Other application types are already being developed

and are released at a later date (see Chapter 3.6)

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 43

The ApplicationTabConfiguration interface provides the following methods:

 ApplicationTabAppearance.Builder appearance(): This method returns a builder

instance of the type ApplicationTabAppearance.Builder, which provides other

options for configuring the tab display (see Chapter 3.3 page 39).

 ApplicationTabAppearance getAppearance(): This method returns an instance of

the type ApplicationTabAppearance, which provides further options for the configuration

of the tab display (see Chapter 3.3 page 39). It is recommended that the simplified builder

implementation of the ApplicationTabAppearance interface be used at this point (see

above).

 Object getIdentifier(): This method returns the identifier, which was defined using

the ApplicationTabConfiguration with the help of the public T

identifier(final Object tabIdentifier) method for an instance of the type

ApplicationTab (see below). If a specific identifier has not been defined, the method

returns a string, which is formed from the prefix "BrowserApplication_" and the system time. If

the identifier is known, the corresponding ApplicationTab can be fetched later using the

ApplicationService with the help of the ApplicationTab<T>

getApplication(final ApplicationType<T, C> type, final Object

tabIdentifier) method (Interface ApplicationService see Chapter 3.1 page 35).

 public T identifier(final Object tabIdentifier): If an ApplicationTab is

to be reused within the implementation, this method can be used to assign an identifier. The

identifier can be used to get the corresponding ApplicationTab later using the

ApplicationService with the help of the ApplicationTab<T>

getApplication(final ApplicationType<T, C> type, final Object

tabIdentifier) method (Interface ApplicationService see Chapter 3.1 page 35).

 public T icon(final Icon icon): This method can be used to pass an icon

(preferred size: 20x20 pixels), which is shown within the ApplicationTab (see Figure 12) (see

also Chapter 3.3 page 39).

 public T openInBackground(boolean openInBackground): This method can be

used to influence whether the ApplicationTab, which is based on this configuration, is

opened in the background (true) or not (false).

 boolean openInBackground(): The method returns whether the ApplicationTab,

which is based on this configuration, is to be opened active in the foreground (false) or only

in the background (true).

 public T title(final String title): This method can be used to pass a text,

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 44

which is displayed as lettering within the ApplicationTab (see Figure 12) (see also Chapter

3.3 page 39).

For an example, see Chapter 3.9 page 49.

3.5 Interface: TabListener

Package: de.espirit.firstspirit.client.gui.applications

A new tab is opened in the application area of SiteArchitect for the integration of an application in

FirstSpirit. This application tab (unlike the conventional preview tab) must be controlled by the

developer. The methods required for this are described in the ApplicationTab interface (see

Chapter 3.2 page 37).

The tab can be controlled by events. To respond to internal or external event, an instance of the

type TabListener must be registered on the application tab. This listener contains methods,

which inform the developer of events, which take place on the tabs in the application area. For

example, if an application tab is closed by the user, the FirstSpirit Framework responds by calling

the void tabClosed()method.

The interface (and all methods contained in the interface) can be implemented to generate a new

instance of the type TabListener. However, it is recommended that the internal, abstract

adapter implementation (Abstract Adapter Class), provided by the TabListener interface be

used instead. This predefined class implements all the interface's methods. The developer only

has to implement the methods relevant for them (see Listener – responding to changes, Chapter

4.3.7, page 88) and can otherwise fall back on the existing default implementation. The adapter

class is also advantageous for subsequent extension of the interface. If the interface is

supplemented, for example, with a new method, existing implementations remain compatible.

The new method only has to be implemented by the developer if and when necessary.

An instance of the type TabListener must then be registered on the event source (here the

application tab) by calling the addTabListener(…) method.

The TabListener interface (or the corresponding adapter implementation) provides the

following methods:

 void tabSelected(): This method is called when the corresponding ApplicationTab

is selected, i.e. is displayed visible in the foreground. The method is closely linked to the

void setSelected()method from the ApplicationTab interface (see Chapter 3.2 page

37).

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 45

 void tabDeselected(): This method is called when a new tab (application or preview

tab) is brought to the foreground. In this case the corresponding ApplicationTab moves

into the background. For example, if the change within an input component is only to be

traced, if the ApplicationTab concerned is actively displayed in the foreground, this can

be achieved using the void tabDeselected()method.

 void tabClosed(): This method is called by the FirstSpirit Framework, when the

instance of an ApplicationTab is closed. Whether a tab has already been closed can be

determined by calling the boolean isClosed() method of the ApplicationTab

interface (see Chapter 3.5 page 44).

3.6 Abstract Class: ApplicationType

Package: de.espirit.firstspirit.client.gui.applications

On opening a new application via the ApplicationService a specific application type is passed

(see Chapter 3.1 page 35), for web applications and Swing-based Java applications for example:

 BrowserApplication: Interface for opening and controlling a new browser instance in the

application area of FirstSpirit SiteArchitect (see Chapter 3.7 page 45).

 SwingApplication: Interface for opening and controlling a Swing-based Java application

in the application area of FirstSpirit SiteArchitect.

The abstract class provides the following methods:

 String name(): The method returns the full name of the respective ApplicationType.

3.7 Interface: BrowserApplication

Package: de.espirit.firstspirit.client.gui.applications.browser

In order to integrate web applications in the application area of SiteArchitect, access to the

integrated browser of FirstSpirit is required. The BrowserApplication interface provides

methods, for generating and controlling a new instance of the respective browser. Many of the

methods it contains are run asynchronously. In order for ordered access to the content of the

web application to be possible, an instance of the type BrowserListener should be registered

on the BrowserApplication.

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 46

The interface provides access to the following methods:

 EngineType getEngineType(): This method returns the current EngineType of the

browser. FirstSpirit currently integrates several web browser engines, which can be optionally

used. The required browser engine can be selected via the configuration (see Chapter 3.9

page 49). Apart from a rigid definition, by specifying

BrowserApplicationConfiguration.GENERATOR.invoke().engineType(Engine

Type.DEFAULT) it is also possible to give the default browser engine, saved by the

respective user in FirstSpirit SiteArchitect (SiteArchitect menu bar: Menu item: View –

Browser Engine). In this case, the getEngineType() method returns the corresponding,

specific type.

 BrowserApplication.getEngineVersion(): This method returns the current version of

the browser as a string. Note: In the case of "Mozilla Firefox" this is not the Firefox version,

but the Xulrunner version. Assignment to the Firefox version must be carried out

independently here (if necessary).

 void openUrl(final String url): The method opens the passed URL within a

browser instance in the application area of SiteArchitect. This can either be the URL of an

external web application or a customized implementation, which has to be globally installed

on the FirstSpirit server first, and can then be opened in the application area using the

openUrl(…) method (see Chapter 4.3.3 page 68). This method is run asynchronously. A

BrowserListener must be registered to determine at what time the method is run. This informs

the user at the time it is run, that the location has changed.

 void openUrl(final Location location):

 String getUrl()

 void addBrowserListener(@NotNull final BrowserListener listener): The

method registers a BrowserListener on an instance of the type BrowserApplication.

A BrowserListener responds to changes or events within the web application (Interface:

BrowserListener see Chapter 3.8 page 48, for example implementation, see Chapter 4.3.7.2

page 90).

 String convertToScript(Object object): The method converts the passed Java

object into JavaScript code and returns this as a string. As, unlike Java, JavaScript only

supports a limited set of data types, certain restrictions also apply to the methods of this

object. Only a range of simple, atomic data types, and lists and maps can be converted.

Complex object types not known in JavaScript on the other hand are not supported. If a

passed Java object is null or is not supported, the method returns null:

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 47

Java JavaScript

 Number, Boolean  (related toString mechanism)

 String  "stringcontent"(escapes newline and ")

 List<Object>  [entry0,entry1,entry2,...]

 Map<String,Object>  {'key0':value0,'key1':value1,...}

For further information on the conversion of data types, see Chapter 2.1.3 page 30).

 <T> BrowserNodeHandlerBuilder<T> createNodeHandlerBuilder()

 void executeScript(String script): This method runs the passed JavaScript code

in the currently opened browser document and therefore enables targeted, unidirectional

communication in the direction: Java » JavaScript. The JavaScript code to be run is passed

as a string (for example, see Chapter 4.3.4 page 72).

 Object evaluateScript(String script): This method runs the passed JavaScript

code in the currently opened browser document and therefore enables targeted,

unidirectional communication in the direction: Java » JavaScript, but also returns a returned

value. The return values passed from the JavaScript environment are converted into Java

objects according to specific conversion rules, for example, a js:number object becomes an

object of the type Double (Converting data types see Chapter 2.1.3 page 30).

 void removeBrowserListener(@NotNull final BrowserListener listener)

 void focus(): Calling this method shifts the focus onto the current browser instance. This

is useful, for example, if the integrated web application contains a form element, which is to

be directly assigned an input cursor or, as in the example of Google Maps integration, to

enable direct zooming with the mouse wheel, if the application tab is selected by the editor

(see example in Chapter 4.3.7.1).

 void setHtmlContent(String html)

 Document getCurrentDocument()

 void inject(Object object, String name): This method is required for

communication between the Java level of FirstSpirit SiteArchitects and the JavaScript level of

the web application. The method injects the passed Java object as an attribute of the window

object in the browser instance on which it was called (for information on the window object,

see Chapter 4.3.13). The injection generates a substitute object (proxy) in the form of a

JavaScript object and registers it under the passed name (for example, see Chapter 4.3.5

page 76).

Access to the DOM tree of the browser instance is not possible at any time. The registration

can only take place if the document has been fully loaded. To ensure this, an instance of the

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 48

type BrowserListener must be used (see Interface: BrowserListener)(DOM access concept

see Chapter 2.2 page 32).

following registration the JavaScript object can be used in the JavaScript environment using

the call window.{name}. All Java objects methods can then also be called from the

JavaScript environment of the integrated browser.

Background: With the injection the FirstSpirit framework generates for each method of the

Java object instances a corresponding JavaScript method with (approximately) identical

method signature. On being called from the JavaScript environment, this JavaScript method

sends an even, which is evaluated on the Java side and triggers the running of the

corresponding Java method there. The suitable Java method is determined from the method

signature and the passed parameters and is called.

Example (generation of an instance of the type BrowserApplication):

ApplicationService appService = servicesBroker.getService(ApplicationService.class);

BrowserApplication browser = appService.openApplication(BrowserApplication.TYPE,

null).getApplication();

browser.openUrl("www.e-spirit.de");

3.8 Interface: BrowserListener

Package: de.espirit.firstspirit.client.gui.applications.browser

Access to the content of the browser instance can be controlled with the help of a

BrowserListener. To do this, an instance of the type BrowserListener must be registered

on the browser instance (BrowserApplication). An instance of the type BrowserListener contains

methods, which inform the developer about changes to the browser instance in the application

area. If, for example, the URL of the browser instance is changed, the FirstSpirit Framework

responds by calling the void onLocationChange(@NotNull String url)method.

The interface (and all methods contained in the interface) can be implemented to generate a new

instance of the type BrowserListener. However, it is recommended that the internal, abstract

adapter implementation (Abstract Adapter Class), provided by the BrowserListener interface be

used instead. This predefined class implements all the interface's methods. The developer then

only has to implement the methods relevant for them (see Listener – responding to changes,

Chapter 4.3.7, page 88) and can otherwise fall back on the available default implementation. The

adapter class is also advantageous for subsequent extension of the interface. If the interface is

supplemented, for example, with a new method, existing implementations remain compatible.

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 49

The new method only has to be implemented by the developer if and when necessary.

An instance of the type BrowserListener must then be registered by calling the

addBrowserListener(…) method on the event source (here the BrowserApplication).

The BrowserListener interface (or the corresponding adapter implementation) provides the

following methods:

 void onLocationChange(@NotNull String url): The method is called if the

BrowserListener reports that the URL of the browser instance (instance of the type

BrowserApplication) has changed.

 void onDocumentComplete(String url): The void onDocumentComplete(…)

method is called if the BrowserListener of the browser instance (instance of the type

BrowserApplication) reports that the document (including all images) has been

completely loaded (for DOM access concept see Chapter 2.2 page 32).

3.9 Interface: BrowserApplicationConfiguration

Package: de.espirit.firstspirit.client.gui.applications

The BrowserApplicationConfiguration interface extends the base class

ApplicationTabConfiguration (see Chapter 3.4 page 42) to include configuration options

for the display of BrowserApplications within an ApplicationTab. For example, a specific

browser engine can be defined for opening the web application or an address line can be shown

for display of the called URL in the application area.

Figure 13: Example of BrowserApplicationConfiguration

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 50

The BrowserApplicationConfiguration interface is derived from the base class

ApplicationTabConfiguration and therefore provides all methods described in Chapter

3.4. Furthermore, the BrowserApplication Configuration interface contains the following

methods:

 BrowserApplicationConfiguration useEngineTypeDependentIcon(boolean u

seEngineTypeDependentIcon): If a specific icon has not been defined for the tab

display, this method can be used to show the icon of the BrowserEngine.

 BrowserApplicationConfiguration showAddressBar(final boolean

showAddressBar): This method can be used to define whether an address field with the

called URL is to be displayed in the bottom part of the application area (default value: true)

or not (false). This method can be used, for example, to show the URL of an external web

application or a web application installed on the FirstSpirit Server; the application having

been opened in the application area using the openUrl(…)) method (see Chapter 3.7 page

45). If, on the other hand, an HTML code is initiated (using the setHtmlContent(…)

method, see Google Maps example) the display of an address field can be suppressed.

 boolean showAddressBar(): This method returns whether, for the ApplicationTab,

which was opened based on this configuration, a address field is shown (true) or not

(false) (see method: BrowserApplicationConfiguration showAddressBar(final

boolean showAddressBar)).

 public BrowserApplicationConfiguration engineType(@NotNull final

EngineType type): This method can be used to define a browser engine, which is to be

used to open the web application in the application area. FirstSpirit currently integrates

several web browser engines, which can be optionally used. Apart from a rigid definition, by

specifying

BrowserApplicationConfiguration.GENERATOR.invoke().engineType(Engine

Type.DEFAULT) it is also possible to give the default browser engine, saved by the

respective user in FirstSpirit SiteArchitect (SiteArchitect menu bar: Menu item: View –

Browser Engine).

 public EngineType getEngineType(): The method returns the EngineType, which

was previously defined using the

BrowserApplicationConfiguration.engineType(@NotNull final EngineType

type) method for the opening of the web application in the application area. Note: If,

instead of a specific type, a default browser engine was defined (EngineType.DEFAULT),

this method returns the EngineType DEFAULT. The

BrowserApplication.getEngineType() method can be used to obtain the respective

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 51

specific type (see Chapter 3.7 page45).

A new instance of the type BrowserApplicationConfiguration can be generated with the

call BrowserApplicationConfiguration.GENERATOR. invoke(). The configuration then

takes place using the simplified builder pattern. The application specific configuration is passed

on calling the ApplicationTab<T> openApplication(final ApplicationType type,

final C configuration) method and must match the passed application type (here:

BrowserApplication).

Example:

final ApplicationService service =

_servicesBroker.getService(ApplicationService.class);

 final BrowserApplicationConfiguration configuration =

BrowserApplicationConfiguration.GENERATOR.invoke()

 .icon(IconLibrary.firstSPIRIT)

 .title("e-Spirit AG")

 .identifier("test")

 .engineType(EngineType.FIREFOX)

 .showAddressBar(true)

 .useEngineTypeDependentIcon(true)

 .openInBackground(false);

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 52

3.10 Interface: ClientServiceRegistryAgent

Package: de.espirit.firstspirit.agency

For further information see online documentation of FirstSpirit (ODFS), chapter Plug-In

development.

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 53

4 Example: Integrating Google Maps in FirstSpirit

In the area of presentation layer integration, applications for travel directions, which work with

geographic coordinates (geographic latitude and longitude), such as site plans and route

planners, have firmly established themselves on the websites of most businesses. In general,

these applications have the problem that initially only the address is known, but not the

absolutely relevant geographic coordinate.

The example implementation introduced in this chapter is intended to create a simple and

intuitive option for working with geographic coordinates within the FirstSpirit environment. To this

end, a geolocation input component has been developed, which determines all relevant

geographic information for an address and saves it for further editing. To do this, the component

uses the web application Google Maps, which is seamlessly integrated into the applications area

of FirstSpirit SiteArchitect. Search queries can be directly forwarded from the input component to

the Google Maps API, but it is also possible to search using the Google Maps map display in the

application area. The geographic information determined is then saved within the input

component for further processing.

In the example, close integration of the web application with FirstSpirit SiteArchitect is to be

achieved which, for example, also enables Google Maps objects to be dragged and dropped into

the geolocation input component.

 Objective: Introduction of an easy to handle solution for geographic coordinates

 Technique: Web application integration, HTML based graybox technique (see Chapter 1.1

page 4).

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 54

4.1 First steps

4.1.1 Note on the FirstSpirit license model

Use of the FirstSpirit AppCenter is subject to a new license model. Unlike licensing of a FirstSpirit

(module) add-on to date, here it is not the function that is licensed, but the number of integrated

applications (see Chapter 1.7 page 23). An example implementation can be used for test and

demo purposes, and yet be installed on the FirstSpirit Server without a valid license.

4.1.2 Note regarding legal implications

The example implementations presented here for the integration of Google Maps (or the

integration of a picture database) are not standard FirstSpirit functions (see Chapter 1.5 page

21). The implementation is only intended to show by way of example, the possibilities provided

by application integration in FirstSpirit and how these can be implemented.

 If an application integration (for example, for Google Maps) is to be implemented

within a project, the licenses required for use of the integrated application must be

requested directly from the application manufacturer. In particular, use of the Google

technology is subject to strict restrictions (see Terms of Service for creating a Google

account).

4.1.3 Generate Google Maps API key

To use Google Maps on your website you will need the Google Maps API. To use this, you will in

turn need a Google Maps API key. This must be requested directly from Google. A Google Maps

API key is then valid for a "directory" or a domain. I.e. a key can be used for the following URLs:

 http://www.myserver.com/maps/index.php

 http://www.myserver.com/maps/map.html

but not, e.g. for

 http://subdomain.myserver.com/index.html

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 55

In general, it is advisable to register the domain name. The key is then valid for this domain, its

sub-domains, all URLs of hosts in these domains and all ports on these hosts2.

Note: If Google maps is also to be used in the preview of the editing system, the FirstSpirit

Server must be operated in the same domain as the domain registered here. The start page of

the FirstSpirit Server must therefore lie within the domain of the registered API key (Note on

configuring the FirstSpirit server see Chapter 4.1.4).

First, an account with Google must exist. The API key, which is requested in the next step, is

coupled with this Google account. If a Google account is not yet available it can be created under

the following URL:

https://www.google.com/accounts/NewAccount

Several API keys can be requested for an account.

The API key is requested using the following URL:

http://www.google.com/apis/maps/signup.html

To do this the URL, which is to be used for the Google Maps service, is entered in the "URL of

my website" field. If the terms of services are accepted and the "Generate API key" button is

clicked the key is displayed in the next window.

4.1.4 Note on configuring the FirstSpirit server

The Google Maps API key is only registered for a domain (not for a host name) (see Chapter

4.1.3).

To prevent FirstSpirit from being used via URLs, which do lie within the registered domain, that

is, for example, via http://fs4server instead of http://fs4server.myserver.com, the

external Apache httpd, which can be used for FirstSpirit in addition to the integrated Jetty web

server, should be configured as follows:

RewriteCond %{HTTP_HOST} !^hostname\.domain$ [nocase]
RewriteRule ^/(.*) http://hostname.domain/$1 [redirect=permanent,noescape,last]

All calls of the FirstSpirit Start page are then forwarded to a defined URL (with domain).

2
 For more detailed information on the validity of a Google Maps API key, see also

http://code.google.com/intl/de/apis/maps/faq.html#keysystem

https://www.google.com/accounts/NewAccount
http://www.google.com/apis/maps/signup.html
http://hostname.domain/$1
http://code.google.com/intl/de/apis/maps/faq.html#keysystem

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 56

4.1.5 Installing the Google Earth plug-in

To use the 3D display of Google Earth in the integrated applications area of FirstSpirit (see

Chapter 4.2.4) the Google Earth plug-in must be installed. If the plug-in is not installed, a page

appears within the application area of FirstSpirit SiteArchitect, which prompts you to download

the plug-in. Click the "Download Google Earth plug-in" button; the plug-in is saved directly on

your workstation. To install the plug-in, open the relevant file GoogleEarthPluginSetup.exe

with a double-click. Follow the instructions of the installation program3.

Following installation the Google Earth View can is visible within the application area.

4.1.6 Example project

An example project, which uses the geolocation input component described here, can be made

available by the FirstSpirit Technical Support on request.

Please contact:

https://help.e-spirit.de/.

The input component can also be integrated in any FirstSpirit projects required. To do this, the

page or section templates concerned merely have to be extended.

For further information on template development see online documentation of FirstSpirit (ODFS).

For information on the development of SwingGadget input components, see Developer Manual

for Components.

3
 For further information on installing and uninstalling the Google Earth plug-in see also

http://maps.google.com/support/bin/answer.py?hl=en&answer=178389

https://help.e-spirit.de/
http://maps.google.com/support/bin/answer.py?hl=en&answer=178389

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 57

4.2 Application areas of the Google Maps integration

4.2.1 Address search with geolocalization

In this example implementation a geolocation input component is developed for FirstSpirit, which

determines the correct geographic position data for an entered address or part of an address (for

example, a street name) and saves it for further processing. The input component has an input

field for an address string, which can be edited by the editor. By clicking the "Search

Geolocation" button the editor can start a text-based search via the Google Maps API. To do this,

web application Google Maps is integrated into the applications area of FirstSpirit SiteArchitect.

The implementation behind the input component (see Chapter 4.3 page 63) initially opens

another tab next to the Preview tab in the application area of SiteArchitect, which contains the

Google Maps web application. The geographic coordinates determined via the search are

assigned a marking (marker) within the map , copied into the SwingGadget input component

where it is displayed both as full address information and with the geographic longitude and

latitude.

Figure 14: Use case - address search with geolocalization

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 58

4.2.2 Changing the coordinate using the Google Maps integration

The marking of the coordinate within the integrated Google Maps application can be changed by

the editor. The change within the map display then affects the coordinate saved in the

SwingGadget input component.

Figure 15: Use case – moving the marker in the map display

The editor must first lock the section concerned to prevent it from being edited. Click the

button to open an (applications) tab with the web application in the application area of

SiteArchitect. In edit mode the marker set by the example implementation is always displayed

within a hybrid map. This applies even if the web application has already been opened in the

application area and the editor has selected a display form beforehand.

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 59

Within the hybrid map the editor can simply move the marker by means of drag-and-drop or

via the Google Context menu ("What is here?"). In this way, for example, after searching for a

geographic position via the Google Maps API, the marker within the map is corrected and move

to the required building. The corrected position data is then copied by the example

implementation into the geolocation input component.

4.2.3 Showing additional information (Google Balloons)

Apart from the geographic data, other information on a marker is to be shown within the map. To

this end, the form area provides the editor with other input fields (company: infotext and

company: info picture). In this way, each marker saved within a geolocation input component can

be assigned short information text and a picture from the FirstSpirit Media Store.

Figure 16: Use case – showing additional information

This information entered by the editor is shown as Google "balloons" by clicking the marker, not

only within the integrated preview (Preview tab) but also in the integrated web application

(Applications tab). These "balloons" are small information windows, which can contain HTML,

CSS or JavaScript code.

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 60

4.2.4 3D display using Google Earth

Apart from the conventional display of the coordinate within a hybrid map with low altitude, the

input component also offers a 3D view (Google Earth) with high altitude via the Google Maps

integration.

 This display requires the installation of a Google Earth plug-in (see Chapter 4.1.5

page 56).

If Google Maps is not already open in the integrated application area of FirstSpirit, an Application

tab is opened first by clicking the button. The implementation behind the input component

now shows a map of the type G_SATELLITE_3D_MAP instead of the conventional hybrid map.

This type of map shows an interactive 3D model of the earth with satellite images. (If the

application was already open in the application area, the map display is simply switched to the

existing Application tab.)

Within the 3D view the user can conveniently switch between different coordinates (saved in

several geolocation input components). On changing between the coordinates (for example, on

selecting a new geolocation section via the FirstSpirit navigation tree), 3D fading in and out (aka

cross-fading/fading over) from one position to the other takes place in the application tab, with

the classic "Zoom-to-Location" effect of Google Earth4. All additional information about a marking

saved can also be shown within this display (injection of additional information as Google Earth

Balloons) (see Chapter 4.2.3). The implementation therefore provides an interactive live preview

for the display of geographic information.

4
 For an example, see http://earth-api-samples.googlecode.com/svn/trunk/examples/balloon-change-content.html

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 61

Figure 17: Use case – 3D fading in / out between two positions

4.2.5 Route directions ("How to find us")

The geolocation input component saves the geographic coordinate determined using the Google

Maps API for further processing (see Chapter 4.2.1 page 57). This data is used within the

website for route planning or directions ("How to find us" instructions in the navigation menu). As

soon as a geographic coordinate has been determined using the Google Maps integration (for

example, using search) and has been saved in the geolocation input component, a form based

on the saved coordinates is generated within the website (or in the Preview tab). The updated

website shows a map section (map tile) with the saved coordinates marked on it. In addition,

input fields for two integrated route planners (Google Maps and Bing Maps) are displayed with a

preselected start location. The coordinates saved within the component are used as the end

location/destination. The start location can be changed by the visitor to the website (or by the

editor within the application area). When the corresponding button is clicked a Google Maps or

Bing Maps window opens with the respective parameters.

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 62

Figure 18: Use case - directions

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 63

4.3 Implementation: Application integration for Google Maps

In the preceding chapters the concept of the seamless integration of a web application in

FirstSpirit SiteArchitect (see Chapter 2 page 26) and the necessary extensions of the FirstSpirit

Client API were introduced (see Chapter 3 page 34). This chapter, by way of example, now

shows a specific implementation of an application integration for FirstSpirit SiteArchitect.

The web application Google Maps is to be integrated in the application area of SiteArchitect. The

integration is controlled by a SwingGadget input component (see Chapter 4.3.1 page 65), which

is closely linked to the application. The connection between the Java level of FirstSpirit

SiteArchitect and the native browser level of the web application is made by means of the new

FirstSpirit AppCenter API.

To avoid the implementation of an independent web application, an HTML code is initiated within

the example implementation, which initializes a Google Maps container on loading (see

maps.html - Initializing the container for the map display Chapter 4.3.15 page 116). Within this

HTML page, JavaScript methods are defined, which provide core functions such as "Add entry",

"Remove entry" and "Modify viewport". These JavaScript methods are called accordingly on the

Java side, in order to display or change a geographic position.

Identification of the individual map entries, IDs are generated, which are used for direct

assignment and control (Show markers and assign an input component see Chapter 4.3.6 page

79). A way back (return path), provided by means of an object injection, is required for the

modification of the geographic position data and the corresponding change notification

(MapsPlugin - GeolocationUpdater (Injection Java » JavaScript) see Chapter 4.3.5 page 76).

This object has a method for updating the exact geographic position and a method by means of

which the address string can be updated.

The following chapters describe selected code of the example implementation and represent

orientation for the user to develop their own integration solutions. In particular, use of the

FirstSpirit AppCenter API is explained. The Google Maps API also used is only explained to the

extent necessary to understand the example (implementation details are given in the Google

Maps API5 documentation and the Google Earth API6 documentation.) The development of the

5
 http://code.google.com/intl/de/apis/maps/documentation/javascript/v2/reference.html

6
 http://code.google.com/intl/de/apis/earth/documentation/reference/index.html

http://code.google.com/intl/de/apis/maps/documentation/javascript/v2/reference.html
http://code.google.com/intl/de/apis/earth/documentation/reference/index.html

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 64

SwingGadget input component used (see Chapter 4.3.1) is also not described here. All

information and interfaces required to develop SwingGadget input components are given in the

Developer Manual for Components.

 (SwingGadget) input component CUSTOM_GEOLOCATION

(see Chapter 4.3.1 page 65)

 MapsPlugin – Generating a new instance of the type MapsPlugin

(see Chapter 4.3.2 page 66)

 MapsPlugin – Opening the application within a tab

(see Chapter 4.3.3 page 68)

 MapsPlugin – run JavaScript (Java » JavaScript)

(see Chapter 4.3.4 page 72)

 MapsPlugin - GeolocationUpdater (Injection Java » JavaScript)

(see Chapter 4.3.5 page 76)

 Show markers and assign an input component

(see Chapter 4.3.6 page 79)

 Listener – responding to changes

(see Chapter 4.3.7 page 88)

 Updating the geodata of the input component (JavaScript » Java)

(see Chapter 4.3.8 page 93)

The complete source code of the application integration implementation for Google Maps

described in this example is located in the Zip archive of the Developer Manual. The archive file

can be downloaded from using the online documentation of FirstSpirit (area: Documentation for

developers – example implementations).

 If using the Google Maps integration the license requirements of the manufacturer

must be met (see Chapter 4.1.2 page 54).

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 65

4.3.1 (SwingGadget) input component CUSTOM_GEOLOCATION

The application areas are introduced in Chapter 4.2 (page 57 ff.). A new input component

CUSTOM_GEOLOCATION has been developed for these areas. This input component saves a

geographic coordinate, consisting of two decimal values (geographic longitude and latitude) and

displays not only the coordinate but also the complete address information belonging to this

coordinate (street, town, country). Furthermore, a simple text field for (unformatted) address input

is available to the editor, to simplify the search. The address string enter there is used for a text-

based search by means of the Google Maps API. As Google Maps includes (provided it is

possible/known) the location of the Internet access point, from which the request is made, in this

search, for destinations near the access point location it can be sufficient to enter a street name.

Figure 19: Geolocation input component

The special feature of the geolocation input component lies in its close integration with the web

application Google Maps. The component includes a button for display/modification of the

precise geographic position and a button which initiates a search on the basis of the address

string. With both actions - if it has not already happened or been closed - an application tab is

opened in the integrated browser of SiteArchitect (MapsPlugin – Opening the application within a

tab see Chapter 4.3.3 page 68). The web application for displaying the geocoordinate is opened

in this tab. The user can change the displayed coordinate there (for example, using drag-and-

drop to move the marking within the map display). The new coordinate (incl. address information)

is then dynamically updated in the input component. In addition, the input component shows a

preview bitmap with a reduced size map display and marking of the currently selected position

from the web application. This preview image does not come from the FirstSpirit Media Store, but

instead is provided via the integrated web application and is also dynamically updated if the

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 66

position within the integrated application (Google Maps) is changed. The opening of the

application tabs and live updating of the map display is carried out by the implementation behind

the input component (see Chapter 4.3.2 ff.).

4.3.2 MapsPlugin – Generating a new instance of the type MapsPlugin

Within the SwingGadget implementation (of the input component CUSTOM_GEOLOCATION) a new

instance of the type MapsPlugin must be generated first. The MapsPlugin class is responsible

for the integration of Google Maps in the application area of FirstSpirit SiteArchitect.

This requires a so-called SpecialistsBroker. An instance of the type SpecialistsBroker

provides access to specific services or information via different "specialists". A specialist of the

type ServicesBroker is required for working with integrated web applications. This can be

requested on the SpecialistsBroker with the help of the <S> S

requireSpecialist(SpecialistType<S> type) method. In addition, a service can be

requested by calling the getService() method. This method is required, for example, later in

order to use the ApplicationService (see Chapter 4.3.3 page 68).

The typified SwingGadgetContext (see Developer Manual for Components) can be used

within the SwingGadget implementation to request an instance of the type ServicesBroker

within the help of the <S> S requireSpecialist(SpecialistType<S> type) method.

The new instance of the type ServicesBroker is finally passed to the MapsPlugin class when the

MapsPlugin.getInstance(…) method is called.

1. public class GeolocationSwingGadget...{

2.

3. private final SwingGadgetContext<GomGeolocation> _context;

4. private ServicesBroker _servicesBroker;

5. ...

6.

7. public GeolocationSwingGadget(final

 SwingGadgetContext<GomGeolocation> context) {

8. super(context);

9. _context = context;

10. }

11. ...

12. private MapsPlugin getMapsPlugin() {

13. if (_servicesBroker == null) {

14. _servicesBroker =

 _context.getBroker().requireSpecialist(ServicesBroker.TYPE);

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 67

15. }

16. return MapsPlugin.getInstance(_servicesBroker);

17. }

18. }

Listing 1: Geolocation - generating a new instance of MapsPlugin (SwingGadget-Impl.)

The MapsPlugin.getInstance(…) method generates a Singleton instance of the MapsPlugin

class. This Singleton instance initially has a ServicesBroker (which is requested within the

SwingGadget implementation and is passed to the MapsPlugin class) and the MapType

G_HYBRID_MAP. This MapType is a default map type of the Google Maps API, which represents

a mixture of photo tiles and additional information, for example, street or place names.

1. public class MapsPlugin implements TabListener, BrowserListener {

2.

3. @SuppressWarnings({"UnusedDeclaration"})

4. public enum MapType {

5. G_NORMAL_MAP, G_SATELLITE_MAP, G_HYBRID_MAP,

 G_SATELLITE_3D_MAP

6. }

7. private final ServicesBroker _servicesBroker;

8. private static MapsPlugin INSTANCE;

9.

10. ...

11. private MapsPlugin(final ServicesBroker servicesBroker) {

12. _servicesBroker = servicesBroker;

13. _mapType = MapType.G_HYBRID_MAP;

14. }

15.

16. public static MapsPlugin getInstance(final ServicesBroker

 servicesBroker) {

17. if (INSTANCE == null) {

18. INSTANCE = new MapsPlugin(servicesBroker);

19. }

20. return INSTANCE;

21. }

22. ...

23. }

Listing 2: Geolocation – MapsPlugin constructor (MapsPlugin-Impl.)

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 68

4.3.3 MapsPlugin – Opening the application within a tab

In order to integrate a web application into FirstSpirit SiteArchitect, it is necessary to control the

browser integrated in FirstSpirit (Controlling the integrated browser see Chapter 2.1.1 page 26).

To do this, firstly, a new browser instance (or a new tab) must be generated within the application

area, in which the required web application can be opened.

On requesting the integrated web application, for example, by clicking the button of the

geolocation component, the program first checks whether a browser instance of the web

application already exists in the application area of SiteArchitect. This condition is checked by

calling the ensureApplicationTab() method within the MapsPlugin implementation:

1. public class MapsPlugin implements TabListener, BrowserListener {

2. private BrowserApplication _application;

3. ...

4. public void add(final GadgetIdentifier gadgetId, ...) {

5. ensureApplicationTab();

6. ...

7. }

8.

9. ...

10. //inner method

11. private void ensureApplicationTab() {

12. if (_application == null) {

13. getApplication(); // open application tab

14. }

15. }

16. }

Listing 3: Geolocation –BrowserApplication instance available? (MapsPlugin-Impl.)

If a browser instance has not yet existed for the web application, the getApplication()

method is called, which returns a new instance of the web application of the type

BrowserApplication.

The interfaces of the FirstSpirit AppCenter API required are described in the following:

1) ApplicationService: The entry point for controlling a tab is always the

ApplicationService. An instance of the type ApplicationService is requested

by calling the <T> T getService(Class<T> serviceClass) method on the

passed ServicesBroker (see Chapter 4.3.2). This service can be used to open new

applications of a certain type within the application area (see section 3) or to get the

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 69

applications from existing browser instances (see section 5) (for a description of the

ApplicationService interface see Chapter 3 page 34).

2) BrowserApplicationConfiguration: In addition, a configuration is required for the

integrated browser instance. For this, an instance of the type

BrowserApplicationConfiguration is generated using the call

BrowserApplicationConfiguration.GENERATOR.invoke(). The

BrowserApplicationConfiguration interface provides methods, for example, for

selecting a specific browser engine for the integration or for showing or hiding an address

line within the browser instance. The configuration is passed as a parameter when a new

browser instance is opened using the openApplication(…) method (see section 3)

(for a description of the BrowserApplication Configuration interface see Chapter

3.9 page 49).

3) ApplicationTab: To integrate a web application, first, a new tab (next to the Preview

tab) must be opened in the application area of SiteArchitect. To do this, the

openApplication(…) method is called on the ApplicationService (see section 1).

The type (Abstract Class: ApplicationType see Chapter 3.6 page 45) of application

required (here: BrowserApplication, see section 5) and the configuration for the

integrated browser are passed to the method (see section 2). The

openApplication(…)method returns an instance of the type ApplicationTab. The

ApplicationTab interface provides general methods for controlling the tab, for

example, the tab can be brought to the front or closed using the corresponding method

invocations (Interface: ApplicationTab see Chapter 3.2 page 37).

4) TabListener: To track changes, for example, the selection of a tab by the user, an

instance of the type TabListener must be added to the Application tab (Interface:

TabListener see Chapter 3.5 page 44). A TabListener is added to the Applications tab

by calling the addTabListener(…) method; in this example the MapsPlugin class is

implemented by the TabListener interface itself. However, it is recommended that you

use the corresponding adapter implementation. The methods of the interface for

selecting, deselecting and closing the application tab can then be implemented as and

when necessary (see Listener – responding to changes, Chapter 4.3.7, page 88).

5) BrowserApplication: By calling the getApplication() method on the instance of

the type ApplicationTab, a new instance of the integrated web application of the type

BrowserApplication is returned (see section 3 – openApplication(…)). The

BrowserApplication interface provides methods for controlling the new integrated

browser instance, for example, opening a URL within the browser instance (Interface:

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 70

BrowserApplication see Chapter 3.7 page 45). The required web application (here:

Google Maps) must then be opened in the new browser instance generated. Two

different ways are available for this integration:

a) On the one hand, a global web application can be implemented and installed on the

FirstSpirit server. In this case the URL of the web application can be called in the

application area (using the openUrl(…) method). This method is also used to open an

external web application.

b) If an independent web application is to be bypassed, but the required HTML code can

be easily initiated and called (using the setHtmlContent(…) method). This second

way is also used for the Google Maps integration introduced here. The maps.html file is

used to initiate the HTML code; this forms a kind of capsule around the Google API calls

required (see Chapter 4.3.12 ff.).

6) BrowserListener: Access to the content shown in the web browser (DOM tree), for

example, to manipulate the data, is not possible at any time. To ensure controlled access

to the content, an instance of the type BrowserListener must be used (Interface:

BrowserListener see Chapter 3.8 page 48). A BrowserListener is added to the

BrowserApplication by calling the addBrowserListener(…) method. In this

example the MapsPlugin class implements the BrowserListener interface itself.

However, it is recommended that you use the corresponding adapter implementation.

The methods of the interface can then be implemented as and when necessary (see

Listener – responding to changes, Chapter 4.3.7, page 88).

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 71

1. private BrowserApplication _application;

2. private ApplicationTab<BrowserApplication> _tab;

3. private final ServicesBroker _servicesBroker;

4.

5. /**

6. * Get BrowserApplication instance and may initialize it.

7. * @return BrowserApplication instance

8. */

9. private BrowserApplication getApplication() {

10. if (_application == null) {

11. final ApplicationService service =

 _servicesBroker.getService(ApplicationService.class);

12. final BrowserApplicationConfiguration configuration =

 BrowserApplicationConfiguration.GENERATOR.invoke();

13. configuration.title("Google Maps");

14. configuration.showAddressBar(false);

15. configuration.engineType(EngineType.FIREFOX);

16. _tab = service.openApplication(BrowserApplication.TYPE,

 configuration);

17. _tab.addTabListener(this);

18. _application = _tab.getApplication();

19. _application.addBrowserListener(this);

20. _application.setHtmlContent(getHtmlContent());

21. }

22. return _application;

23. }

Listing 4: Geolocation – opening the application within a tab (MapsPlugin-Impl.)

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 72

Interface:
ApplicationService

Interface:
BrowserApplication

Interface:
ApplicationTab

Interface:
BrowserApplicationConfiguration

final ApplicationService service =

servicesBroker.getService(ApplicationService.class);

final BrowserApplicationConfiguration configuration =

BrowserApplicationConfiguration.GENERATOR.invoke();

Interface: EngineType

ApplicationTab<BrowserApplication> tab = service.openApplication(BrowserApplication.TYPE, configuration);

BrowserApplication application =

tab.getApplication();

application.setHtmlContent(getHtmlContent())

SERVICE: By calling the method openApplication(…)

on the Object ApplicationService, a new typed

application will be opened in a tab in the application

area of ​​SiteArchitect.
CONFIGURATION: Configuration option for ApplicationTabs, for

example, specifying a browser engine for the integrated browser.

TAB: Control option for ApplicationTabs, for example, to close

the tabs, to add a TabListener or to request the application

contained in the tab.

configuration.engineType(EngineType.FIREFOX);

APPLICATION: Generating and controlling a new instance

of the BrowserApplication within the integrated browser, for

example, to add a BrowserListener.

Interface:
BrowserListener

application.addBrowserListener(this);

Tracking changes in the

ApplicationTabs.

Interface:
TabListener

tab.addTabListener(this);

Open an application within a tab

Gets the HTML content and passes it to

the browser instance of the application.
Tracking changes in the browser

instance.

1

2

3

Figure 20: Opening an application within a tab

4.3.4 MapsPlugin – run JavaScript (Java » JavaScript)

As already explained in Chapter 2.1, interfaces must be created for the communication between

the Java level of FirstSpirit SiteArchitect and the native level of the integrated browser (or the

Google Maps API) (see concept in Chapter 2.1.2 (page 27 ff.)).

For example, if a certain address is searched for within the geolocation input component (entry of

an address string and click the Search button), a request for geocoding of this address string

must be sent to the web application (Google Maps) and the map section adjusted within the

integrated browser (see use case Chapter 4.2.1 page 57). This requires an interface, which

enables a JavaScript method to be called from the Java environment (communication: Java »

JavaScript).

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 73

The geolocation implementation uses the void executeScript(String script) method

for this. This method runs the passed JavaScript code in the currently opened browser document

and therefore enables targeted, unidirectional communication in the direction: Java » JavaScript.

The JavaScript code to be run is passed as a string. The method is made available to the

FirstSpirit AppCenter API via the BrowserApplication interface (Interface:

BrowserApplication see Chapter 3.7 page 45).

However, first the JavaScript code required must be created. To this end, within the MapsPlugin

implementation, numerous methods are implemented which, depending on the respective use

case, compile a script using the StringBuilder. The void updateBrowser(), method,

which is used to update the map display in the browser, for example, calls different methods with

the prefix "getScript" in the method name, which return individual JavaScript fragments. For the

use case "Address search" for example, the getScriptFindAddress(…) method is called

there:

1. public class MapsPlugin implements TabListener, BrowserListener {

2. ...

3. public void updateBrowser() {

4. // build script code to update google map

5. final StringBuilder buf = new StringBuilder();

6. ...

7. for (final GeolocationEntry location : ...) {

8. if (location.isSearchMode()) {

9. buf.append(getScriptFindAddress(location));

10. }

11. ...

12. }

13. final String script = buf.toString();

14. ...

15. }

16. ...

17.

18. //--- inner methods ---//

19.

20. /**

21. * Build script code for an address search entry.

22. *

23. * @param location related geolocation entry

24. * @return script code

25. */

26. private String getScriptFindAddress(final GeolocationEntry

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 74

 location) {

27. final StringBuilder buf = new StringBuilder();

28. final String pattern = location.getAddress().replaceAll("'",

 "\\\\'");

29. buf.append("window.findAddress('")

30. .append(location.getUUID()).append("', '")

31. .append(pattern).append("');");

32. return buf.toString();

33. }

34.

35. }

Listing 5: Geolocation – create script for the geo-coding of an address string (MapsPlugin-Impl.)

A so-called GeolocationEntry is passed to the method (see Chapter 4.3.6 page 79). This

entry contains, among other things, the address string, which was entered in the search field of

the geolocation input component. The getScriptFindAddress(…) method now uses this

information to compile a JavaScript code, which not only contains the address string but also the

uuid of the corresponding SwingGadget input component. The uuid is required, in order to

establish clear, unique assignment of the GeolocationEntries to an input component (see

Chapter 4.3.6 page 79).

The script fragment returned by the getScriptFindAddress(…) method, for example, looks

like this (for information on the window object, see Chapter 4.3.13):

window.findAddress('uuid:-1336359343', 'Barcelonaweg');

Other methods are also called within the void updateBrowser() method. The returned

JavaScript fragments are then compiled to form a script, for example:

window.clearOverlays();

window.setMapType(G_HYBRID_MAP);

window.findAddress('uuid:-1336359343', 'Barcelonaweg');

window.setEditable('uuid:-1336359343', true);

window.setInfoHtml('uuid:-1336359343', "…");

Each of these calls has its equivalent in a JavaScript function of the maps.html file (maps.html –

Introduction see Chapter 4.3.12 page 113). The call window.findAddress('uuid:-

1336359343', 'Barcelonaweg') for example, runs the following JavaScript function:

1. /**

2. * Use Geocoder to find the exact geolocation of the specified address

3. * pattern

4. *

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 75

5. * @param uuid UUID of geolocation instance

6. * @param pattern address string

7. */

8.

9. window.findAddress = function(uuid, pattern) {

10. window.GoogleGeocoder.getLatLng(pattern, function(point) {

11. if (point) {

12. var latitude = point.lat();

13. var longitude = point.lng();

14. window.addOverlay(uuid, latitude, longitude);

15. window.setViewPoint(latitude, longitude);

16. window.GeolocationUpdater.update(uuid, latitude,

 longitude);

17. updateInfo(uuid, latitude, longitude);

18. }

19. });

20. };

Listing 6: Geolocation – JavaScript function findAddress (maps.html)

This function starts a geocoding request via the Google Maps API. The precise procedure is

described in Chapter 4.3.20 (page 123). Other calls, for example, remove the markings

(selections) to date from the map display (window.clearOverlays()) or define the MapType

for the map display (window.setMapType (G_HYBRID_MAP)).

The entire script with all the functional calls it contains, which is compiled within the void

updateBrowser() method, is then run by calling the void executeScript(String

script) method on the instance of the type BrowserApplication (Interface:

BrowserApplication see Chapter 3.7 page 45):

1. public class MapsPlugin implements TabListener, BrowserListener {

2. ...

3. private BrowserApplication _application;

4.

5. public void updateBrowser() {

6. final StringBuilder buf = new StringBuilder();

7. buf.append(getScriptClearOverlays());

8. ...

9. buf.append(getScriptFindAddress(location));

10. ...

11. final String script = buf.toString();

12. ...

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 76

13. _application.executeScript(script);

14. }

15. }

Listing 7: Geolocation – run the collated JavaScript fragments (MapsPlugin-Impl.)

With this the first communication channel (Java » JavaScript) is adequately described. In the

second step, the information from the web application must be returned back into the FirstSpirit

input component (JavaScript » Java) (see Chapter 4.3.5 page 76).

4.3.5 MapsPlugin - GeolocationUpdater (Injection Java » JavaScript)

In the previous chapter, the communication was described starting from FirstSpirit SiteArchitect

in the native level of the integrated browser by running JavaScript code (see Chapter 4.3.4 page

72). This chapter looks at the reverse communication channel (JavaScript » Java). Starting from

the integrated web application (or the integrated browser instance), changes or events, for

example, due to moving of the marking within the map display, should also be updated in the

geolocation input component. In this case, the Java side must be informed of the change in the

web applications and must be able to suitably respond to this change (see concept

Communication between the browser instance and SiteArchitect in Chapter 2.1.2, page 27)

To update the Java side, the Java object GeolocationUpdater is used within the example

implementation. A new instance of the type GeolocationUpdater is generated with the void

onDocumentComplete(final String url) method is run and is injected into the web

application under the name "GeolocationUpdater".

Background: Access to the DOM tree of the browser instance is not possible at any time. The

injection can only take place if the document has been fully loaded. To ensure this, an instance

of the type BrowserListener must be used (Interface: BrowserListener see Chapter 3.8 page

48). The void onDocumentComplete(…) method is always called if the BrowserListener

of the browser instance (instance of the type BrowserApplication) reports that the document

(including all images) has been completely loaded (DOM access concept see Chapter 2.2 page

32) (Listener – responding to changes, see Chapter 4.3.7, page 88).

1. public class MapsPlugin implements TabListener, BrowserListener {

2. ...

3. private boolean _active;

4. ...

5.

6. //--- BrowserListener ---//

7. ...

8. public void onDocumentComplete(final String url) {

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 77

9. final BrowserApplication application = getApplication();

10.

11. // document is loaded; inject java/javascript bridge

12. application.inject(new GeolocationUpdater(this),

 "GeolocationUpdater");

13.

14. _active = true;

15.

16. // initialize map viewport and marker

17. updateBrowser();

18. ...

19. }

20. }

Listing 8: Geolocation – injection of Java object GeolocationUpdater (MapsPlugin-Impl.)

On an instance of the type BrowserApplication the void inject(Object object,

String name) method is called. The method is made available to the FirstSpirit AppCenter API

via the BrowserApplication interface (Interface: BrowserApplication see Chapter 3.7 page

45).

The method injects the passed Java object GeolocationUpdater as an attribute of the

window object in the browser instance on which it was called (for information on the window

object see Chapter 4.3.13). The injection generates a substitute object (proxy) in the form of a

JavaScript object and registers it under the passed name (here: "GelocationUpdater"). Following

registration the JavaScript object can be used in the maps.html file by calling window.{name}

(here: window.GeolocationUpdater) (see Chapter 4.3.21 page 124). All methods of the

Java object GeolocationUpdater can then also be called from the JavaScript environment of

the integrated browser.

Background: With the injection the FirstSpirit framework generates for each method of the Java

object instances a corresponding JavaScript method with (approximately) identical method

signature. On being called from the JavaScript environment, this JavaScript method sends an

even, which is evaluated on the Java side and triggers the running of the corresponding Java

method there. The suitable Java method is determined from the method signature and the

passed parameters and is called.

The Java object GeolocationUpdater, for example, has the Java method public void

update(final String uuid, final double latitude, final double

longitude), which updates a GeolocationEntry on the passed coordinate and informs the

ModificationListener belonging to the input component of the update (use of the

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 78

ModificationListener see Chapter 4.3.7.3).

1. @SuppressWarnings({"UnusedDeclaration"})

2. public static class GeolocationUpdater {

3.

4. private final MapsPlugin _mapsPlugin;

5.

6.

7. public GeolocationUpdater(final MapsPlugin mapsPlugin) {

8. _mapsPlugin = mapsPlugin;

9. }

10.

11.

12. public void update(final String uuid, final double latitude,

 final double longitude) {

13. _mapsPlugin.update(uuid, latitude, longitude);

14. }

15.

16.

17. public void info(final String uuid, final String address) {

18. _mapsPlugin.info(uuid, address);

19. }

20. }

21. }

Listing 9: Geolocation – GeolocationUpdater (MapsPlugin-Impl.)

Following the injection of the Java object GeolocationUpdater the update method can be

called on the JavaScript- proxy object window.GeolocationUpdater. Within the example

implementation, the updating is triggered by an event in the web application (for example, by

moving the marker in the map display or the geocoding of an address string). In this case, the

corresponding EventListener on the JavaScript side calls the JavaScript function

window.GeolocationUpdater.update (uuid, newlat, newlng).

1. /**

2. * Add an marker to the GMap2 instance.

3. *

4. * @param uuid UUID of geolocation instance

5. * @param latitude

6. * @param longitude

7. */

8. window.addOverlay = function(uuid, latitude, longitude) {

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 79

9. var marker = new GMarker(new GLatLng(latitude, longitude),

 {draggable: true});

10. window.GoogleMap.addOverlay(marker);

11. GEvent.addListener(marker, 'dragend', function() {

12. var point = marker.getLatLng();

13. var newlat = point.lat();

14. var newlng = point.lng();

15. window.GeolocationUpdater.update(uuid, newlat, newlng);

16. updateInfo(uuid, newlat, newlng);

17. });

18. ...

19. };

Listing 10: Geolocation – calling a Java method from the JavaScript code (maps.html-Impl.)

This call is evaluated on the Java side where it triggers the running of the Java method public

void update(final String uuid, final double latitude, final double

longitude) . The Java method receives the (new) address information from the integrated web

application, for example, which is determined during the geocoding of an address string by the

Google Maps API (JavaScript » Java). The renewed assignment of the entry for the geolocation

input location in the Java environment is made using the uuid parameter (see

GeolocationEntry get(final String uuid) method in Chapter 4.3.6, page 79).

Basically, any Java object can be injected into the JavaScript environment. However, certain

restrictions apply to this object for the method adoption and the mapping of the Java data types

on JavaScript data types (see Chapter 2.1.3 page 30).

4.3.6 Show markers and assign an input component

The input component CUSTOM_GEOLOCATION can be used to display a geographic coordinate,

consisting of two decimal values (geographic longitude and latitude) within a Google Maps map

(see (SwingGadget) input component CUSTOM_GEOLOCATION in Chapter 4.3.1, page 65). For

this, the Google Maps API uses an object of the class GMarker. This marker object contains the

values for the geographic coordinate and displays this within a map . The object is added to the

map display with the help of the Google Maps method addOverlay()7.

7
 For further information see Google Maps API reference:

http://code.google.com/intl/de/apis/maps/documentation/javascript/v2/reference.html#GMarker

http://code.google.com/intl/de/apis/maps/documentation/javascript/v2/reference.html#GMarker

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 80

1. var marker = new GMarker(new GLatLng(latitude, longitude), {draggable:

 true});

2. window.GoogleMap.addOverlay(marker);

Listing 11: Geolocation – adding a new GMarker object (maps.html)

The Java object GeolocationEntry is used on the Java side. An instance of the type

GeolocationEntry not only contains the values, which describe the coordinate (double

latitude, double longitude) but also an instance of the type GadgetIdentifier.

Background: In order for a marker to be uniquely assigned to an input component, a

GadgetIdentifier is used within the Java implementation. A GadgetIdentifier is

provided by the FirstSpirit Framework and is used to uniquely identify a named form element

within the FirstSpirit component model. The GadgetIdentifier of a SwingGadget input

component can be got using the GadgetIdentifier getGadgetId() method of the abstract

class AbstractValueHoldingSwingGadget <T, F extends GomFormElement>.

Within the example implementation, each GeolocationEntry can therefore be uniquely

assigned to a specific SwingGadget input component using a GadgetIdentifier. This means

that if the input component is changed, for example, by selecting a new section in the FirstSpirit

navigation tree, the marker to date within the Google Maps integration is removed and replaced

with the new marker (the currently selected input component).

Furthermore, a GeolocationEntry has a ModificationListener, which responds to changes

to the entry within the input component (see Listener – responding to changes, Chapter 4.3.7,

page 88).

3. public class MapsPlugin implements TabListener, BrowserListener {

4. ...

5. private static class GeolocationEntry {

6. private final String _uuid;

7. private final GadgetIdentifier _gadgetId;

8. private ModificationListener _listener;

9. private double _latitude;

10. private double _longitude;

11. ...

12.

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 81

13. GeolocationEntry(final GadgetIdentifier gadgetId, final double

 latitude, final double longitude, final ModificationListener ‘

 listener) {

14. _uuid = "uuid:" + gadgetId.hashCode();

15. _gadgetId = gadgetId;

16. _latitude = latitude;

17. _longitude = longitude;

18. _listener = listener;

19. }

20. ...

21. }

22. }

Listing 12: Geolocation – GeolocationEntry constructor (MapsPlugin-Impl.)

The addition of a marker to the Google Maps map is initiated from the Java environment of the

SwingGadget input component. The input component GeolocationSwingGadget, triggered by

an event, calls the addToMap(…) method. This method first calls the getGadgetId() method

to get the GadgetIdentifier of the component. The MapsPlugin implementation is then

called, which checks whether an entry for the SwingGadget input component with this

GadgetIdentifier already exists. If no entry exists, the getMapsPlugin().add(…) method

is called to add a new entry (of the type GeolocationEntry). The method not only passes

the geographic longitude and latitude for the entry but also the GadgetIdentifier of the input

component to the MapsPlugin implementation:

1. public class GeolocationSwingGadget extends

 AbstractValueHoldingSwingGadget<...> implements ...{

2. ...

3. public JComponent getComponent() {

4. @Override

5. public void actionPerformed(final ActionEvent e) {

6. if (!isDefault()) {

7. addToMap(GeolocationSwingGadget.this.getValue());

8. ...

9. }

10.

11. }

12. ...

13. private void addToMap(final Geolocation value) {

14. final GadgetIdentifier gadgetId = getGadgetId();

15. if (! getMapsPlugin().contains(gadgetId)) {

16. getMapsPlugin().add(gadgetId, value.getLatitude(),

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 82

 value.getLongitude(), this);

17. }

18. ...

19. }

20. updateMapsPlugin(gadgetId);

21. }

22. ...

23. }

Listing 13: Geolocation – passing the GadgetIdentifier to MapsPlugin (SwingGadget-Impl.)

Within the MapsPlugin implementation, the inner method GeolocationEntry get(final

GadgetIdentifier gadgetId) is called first. This returns the GeolocationEntry, which is

assigned to the input component with the passed GadgetIdentifier. If a

GeolocationEntry still does not exist for this input component (entry==null), a new entry

is created (new GeolocationEntry(gadgetId, ...);). The GadgetIdentifier of the

input component (among other things) is passed to the constructor.

1. public class MapsPlugin implements TabListener, BrowserListener {

2. ...

3. /**

4. * Checks if registered geolocation entries contains one with the

5. * specified gadget id.

6. *

7. * @param gadgetId gadget id to search for

8. * @return {@code true} if the given identifier exists in this maps

9. * plugin, {@code false} otherwise

10. */

11. public boolean contains(final GadgetIdentifier gadgetId) {

12. return _application != null && get(gadgetId) != null;

13. }

14.

15. /**

16. * Register a geolocation instance with the specified

17. * latitude/longitude position and modification listener.

18. *

19. * @param gadgetId gadget id of geolocation

20. */

21. public void add(final GadgetIdentifier gadgetId, ...) {

22. ensureApplicationTab();

23. GeolocationEntry entry = get(gadgetId);

24. if (entry == null) {

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 83

25. entry = new GeolocationEntry(gadgetId, ...);

26. synchronized (_entries) {

27. _entries.add(entry);

28. }

29. } else {

30. ...

31. }

32. }

33.

34. ...

35. private GeolocationEntry get(final GadgetIdentifier gadgetId) {

36. synchronized (_entries) {

37. for (final GeolocationEntry entry : new

 ArrayList<GeolocationEntry>(_entries)) {

38. if (entry.getGadgetId().equals(gadgetId)) {

39. return entry;

40. }

41. }

42. return null;

43. }

44. }

45.

46. ...

47. private static class GeolocationEntry {

48. private final String _uuid;

49. private final GadgetIdentifier _gadgetId;

50.

51. GeolocationEntry(final GadgetIdentifier gadgetId, ...) {

52. _uuid = "uuid:" + gadgetId.hashCode();

53. _gadgetId = gadgetId;

54. ...

55. }

56.

57. ...

58. }

59. }

Listing 14: Geolocation – creating a new GeolocationEntry (MapsPlugin-Impl.)

A new instance of the type GeolocationEntry, in addition to the passed

GadgetIdentifier, for the unique assignment of the entry to a SwingGadget input component

on the Java side, contains another variable uuid (universal unique identifier), for unique

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 84

assignment of the entry on the JavaScript side. Within the example implementation, this variable

is assigned a unique hash value, which is based on the hash value of the corresponding

GadgetIdentifiers and is returned via the int hashCode() method of the

GadgetIdentifier class.

Background: Communication between the Java environment of FirstSpirit SiteArchitect and the

native level of the integrated browser takes place via JavaScript. The JavaScript code to be run

is passed as a string. The additional variable is necessary, as an instance of the type

GadgetIdentifier cannot be converted into an object of the type String. (MapsPlugin – run

JavaScript (Java » JavaScript) see Chapter 4.3.4 page 72).

Initially therefore, only one Java object exists (of the type GeolocationEntry), which contains

the required coordinate and information for assignment of this coordinate to an input component.

In the next step this information must be assigned to a Google GMarker object within the

JavaScript environment. The insertion of a marker (GMarker) in the map display is controlled by

a JavaScript function. The corresponding call is first compiled within the MapsPlugin

implementation and is then run using the void executeScript(String script) method

(see Chapter 4.3.4).

1. public class MapsPlugin implements TabListener, BrowserListener {

2. ...

3. /**

4. * Updates browser and google map instance.

5. * This method must be called to update geolocation

6. * entries and viewport.

7. */

8. public void updateBrowser() {

9. ...

10. final GeolocationEntry location;

11. buf.append(getScriptAddOverlay(location));

12. ...

13. final String script = buf.toString();

14. ...

15. _application.executeScript(script);

16. }

17.

18. /**

19. * Build script code to adding a geolocation entry to map.

20. *

21. * @param location related geolocation entry

22. * @return script code

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 85

23. */

24. private String getScriptAddOverlay(final GeolocationEntry location)

 {

25. final StringBuilder buf = new StringBuilder();

26. buf.append("window.addOverlay('")

27. .append(location.getUUID()).append("',")

28. .append(location.getLatitude()).append(',')

29. .append(location.getLongitude()).append(");");

30. return buf.toString();

31. }

32. }

Listing 15: Geolocation – passing information from the GeolocationEntry object (MapsPlugin-Impl.)

The script fragment returned by the getScriptAddOverlay(…) method looks like this (for

information on the window object, see Chapter 4.3.13):

window.addOverlay('uuid:-336359343',51.50297,7.52914);

This call is used not only to pass the latitude and longitude value but also the uuid value of the

current GeolocationEntrys from the Java implementation to the JavaScript implementation.

The corresponding JavaScript function window.addOverlay = function(uuid, latitude,

longitude) from the maps.html file accepts this parameter and, based on this information, inserts

a new GMarker object in the map display8
.

1. window.Mapping = {}; // UUID <> GMarker instance

2. /**

3. * Add an marker to the GMap2 instance.

4. *

5. * @param uuid UUID of geolocation instance

6. * @param latitude

7. * @param longitude

8. */

9. window.addOverlay = function(uuid, latitude, longitude) {

8
 For further information see Google Maps API reference:

http://code.google.com/intl/de/apis/maps/documentation/javascript/v2/reference.html#GMarker

http://code.google.com/intl/de/apis/maps/documentation/javascript/v2/reference.html#GMarker

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 86

10. var marker = new GMarker(new GLatLng(latitude, longitude),

 {draggable: true});

11. window.GoogleMap.addOverlay(marker);

12. GEvent.addListener(marker, 'dragend', function() {

13. var point = marker.getLatLng();

14. var newlat = point.lat();

15. var newlng = point.lng();

16. window.GeolocationUpdater.update(uuid, newlat, newlng);

17. updateInfo(uuid, newlat, newlng);

18. });

19. if (window.HtmlCache[uuid]) {

20. marker.bindInfoWindowHtml(window.HtmlCache[uuid],

 {maxWidth:300});

21. }

22. if (window.EditableCache[uuid] === false) {

23. marker.disableDragging();

24. }

25. window.EditableCache[uuid] = null;

26. window.Mapping[uuid] = marker;

27. };

Listing 16: Geolocation – adding GMarker object to the map display (maps.html)

The Java environment (or the input component GeolocationSwingGadget) must be informed of

all changes to the marker (GMarker object). For example, if a geocoding request is sent via the

Google Maps API, the address information determined should be updated in the SwingGadget

input component. The same applies to a change to the GMarker object within the web

application (e.g. by moving the marker in the map display). This means that the information from

the GMarker object must be reassigned to a GeolocationEntry of the Java environment. The

uuid variable is used for this.

If an update is made using the GeolocationUpdater object, the uuid value (and the changed

latitude and longitude values) is passed to the update method of the MapsPlugin implementation

(see Chapter 4.3.5 page 76). The uuid value can be used for renewed assignment of the entry

to an input component in the Java environment. The internal method GeolocationEntry

get(final String uuid) of the MapsPlugin implementation is used for this. The method

returns the GeolocationEntry of the input component with the passed uuid. The changed

latitude and longitude values can then be updated on the matching GeolocationEntry within the

Java environment. The ModificationListener belonging to the input component is informed

of the update.

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 87

1. public class MapsPlugin implements TabListener, BrowserListener {

2. private final List<GeolocationEntry> _entries = new

 ArrayList<GeolocationEntry>();

3.

4. /**

5. * Updates the geolocation of the specified geolocation entry and

6. * may notify the related modification listener.

7. *

8. * @param uuid UUID of geolocation instance

9. * @param latitude decimal latitude value

10. * @param longitude decimal longitude value

11. */

12. public void update(final String uuid, final double latitude, final

 double longitude) {

13. final GeolocationEntry location = get(uuid);

14. if (location != null) {

15. location.setLatitude(latitude);

16. location.setLongitude(longitude);

17. location.notifyPointModification();

18. }

19. }

20. ...

21. //--- inner methods ---//

22. private GeolocationEntry get(final String uuid) {

23. synchronized (_entries) {

24. for (final GeolocationEntry entry : new

 ArrayList<GeolocationEntry>(_entries)) {

25. if (entry.getUUID().equals(uuid)) {

26. return entry;

27. }

28. }

29. return null;

30. }

31. }

32.

33. ...

34. }

Listing 17: Geolocation – assignment of the GeolocationEntries back into the Java environment (MapsPlugin-Impl.)

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 88

4.3.7 Listener – responding to changes

The FirstSpirit AppCenter API has been enhanced to include two listener interfaces, which

respond to events within the browser instance and within the application tab:

 TabListener interface (for a description of the interface, see Chapter 3.5, page 44, for

an example see Chapter 4.3.7.1, page 88).

 BrowserListener interface (for a description of the interface see Chapter 3.8 page 48, for

an example implementation, see Chapter 4.3.7.2 page 90).

Apart from these default interfaces of the FirstSpirit AppCenter API, integration of the Google

Maps web application requires a further listener implementation which responds to events within

the integrated application, for example, moving a marking (GMarker) by means of Drag&Drop by

the user:

 ModificationListener interface (for a description of the interface see Chapter 4.3.7.3

page 92, for an example see Chapter 4.3.8 page 93).

In addition, within the example implementation, a Java AWT EventListener is used, which should

at least be mentioned briefly here. A HierarchyListeners can be used to hang the

GeolocationSwingGadget input component into the hierarchy of the FirstSpirit input

components. This is necessary so that updating of the application area takes place on changing

workspaces (or the geolocation input component) (see Chapter 4.3.9 page 101).

4.3.7.1 TabListener

An application tab can be controlled by events. To respond to internal or external event, an

instance of the type TabListener must be registered on the application tab. A TabListener

is added to the ApplicationTab by calling the addTabListener(…) method. In this example

the MapsPlugin class implements the TabListener interface itself, therefore, all methods of

the interface must also be implemented (Note: If this is not wanted, the corresponding adapter

class should be used (see Chapter 3.5)).

When the application tab is closed by the user, the FirstSpirit Framework responds by calling the

void tabClosed()method. This method is implemented within the example implementation.

Background: The implementation provides for the assignment of a certain marker (a geographic

coordinate) to each CUSTOM_GEOLOCATION input component within a Google Maps map display

(see Chapter 4.3.6). The GeolocationEntries are managed in an ArrayList. If an editor

closes the Applications tab of the Google Maps integration, the list of GeolocationEntries should

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 89

be discarded.

When the application tab is selected by the user, the FirstSpirit Framework responds by calling

the void tabClosed()method. This method is implemented within the example

implementation, in order to focus on the currently selected browser instance. To do this, the

SwingUtilities.invokeLater(new Runnable() {… call is used to pass the

BrowserApplication.focus() method to the Swing-EventQueue (see Chapter 3.7). As a

result the focusing is performed asynchronously, only after the end of all events.

Background: It is only possible to use the mouse wheel to zoom within the integrated web

application if the focus is also on the application. This can either be implemented manually by the

user (click the application) or by the developer, as in this example.

1. public class MapsPlugin implements TabListener, ... {

2. ...

3. /**

4. * Get BrowserApplication instance and may initialize it.

5. *

6. * @return BrowserApplication instance

7. */

8.

9. private BrowserApplication getApplication() {

10. if (_application == null) {

11. ...

12. _tab = service.openApplication(...);

13. _tab.addTabListener(this);

14. ...

15. }

16. return _application;

17. }

18.

19. //--- TabListener ---//

20.

21. public void tabSelected() {

22. if (_focus) {

23. SwingUtilities.invokeLater(new Runnable() {

24. public void run() {

25. _application.focus();

26. }

27. });

28. _focus = false;

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 90

29. }

30. }

31.

32.

33. public void tabDeselected() {

34. }

35.

36.

37. public void tabClosed() {

38. synchronized (_entries) {

39. _entries.clear();

40. }

41. _active = false;

42. _application = null;

43. }

44. }

Listing 18: Geolocation – registering and using the TabListener (MapsPlugin-Impl.)

4.3.7.2 BrowserListener

In addition to the TabListener, the example implementation uses an instance of the type

BrowserListener. Access to the content of the browser instance can be controlled with the

help of a BrowserListener. A BrowserListener is registered by calling the

addBrowserListener(…) method on the BrowserApplication. In this example the

MapsPlugin class implements the BrowserListener interface itself, therefore, all methods of

the interface must also be implemented (Note: If this is not wanted, the corresponding adapter

class should be used (see Chapter 3.8)).

The example implementation uses the void onDocumentComplete(…) method to inject the

Java object GeolocationUpdater into the web browser instance (see Chapter 4.3.5 page 76). The

method is called if the BrowserListener of the browser instance (or of the instance of the type

BrowserApplication) reports that the Html document (including all images) has been

completely loaded. Background: This is necessary to ensure orderly access to the Dom tree

(w3c-DOM) (DOM access concept - see Chapter 2.2 page 32).

In addition, the void onLocationChange(@NotNull String url) method is used. The

method is called if the BrowserListener reports that the URL of the browser instance (or the

instance of the type BrowserApplication) has changed. In this case the Boolean _active is

set to value false. As a result, updating of the browser instance and focusing are prevented.

1. public class MapsPlugin implements ..., BrowserListener {

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 91

2. ...

3. private boolean _active;

4. /**

5. * Get BrowserApplication instance and may initialize it.

6. *

7. * @return BrowserApplication instance

8. */

9.

10. private BrowserApplication getApplication() {

11. if (_application == null) {

12. ...

13. _tab = service.openApplication(...);

14. ...

15. _application = _tab.getApplication();

16. _application.addBrowserListener(this);

17. ...

18. }

19. return _application;

20. }

21.

22.

23. //--- BrowserListener ---//

24.

25.

26. public void onLocationChange(@NotNull final String url) {

27. _active = false;

28. }

29.

30.

31. public void onDocumentComplete(final String url) {

32. final BrowserApplication application = getApplication();

33.

34. // document is loaded; inject java/javascript bridge

35. application.inject(new GeolocationUpdater(this),

 "GeolocationUpdater");

36.

37. _active = true;

38.

39. // initialize map viewport and marker

40. updateBrowser();

41.

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 92

42. if (_focus) {

43. SwingUtilities.invokeLater(new Runnable() {

44. public void run() {

45. application.focus();

46. }

47. });

48. _focus = false;

49. }

50. }

Listing 19: Geolocation – registering and using a BrowserListener (MapsPlugin-Impl.)

4.3.7.3 ModificationListener

Apart from the two default listeners, another interface is also required for the example

implementation – a ModificationListener, which is responsible for updating the information within

the SwingGadget input component.

 The ModificationListener interface is not a part of the FirstSpirit AppCenter API, but

instead is part of the example implementation for Google Maps integration.

The input component GeolocationSwingGadget saves a geographic coordinate, consisting of two

decimal values (geographic longitude and latitude) and the complete address information (street,

town, country) corresponding to this coordinate (see description of the input component in

Chapter 4.3.1). These values are determined by the web application Google Maps and must be

communicated from the browser instance into the FirstSpirit Java environment.

To this end, the GeolocationSwingGadget class implements the ModificationListener

interface. The interface provides the following methods:

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 93

1. package de.espirit.firstspirit.opt.geolocation.google;

2.

3. public interface ModificationListener {

4.

5. void onModification(double latitude, double longitude);

6.

7. void onModification(String address);

8. }

Listing 20: Geolocation – ModificationListener interface (not part of the AppCenter-API)

The corresponding methods are implemented in the example implementation and are

responsible for:

 updating the latitude, longitude values

 updating the address information

 updating the thumbnail display

which are displayed within the input component (see Chapter 4.3.8 page 93). The methods of the

interfaces are then called, if the address information or the coordinate (latitude and longitude

values) within the browser instance have changed.

4.3.8 Updating the geodata of the input component (JavaScript » Java)

The input component GeolocationSwingGadget is closely linked to the web application Google

Maps. This means, if the geoinformation (or the position of the GMarker object) changes within

the integrated Google Maps application, the values of the corresponding SwingGadget input

component must also be updated (for a description of the use case, see Chapter 4.2.2, page 58).

The passing of the values from the web application into the FirstSpirit Java environment is

triggered by the Java object GeolocationUpdater, which is injected into the browser instance

at a suitable time (see Chapter 4.3.5 page 76). The GeolocationUpdater class has the

void update(String uuid, double latitude, double longitude) method and the

void info(final String uuid, final String address) method, which communicate

the changed values to the Java object GeolocationEntry of the SwingGadget input

component and inform the ModificationListener belonging to the input component of the

update (for a description of the ModificationListener interface see Chapter 4.3.7.3).

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 94

H
T
M

L
 D

o
c
u

m
e

n
t

M
a

p
s
P

lu
g

in
.u

p
d

a
te

(f
in

a
l
S

tr
in

g
 u

u
id

,

fi
n

a
l
d

o
u

b
le

 l
a

ti
tu

d
e
,

fi
n

a
l
d

o
u

b
le

 l
o

n
g

it
u

d
e
)

J
a

v
a

S
c
ri
p

t

w
in

d
o

w
.G

e
o

lo
c
a

ti
o

n
U

p
d

a
te

r.
u

p
d

a
te

(u
u

id
,
la

ti
tu

d
e

,
lo

n
g

it
u

d
e

);

N
a

ti
ve

 C
o

d
e

M
a

p
s
P

lu
g

in
.G

e
o

lo
c
a

ti
o

n
E

n
tr

y
.

n
o

ti
fy

P
o

in
tM

o
d

if
ic

a
ti
o

n
()

;

M
a

p
s
P

lu
g

in
.G

e
o

lo
c
a

ti
o

n
E

n
tr

y
.

n
o

ti
fy

P
o

in
tM

o
d

if
ic

a
ti
o

n
()

G
e

o
lo

c
a

ti
o

n
S

w
in

g
G

a
d

g
e

t.
o

n
M

o
d

if
ic

a
ti
o

n

(l
a

ti
tu

d
e

,
lo

n
g

it
u

d
e
);

G
e

o
lo

c
a

ti
o

n
S

w
in

g
G

a
d

g
e

t.
o

n
M

o
d

if
ic

a
ti
o

n
(d

o
u

b
le

la
ti
tu

d
e

,
d

o
u

b
le

 l
o

n
g

it
u

d
e

)

u
p

d
a

te
D

e
ta

il(
);

M
a

p
s
P

lu
g

in
.o

n
D

o
c
u

m
e

n
tC

o
m

p
le

te
(f

in
a

l
S

tr
in

g

u
rl
)

B
ro

w
s
e

rA
p

p
lic

a
ti
o

n
.i
n

je
c
t(

n
e

w

G
e

o
lo

c
a

ti
o

n
U

p
d

a
te

r(
th

is
),

"G
e

o
lo

c
a

ti
o

n
U

p
d

a
te

r"
);

M
a

p
s
P

lu
g

in
.G

e
o

lo
c
a

ti
o

n
U

p
d

a
te

r.
u

p
d

a
te

(f
in

a
l
S

tr
in

g
 u

u
id

,
fi
n

a
l
d

o
u

b
le

 l
a

ti
tu

d
e
,

fi
n

a
l

d
o

u
b

le
 l
o

n
g

it
u

d
e

)

M
a

p
s
P

lu
g

in
.u

p
d

a
te

(u
u

id
,
la

ti
tu

d
e

,
lo

n
g

it
u

d
e

);

M
a

p
s
P

lu
g

in
.G

e
o

lo
c
a

ti
o

n
U

p
d

a
te

r.
in

fo

(f
in

a
l
S

tr
in

g
 u

u
id

,
fi
n

a
l
S

tr
in

g
 a

d
d

re
s
s
)

M
a

p
s
P

lu
g

in
.G

e
o

lo
c
a

ti
o

n
E

n
tr

y
.

n
o

ti
fy

A
d

d
re

s
s
M

o
d

if
ic

a
ti
o

n
()

 M
a

p
s
P

lu
g

in
.G

e
o

lo
c
a

ti
o

n
E

n
tr

y
.n

o
ti
fy

A
d

d
re

s
s
M

o

d
if
ic

a
ti
o

n
()

S
w

in
g

G
a

d
g

e
t.
o

n
M

o
d

if
ic

a
ti
o

n
(_

a
d

d
re

s
s
);

e
x
e

c
u

te
 J

a
v
a

S
c
ri
p

t

C
a

lli
n

g
 t
h

e
 J

a
v
a

u
p

d
a

te
 m

e
th

o
d

 o
n

th
e

G
e

o
lo

c
a

ti
o

n
U

p
d

a
te

r

o
b

je
c
t
to

 u
p

d
a

te
 t
h

e

n
e

w
 L

a
tL

n
g

 v
a

lu
e

s

G
e

o
lo

c
a

ti
o

n
S

w
in

g
G

a
d

g
e

t.
o

n
M

o
d

if
ic

a
ti
o

n
(f

in
a

l

S
tr

in
g

 a
d

d
re

s
s
)

u
p

d
a

te
D

e
ta

il(
);

Im
p

le
m

e
n

ts
 t
h

e

In
te

rf
a

c
e

M
o

d
if
ic

a
ti
o

n
L

is
te

n
e

r

u
p

d
a

te
In

fo
(u

u
id

,
la

ti
tu

d
e

,
lo

n
g

it
u

d
e
);

fu
n

c
ti
o

n
 u

p
d

a
te

In
fo

(u
u

id
,

la
ti
tu

d
e
,

lo
n

g
it
u

d
e

)

w
in

d
o

w
.G

e
o

lo
c
a

ti
o

n
U

p
d

a
te

r.
in

fo
(u

u
id

,
re

s
p

o
n

s
e
.P

la
c
e

m
a

rk
[0

].
a

d
d

re
s
s
);

B
ro

w
s
e

rL
is

te
n

e
r

n
o

ti
fi
e

s
:

H
T

M
L

 D
o

c
u

m
e

n
t
is

 f
u

lly

lo
a

d
e

d
.

A
P

I
In

je
c
ti
o

n
 o

f
J
a

v
a

 o
b

je
c
t
G

e
o

lo
c
a

ti
o

n
U

p
d

a
te

r

U
p

d
a

te
s
 t
h

e
 i
n

p
u

t

c
o

m
p

o
n

e
n

t
v
a

lu
e

s
 a

n
d

 t
h

e

th
u

m
b

n
a

il
p

re
v
ie

w
 b

it
m

a
p

to
 t
h

e
 n

e
w

 c
o

o
rd

in
a

te
.

C
a

lli
n

g
 t
h

e
 J

a
v
a

 i
n

fo

m
e

th
o

d
 o

n
 t
h

e

G
e

o
lo

c
a

ti
o

n
U

p
d

a
te

r

o
b

je
c
t
to

 u
p

d
a

te
 t
h

e

n
e

w
 a

d
re

s
s

In
fo

rm
a

ti
o

n
.

Im
p

le
m

e
n

ts
 t
h

e

In
te

rf
a

c
e

s
 T

a
b

L
is

te
n

e
r

a
n

d
 B

ro
w

s
e

rL
is

te
n

e
r

U
p

d
a

te
s
 t
h

e
 i
n

p
u

t

c
o

m
p

o
n

e
n

t
a

d
re

s
s

in
fo

rm
a

ti
o

n
.

M
a

p
s
P

lu
g

in
.i
n

fo
(u

u
id

,
a

d
d

re
s
s
);

M
a

p
s
P

lu
g

in
.i
n

fo
(f

in
a

l
S

tr
in

g
 u

u
id

,
fi
n

a
l
S

tr
in

g

a
d

d
re

s
s
)

u
p

d
a

te
T

h
u

m
b

n
a

il(
);

F
ir

s
tS

p
ir

it
™

 S
it

e
A

rc
h

it
e

c
t

S
w

in
g

G
a

d
g

e
t

In
p

u
t

c
o

m
p

o
n

e
n

t
M

a
p

s
P

lu
g

in
F

ir
s
tS

p
ir

it
 b

ro
w

s
e

r
e

n
g

in
e

U
p

d
a

ti
n

g
 i
n

p
u

t
c
o

m
p

o
n

e
n

ts

Figure 21: Updating the input component

The Java methods responsible for the update are called from the HTML document via JavaScript

calls (see Chapter 4.3.5.). This always takes place if the GMarker object is changed within the

Google Maps application, for example, by a drag-and-drop action of the editor within the Google

Maps map display or by a search query via the address field of the SwingGadget input

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 95

component.

<html>

 <head>

 <title>Google Maps</title>

 ...

 window.GeolocationUpdater = null;

 /**

 * Notify MapsPlugin about latitude/longitude modification.

 * @param uuid UUID of geolocation instance

 * @param latitude

 * @param longitude

 */

 function updateInfo(uuid, latitude, longitude) {

 var request = new GetLocationsRequest(new GLatLng(latitude, longitude));

 request.execute(function(response) {

 window.GeolocationUpdater.info(uuid,

 response.Placemark[0].address);

 });

 }

 /**

 * Add an marker to the GMap2 instance.

 * @param uuid UUID of geolocation instance

 * @param latitude

 * @param longitude

 */

 window.addOverlay = function(uuid, latitude, longitude) {

 var marker = new GMarker(new GLatLng(latitude, longitude), {draggable:

true});

 window.GoogleMap.addOverlay(marker);

 GEvent.addListener(marker, 'dragend', function() {

 var point = marker.getLatLng();

 var newlat = point.lat();

 var newlng = point.lng();

 window.GeolocationUpdater.update(uuid, newlat, newlng);

 updateInfo(uuid, newlat, newlng);

 });

 ...

 };

Listing 21: Geolocation – Initiate updating via the GeolocationUpdater object (maps.html)

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 96

If the GMarker object within the web application is changed, first of all

window.GeolocationUpdater.update(uuid, newlat, newlng) is called (see Figure

21). This call is evaluated on the Java side where it triggers the running of the Java method

GeolocationUpdater.update(final String uuid, final double latitude,

final double longitude) (see Chapter 4.3.5 page 76). The changed latitude and

longitude values and a uuid value are passed to the method. The uuid value is used to get the

GeolocationEntry of the SwingGadget. This is done using the internal method

GeolocationEntry get(final String uuid) of the MapsPlugin implementation (see

Chapter 4.3.6). The changed latitude and longitude values are then set on the

GeolocationEntry and the corresponding ModificationListener is informed about the

update. To do this, the GeolocationEntry.notifyPointModification() method is

called. This method in turn calls the Method

ModificationListener.onModification(double latitude,

double longitude) method of the inner GeolocationEntry class.

35. public class MapsPlugin implements TabListener, BrowserListener {

36. private final List<GeolocationEntry> _entries = new

 ArrayList<GeolocationEntry>();

37.

38. /**

39. * Updates the geolocation of the specified geolocation entry and

40. * may notify the related modification listener.

41. *

42. * @param uuid UUID of geolocation instance

43. * @param latitude decimal latitude value

44. * @param longitude decimal longitude value

45. */

46. public void update(final String uuid, final double latitude, final

 double longitude) {

47. final GeolocationEntry location = get(uuid);

48. if (location != null) {

49. location.setLatitude(latitude);

50. location.setLongitude(longitude);

51. location.notifyPointModification();

52. }

53. }

54. ...

55. //--- inner methods ---//

56. private GeolocationEntry get(final String uuid) {

57. synchronized (_entries) {

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 97

58. for (final GeolocationEntry entry : new

 ArrayList<GeolocationEntry>(_entries)) {

59. if (entry.getUUID().equals(uuid)) {

60. return entry;

61. }

62. }

63. return null;

64. }

65. }

66.

67. ...

68. private static class GeolocationEntry {

69. private ModificationListener _listener;

70.

71. GeolocationEntry(..., final ModificationListener

 listener) {

72. ...

73. _listener = listener;

74. }

75. ...

76. public void notifyPointModification() {

77. if (_listener != null) {

78. _listener.onModification(_latitude, _longitude);

79. }

80. }

81. ...

82. }

83.

84. public static class GeolocationUpdater {

85.

86. private final MapsPlugin _mapsPlugin;

87. ...

88. public void update(final String uuid, final double

 latitude, final double longitude) {

89. _mapsPlugin.update(uuid, latitude, longitude);

90. }

91. }

92. }

Listing 22: Geolocation – updating the latitude, longitude value (MapsPlugin-Impl.)

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 98

The GeolocationSwingGadget class implements the ModificationListener interface

(for a description of the interface see Chapter 4.3.7.3). The call onModification(double

latitude, double longitude) of the MapsPlugin implementation is therefore passed

directly to the GeolocationSwingGadget.onModification(final double latitude,

final double longitude) method. This accepts the changed latitude and longitude values

and ensures, by calling the updateDetail() method, for updating the values in the input

component. The preview bitmap shown in the input component is also updated by calling the

updateThumbnail() method, is and then displays the changed position.

1. public class GeolocationSwingGadget ... implements

 ModificationListener, ...{

2. ...

3. private double _valueLatitude;

4. private double _valueLongitude;

5. private String _valueAddress;

6. ...

7.

8. public void onModification(final double latitude, final double

 longitude) {

9. _valueLatitude = latitude;

10. _valueLongitude = longitude;

11. updateDetail();

12. updateThumbnail();

13. }

14.

15.

16. public void onModification(final String address) {

17. _valueAddress = address;

18. updateDetail();

19. }

20. }

Listing 23: Geolocation – Using the ModificationListener interface (SwingGadget-Impl.)

The address information, which matches the changed coordinates, must also be updated. To do

this, within the JavaScript environment, first of all a Geolocation request with the changed

latitude, longitude values is sent to Google (new GetLocationsRequest(new

GLatLng(latitude, longitude)); see page 125). This call requests detailed address

information on the basis of the latitude and longitude values passed.

window.GeolocationUpdater.info(uuid, response.Placemark[0]. address) is

then called. This call is evaluated on the Java side where it triggers the running of the Java

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 99

method GeolocationUpdater.info(final String uuid, final String address)

(see Chapter 4.3.5 page 76). The result of the geocoding query and a uuid value are passed to

the method. The uuid value gets the matching GeolocationEntry again. This is done using

the internal method GeolocationEntry get(final String uuid) of the MapsPlugin

implementation (see Chapter 4.3.6).

The address information is then set on the GeolocationEntry and the responsible

ModificationListener is informed about the update. To do this, the

GeolocationEntry.notifyAddressModification() method is called. This method in

turn calls the ModificationListener.onModification(final String address)

method of the inner GeolocationEntry class (see Figure 21).

1. public class MapsPlugin implements TabListener, BrowserListener {

2. private final List<GeolocationEntry> _entries = new

 ArrayList<GeolocationEntry>();

3.

4. /**

5. * Updates the address information of the specified geolocation entry

6. * and may notify the related modification listener.

7. *

8. * @param uuid UUID of geolocation instance

9. * @param address address string of the related geolocation

10. */

11. public void info(final String uuid, final String address) {

12. final GeolocationEntry location = get(uuid);

13. if (location != null) {

14. location.setAddress(address);

15. location.notifyAddressModification();

16. }

17. }

18. ...

19. //--- inner methods ---//

20. private GeolocationEntry get(final String uuid) {

21. synchronized (_entries) {

22. for (final GeolocationEntry entry : new

 ArrayList<GeolocationEntry>(_entries)) {

23. if (entry.getUUID().equals(uuid)) {

24. return entry;

25. }

26. }

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 100

27. return null;

28. }

29. }

30.

31. ...

32. private static class GeolocationEntry {

33. private ModificationListener _listener;

34.

35. GeolocationEntry(..., final ModificationListener

 listener) {

36. ...

37. _listener = listener;

38. }

39. ...

40. public void notifyAddressModification() {

41. if (_listener != null) {

42. _listener.onModification(_address);

43. }

44. }

45. ...

46. }

47.

48. public static class GeolocationUpdater {

49.

50. private final MapsPlugin _mapsPlugin;

51. ...

52.

53. public void info(final String uuid, final String

 address) {

54. _mapsPlugin.info(uuid, address);

55. }

56. }

57. }

Listing 24: Geolocation – Updating the address information (MapsPlugin-Impl.)

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 101

4.3.9 Responding to tree navigation events (Java » JavaScript)

The integrated web application should respond to events within SiteArchitect. This not only

concerns the events triggered by the Geolocation input component (for example, the address

search via the "Search coordinate" button), but also tree navigation events or the change to the

active workspace by the editor. When a new geolocation input component is selected (for

example, via the tree navigation), the map display in the application area must be updated (see

description of the use case in Chapter 4.2.4, fading in/out the map display from one coordinate to

the next on changing between different input components (page 60 f.)). Background: Each input

component is assigned a GeolocationEntry. On changing between two input components the

current map display must be discarded and replaced by a new display with the new coordinate.

With the help of the Java AWT EventListeners HierarchyListener, a mechanism is

implemented, which decides when the map display in the application area has to be updated. To

do this, the input component GeolocationSwingGadget is attached to the hierarchy of the

FirstSpirit input component. If the component hierarchy changes, for example, on changing the

tab in the middle workspace, the HierarchyListener is informed and calls the public void

hierarchyChanged(HierarchyEvent e) method.

The GeolocationSwingGadget class implements this method and calls the

void onShowing(boolean showing) method in it. This method controls the updating of the

Google Maps application in the application area, depending on the viewability of the input

component in the workspace of SiteArchitect. The updating of the browser instance is controlled

by the Boolean showing. Updating should only take place if the geolocation input component is

also visible in the editor's workspace. On calling the void onShowing(boolean showing)

method, e.getChanged().isShowing() is therefore passed. The HierarchyEvent returns the

component, which is at the highest point of the component hierarchy at the time of the event, and

checks whether this component is visible or not.

If the component is visible (showing) the initial map type for the display in the application area is

selected first. Depending on whether or not the input component has been locked to prevent

editing, either the map type Hybrid map is set here or (if the content cannot be changed), the 3D

map display (see Chapter 4.3.18 page 120). The geolocation is then determined by calling the

getValue() method. The method returns an instance of the class GeolocationImpl. The

returned value is passed to the addToMap(…) method, which registers the passed value for a

geolocation input component (see Chapter 4.3.6). In the next step the

getMapsPlugin().updateBrowser() method is called, which initiates the updating of the

browser instance (see Chapter page).

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 102

1. public class GeolocationSwingGadget implements HierarchyListener

 ...

2. {

3. ...

4. public JComponent getComponent() {

5. ...

6. _panel = new JPanel(layout);

7. _panel.addHierarchyListener(this);

8. ...

9. }

10. ...

11. public void hierarchyChanged(final HierarchyEvent e) {

12. if ((e.getChangeFlags() & HierarchyEvent.SHOWING_CHANGED) != 0)

 {

13. onShowing(e.getChanged().isShowing());

14. }

15. }

16.

17. private void onShowing(final boolean showing) {

18. if (getMapsPlugin().isAccessible() && _valueSet) {

19. GuiUtil.execute(new Runnable() {

20. public void run() {

21. if (showing) {

22. final boolean isEditable = _editable;

23. if (isEditable) {

24. getMapsPlugin().setMapType(MapsPlugin.MapType.G_HYBRID_MAP);

25. } else {

26. getMapsPlugin().setMapType(MapsPlugin.MapType.G_SATELLITE_3D_MAP);

27. }

28. addToMap(getValue());

29. getMapsPlugin().updateBrowser();

30. } else {

31. getMapsPlugin().remove(getGadgetId());

32. }

33. }

34. });

35. }

36. }

37. }

Listing 25: Geolocation – Using the EventListener HierarchyListener (SwingGadget-Impl.)

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 103

4.3.10 Updating the browser instance (Java » JavaScript)

The browser instance of the integrated web application must be updated depending on certain

events.

The updateBrowser() method updates the browser instance within the integrated preview of

FirstSpirit SiteArchitect. The method is only run if a Google Maps application already exists and

the Applications tab is displayed in the foreground of the application area.

Search and determining the address details: The search and determination of the address details

takes place by means of the Google Maps API. The geolocation and address detail updates are

passed on to SiteArchitect by means of the injected object and result in updating of the

corresponding input component. The route directions - or the call of the relevant Google Maps /

Bing page - is implemented by a form within the section template. Google Maps and Bing

understandably have different URL parameters, which must be taken into account individually.

1. public class MapsPlugin implements TabListener, BrowserListener {

2. ...

3. private BrowserApplication _application;

4. private boolean _active;

5. ...

6.

7. /**

8. * Updates browser and google map instance.

9. * This method must be called to update geolocation entries and

10. * viewport.

11. */

12. public void updateBrowser() {

13. if (_application != null && _active) {

14. // build script code to update google map

15. final StringBuilder buf = new StringBuilder();

16. buf.append(getScriptClearOverlays());

17. buf.append(getScriptSetMapType(_mapType));

18. for (final GeolocationEntry location : new

 ArrayList<GeolocationEntry>(_entries)) {

19. if (location.isSearchMode()) {

20. buf.append(getScriptFindAddress(location));

21. } else {

22. buf.append(getScriptAddOverlay(location));

23. }

24. buf.append(getScriptSetEditable(location));

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 104

25. buf.append(getScriptSetInfoHtml(location));

26. }

27. buf.append(getScriptSetViewport());

28. final String script = buf.toString();

29.

30. // prevent unnecessary rapidly script executions (may

31. //interfere camera movement), caused by multiple showing

32. //events

33. if (_updateScript == null ||

 !_updateScript.equals(script) || (_updateTime +

 EQUAL_UPDATE_TIMEOUT < System.currentTimeMillis())) {

34. _application.executeScript(script);

35. _updateScript = script;

36. _updateTime = System.currentTimeMillis();

37. }

38. }

39. }

40. /**

41. * Builds script code to clear all overlays from map.

42. *

43. * @return script code

44. */

45. private String getScriptClearOverlays() {

46. return "window.clearOverlays();";

47. }

 /**

 * Builds script code for map type switch.

 *

 * @param type map type to show

 * @return script code

 */

 private String getScriptSetMapType(final MapType type) {

 final StringBuilder buf = new StringBuilder();

 buf.append("window.setMapType(").append(type).append(");");

 return buf.toString();

 }

48. }

49. /**

50. * Build script code for an address search entry.

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 105

51. *

52. * @param location related geolocation entry

53. * @return script code

54. */

55. private String getScriptFindAddress(final GeolocationEntry location) {

56. final StringBuilder buf = new StringBuilder();

57. final String pattern = location.getAddress().replaceAll("'",

"\\\\'");

58. buf.append("window.findAddress('")

59. .append(location.getUUID()).append("', '")

60. .append(pattern).append("');");

61. return buf.toString();

62. }

63. /**

64. * Builds script code to modify editable-state of related geolocation

entry.

65. *

66. * @param location related geolocation entry.

67. * @return script code

68. */

69. private String getScriptSetEditable(final GeolocationEntry location) {

70. final StringBuilder buf = new StringBuilder();

71.

 buf.append("window.setEditable('").append(location.getUUID()).append("',

").append(location.isEditable()).append(");");

72. return buf.toString();

73. }

74. /**

75. * Build script code to update the info html balloon.

76. *

77. * @param location entry to build info html for.

78. * @return script code

79. */

80. private String getScriptSetInfoHtml(final GeolocationEntry location) {

81. final StringBuilder buf = new StringBuilder();

82.

 buf.append("window.setInfoHtml('").append(location.getUUID()).append("', ");

83. String text = location.getInfoText();

84. if (location.getInfoPicture() != null || text != null) {

85. buf.append("\"<span style='font-family: Arial, Sans-Serif;

font-size: 11px;'>");

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 106

86. if (location.getInfoPicture() != null) {

87. buf.append("<img align='right'

src='").append(location.getInfoPicture()).append("' />");

88. }

89. if (text != null) {

90. text = text.replaceAll("\n", "
");

91. text = text.replaceAll("\"", """);

92. buf.append(text);

93. }

94. buf.append("\"");

95. } else {

96. buf.append("null");

97. }

98. buf.append(");");

99. return buf.toString();

100. }

101. /**

102. * Builds script code to modify viewport and show registered geolocation

entries on map.

103. *

104. * @return script code.

105. */

106. private String getScriptSetViewport() {

107. synchronized (_entries) {

108. final StringBuilder buf = new StringBuilder();

109. final MapViewport viewBounds = new MapViewport();

110. for (final GeolocationEntry entry : _entries) {

111. viewBounds.include(entry);

112. }

113. if (viewBounds.getPointCount() == 1) {

114. final double lat = viewBounds.getMinLatitude();

115. final double lng = viewBounds.getMinLongitude();

116. buf.append("window.setViewPoint(")

117. .append(lat).append(',')

118. .append(lng).append(");");

119. } else if (viewBounds.getPointCount() > 1) {

120. final double minlat = viewBounds.getMinLatitude();

121. final double minlng = viewBounds.getMinLongitude();

122. final double maxlat = viewBounds.getMaxLatitude();

123. final double maxlng = viewBounds.getMaxLongitude();

124. buf.append("window.setViewBounds(")

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 107

125. .append(minlat).append(',')

126. .append(minlng).append(',')

127. .append(maxlat).append(',')

128. .append(maxlng).append(");");

129. }

130. return buf.toString();

131. }

132. }

Listing 26: Geolocation –UpdateBrowser (MapsPlugin-Impl.)

4.3.11 MapsPlugin – Address search (Google-Geolocation)

Use case (see Chapter 4.2.1 page 57).

The entry point is, for example, a click on the Search button of the geolocation input component

(see Chapter 4.3.11 page 107). This action triggers the call of the internal search method. The

search method of the SwingGadget implementation passes the GadgetIdentifier of the input

component, the address string from the text field and the ModificationListener (see

Chapter 4.3.7.3 page 92) to the search method of the MapsPlugin implementation.

1. public class GeolocationSwingGadget {

2. ...

3. public JComponent getComponent() {

4. ...

5. final AbstractAction searchAction = new AbstractAction() {

6. public void actionPerformed(final ActionEvent e) {

7. search();

8. getMapsPlugin().updateBrowser();

9. getMapsPlugin().focusBrowser();

10. }

11. };

12. ...

13. }

14.

15. private void search() {

16. final String address = _searchField.getText();

17. ...

18. getMapsPlugin().search(getGadgetId(), address, this);

19. ...

20. updateMapsPlugin(getGadgetId());

21. }

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 108

22. }

There the search mode is switched on first, but a search via the Google Maps API is not yet

started:

1. public class MapsPlugin implements TabListener, BrowserListener {

2. public void search(final GadgetIdentifier gadgetId,...) {

3. entry1.setSearchMode(true);

4. entry1.setAddress(search);

5. }

6. }

The search for a new geographic position takes place via the Search button of the SwingGadget

input component CUSTOM_GEOLOCATION. The editor can enter an address or part of an address

(for example a street name) in the text field provided and start the search within the integrated

web application by clicking the button (see Chapter 4.2.1 page 57).

1. public class GeolocationSwingGadget...{

2. private JTextField _searchField;

3. ...

4. private void search() {

5. final String address = _searchField.getText();

6. if (!StringUtil.isEmpty(address)) {

7. getMapsPlugin().search(getGadgetId(), address, this);

8. }

9. updateMapsPlugin(getGadgetId());

10. }

11. }

Listing 27: Geolocation – Search by means of an address string (SwingGadget-Impl.)

The MapsPlugin getMapsPlugin() method first generates the Singleton instance of the

MapsPlugin class (see Chapter 4.3.2 page 67). The MapsPlugin class has its own search

method. The search method of the SwingGadget implementation passes the

GadgetIdentifier of the input component (GadgetIdentifier see Chapter page), the address

string from the text field and the ModificationListener to the search method of the MapsPlugin

implementation:

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 109

1. public class MapsPlugin implements TabListener, BrowserListener {

2. private final List<GeolocationEntry> _entries = new

 ArrayList<GeolocationEntry>();

3.

4. /**

5. * Register a geolocation instance with the specified address string

6. * and modification listener

7. *

8. * @param gadgetId gadget id of geolocation instance

9. * @param search address string of geolocation

10. * @param listener modification listener, may be null

11. */

12. public void search(final GadgetIdentifier gadgetId, final String

 search, final ModificationListener listener) {

13. ensureApplicationTab();

14. final GeolocationEntry entry = get(gadgetId);

15. if (entry != null) {

16. _entries.remove(entry);

17. }

18. GeolocationEntry entry1 = get(gadgetId);

19. if (entry1 == null) {

20. entry1 = new GeolocationEntry(gadgetId, 0, 0, listener);

21. synchronized (_entries) {

22. _entries.add(entry1);

23. }

24. }

25. entry1.setModificationListener(listener);

26. entry1.setSearchMode(true);

27. entry1.setAddress(search);

28. }

29. }

Listing 28: Geolocation – Search by means of an address string (MapsPlugin-Impl.)

There the ensureApplicationTab() method first checks whether a browser instance of the

web application already exists in the application area of SiteArchitect. If a browser instance does

not yet exist, a new instance is generated (see Chapter 4.3.3 page 68).

To display a new entry within the Google Maps integration, it is necessary to first determine

whether old entries already exist. The example implementation uses the inner method

GeolocationEntry get(final GadgetIdentifier gadgetId) to do this. The method

returns a GeolocationEntry (provided an entry was saved for the component when the Gadget ID

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 110

was passed) or zero (if no entry exists).

1. public class MapsPlugin implements TabListener, BrowserListener {

2. private final List<GeolocationEntry> _entries = new

 ArrayList<GeolocationEntry>();

3.

4. private GeolocationEntry get(final GadgetIdentifier gadgetId) {

5. synchronized (_entries) {

6. for (final GeolocationEntry entry : new

7. ArrayList<GeolocationEntry>(_entries)) {

8. if (entry.getGadgetId().equals(gadgetId)) {

9. return entry;

10. }

11. }

12. return null;

13. }

14. }

15. }

Listing 29: Geolocation – Inner method: Get GeolocationEntry (MapsPlugin-Impl.)

If a GeolocationEntry already exists, the returned entry is then removed from the list of

GeolocationEntries with the help of the remove method (see example on page 109).

The search method then calls the inner method GeolocationEntry get(final

GadgetIdentifier gadgetId) once again. This time there is no entry; the method returns

zero. The search method then creates a new instance of the type GeolocationEntry with the

coordinates 0.0/0.0 and adds this to the list of GeolocationEntries (see example on page 109).

In the next step the setSearchMode(final boolean searchMode) method is called, which

activates the search mode for the new entry. The void setAddress(final String

address) method is then used to save the search string from the input field.

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 111

The SwingGadget implementation now calls the void updateMapsPlugin(final

GadgetIdentifier gadgetId) method (see example on page 108).

1. public class GeolocationSwingGadget...{

2. private boolean _editable;

3. ...

4. private void updateMapsPlugin(final GadgetIdentifier gadgetId) {

5. getMapsPlugin().setEditable(gadgetId, _editable);

6. getMapsPlugin().setInfoPicture(gadgetId, getInfoPicture(),

7. "image/jpeg");

8. getMapsPlugin().setInfoText(gadgetId, getInfoText());

9. }

10.

Listing 30: Geolocation – Updating MapsPlugin (SwingGadget-Impl.)

Other methods of the MapsPlugin implementation are called here on the instance of the type

MapsPlugin. First, the edit mode of the component is switched on, then an info image and an info

text are added:

1. public class MapsPlugin implements TabListener, BrowserListener {

2.

3. /**

4. * Modify editable-state of an google map marker entry specified by the

 gadget id.

5. *

6. * @param gadgetId gadget id of the related geolocation instance

7. * @param editable new editable-state

8. */

9. public void setEditable(final GadgetIdentifier gadgetId, final

 boolean editable) {

10. final GeolocationEntry entry = get(gadgetId);

11. if (entry != null) {

12. entry.setEditable(editable);

13. }

14. }

15.

16. private static class GeolocationEntry {

17. ...

18. private boolean _editable;

19.

20. public void setEditable(final boolean editable) {

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 112

21. _editable = editable;

22. }

23. }

24. }

Listing 31: Geolocation –… (MapsPlugin-Impl.)

1. public class GeolocationSwingGadget...{

2. ...

3. public JComponent getComponent() {

4. @SuppressWarnings({"serial"})

5. final AbstractAction searchAction = new AbstractAction() {

6. public void actionPerformed(final ActionEvent e) {

7. search();

8. getMapsPlugin().

 setMapType(MapsPlugin.MapType.G_HYBRID_MAP);

9. getMapsPlugin().updateBrowser();

10. getMapsPlugin().focusBrowser();

11. }

12. };

13. }

14. }

Listing 32: Geolocation – UpdateBrowser (SwingGadget-Impl.)

This entry is first re-created with the coordinates 0.0/0.0 for the address search (see Chapter

4.3.11 page 107). Then the address string from the input component is set for the

GeolocationEntry (see Listing 7).

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 113

4.3.12 maps.html – Introduction

In principle, two different ways are available for integrating a web application in FirstSpirit. On the

one hand, a global web application can be implemented and installed on the

FirstSpirit server. In this case, the URL of the web application can be called in the integrated

browser. If an independent web application is to be circumvented, however, the required HTML

code can also be easily initiated and called. This second way is also used for the Google Maps

integration introduced here.

The maps.html file is required to initiate the HTML code. The file initially consists of a simple

HTML structure. This structure must now be extended to include the suitable JavaScript or

Google Maps API expressions:

 Load the Google Maps API

 Initialize the container for the map display

 Create new map object

 Centre map on a coordinate

 Define map type

 Load map via events

 Convert address data – geocoding

 GeolocationUpdater (Injection Java / JavaScript)

To do this, the browser must first be informed that it must load an external JavaScript file

The file maps.html has a windows object.

The map is displayed in a Google Maps container:

To prevent an independent web application, an HTML code is directly initiated here, which

initializes a Google Maps container on loading.

The connection between web and Java is made by means of the application integration API. To

prevent an independent web application, an HTML code is directly initiated here, which initializes

a Google Maps container on loading. Within this HTML page, JavaScript methods are defined,

which provide core functions such as "Add entry", "Remove entry" and "Modify viewport". These

JavaScript methods are called on the Java side accordingly in order to display geolocations or to

make them modifiable. IDs are generated for identification of the individual map entries, these

IDs are then used for direct assignment and control. A way back (return path), provided by

means of an object injection, is required here for the modification of the geolocation and the

corresponding change notification. This object has a method for updating the exact geolocation

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 114

and a method by means of which the address string can be updated.

4.3.13 Excursus: HTML and JavaScript

Knowledge of HTML and JavaScript is advantageous in order to understand the following

chapter, but is not absolutely necessary. This chapter provides a brief introductory explanation of

the most important HTML tags and JavaScript object types, which are used within the example

implementation.

Standard HTML basic structure:

<html>

 <head>

 </head>

 <body>

 </body>

</html>

JavaScript: The script language JavaScript can be used to subsequently change HTML pages,

which are displayed within a browser (i.e. have already been loaded by visitors to the page).

JavaScript is an event-controlled language. Certain actions of the user (e.g. a mouse click), can

result in a change to the page. JavaScript is closely linked to the browser, which displays the

HTML page and provides objects and methods for controlling the browser window (see object

window) and for manipulating the DOM tree of an HTML page (see DOM).

Within the HTML file, the browser must be notified that the following code is a JavaScript. To this

end the MIME type ("text/javascript") is given within the script tag. The opening and closing

script tag define where the JavaScript begins and where it ends and therefore form the limits of

the script.

<html>

 <head>

 <script type="text/javascript">

 ...

 </script>

 </head>

 <body>

 </body>

</html>

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 115

window object: Each browser window or each frame has a window object. The window object is

automatically provided by the browser instance, i.e. does not have to be generated beforehand

using the new operator. The object provides methods for modifying the display (e.g. show status

bar) and for controlling with the help of events.

Document Object Model (DOM): The DOM is a standard for the access to the content of an

HTML document. The individual HTML elements of an HTML document are set in a relation to

each other via a tree structure. On the basis of this structure, starting from an element, the script

can navigate to another element of the page and if necessary change it (for example, insert a

tag). The corresponding methods of the DOM can be used to insert tags in specific places in the

HTML page, manipulate attributes or restructure elements. In the following example, for example,

the Google Maps map is inserted within a DIV element in the HTML page.

document object: The document object lies below the window object in the object hierarchy and

is responsible for the content, which is displayed within a browser instance. The document object

is the root node of the tree structure within the DOM. The lower level HTML elements are

accessed by calling the methods made available by the DOM, e.g. getElementById(…). In this

case an element of the HTML page, which has an id attribute, is loaded. In the following

example, the DIV element, which displays the Google Maps map, is referenced. Analogous to

the window object, the document object is also automatically provided by the browser instance,

i.e. does not have to be generated beforehand using the new operator.

4.3.14 maps.html - Loading the Google Maps API

Before the Google Maps API can be used, the integrated browser must first be informed that it

has to load an external JavaScript file. This is achieved within the maps.html file with the

following call:

1. <html>

2. <head>

3. <title>Google Maps</title>

4. <script type="text/javascript"

 src="http://maps.google.com/maps?file=api&v=2&key="></script>

5. <script type="text/javascript">

6. </head>

7. ...

8. </html>

Within the Script tags the browser is notified here that it should load an external JavaScript file

from URL http://maps.google.com/maps?file=api&v=2&key=myKey (for further information see

http://maps.google.com/maps?file=api&v=2&key=myKey

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 116

chapter Excursus: HTML and JavaScript page 114 ff.). This JavaScript file contains all the

necessary functions, classes and libraries, required for use of the Google Maps API. The key

passed here (key=…), must correspond to the previously generated, individual Google Maps API

key (see Chapter 4.1.3 page 54). If the example implementation is to be used, the individual key

must be added within the script tag (e.g. src="http://maps.google.com/

maps?file=api&v=2&key=myKey").

4.3.15 maps.html - Initializing the container for the map display

A central element of the Google Maps integration is the map display. This display takes place

externally via the Google Maps API. However, to display the map in the integrated browser, an

HTML element must be provided, which acts as a kind of placeholder or container for the map.

To this end, a DIV element with an attribute id ("container") is defined within the <body> tags in

the maps.html file.

1. <body>

2. <div id='container'></div>

3. </body>

All HTML nodes of the page are lower level objects of the JavaScript objects document (for

further information see Chapter Excursus: HTML and JavaScript page 114 f.). The id attribute

(here: "container") can be used to reference the DIV element in the Document Object Model

(DOM) of the browser (for further information see Chapter Excursus: HTML and JavaScript page

114 f.). To do this, the getElementById(…) method is called on the document object:

document.getElementById('container');

The Google Maps map display automatically adjusts to the size of the DIV container, in which it

is displayed. The display of the DIV container (e.g. width, height) can be changed within the style

tags via the corresponding style attributes.

1. <style>

2. ...

3. #container {

4. position: absolute;

5. visibility: hidden;

6. width: 100%;

7. height: 100%;

8. }

9. </style>

Initialization of the DIV container (or the map display) is controlled by events, which ensure that

all the files required to run the JavaScript functions have already been loaded (see Chapter

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 117

4.3.19 page 122). If one of the events occurs, the JavaScript function init() is called, which first

generates a new map object (see Chapter 4.3.16 page 117).

4.3.16 maps.html – Creating a new map object

With the help of the JavaScript operator new, the init() function generates a new instance of the

type GMap2 (for a description of the class and the constructor, see Google Maps API

Documentation9).

1. window.GoogleMap = null; // GMap2 instance

2. ...

3.

4. function init() {

5. window.GoogleMap = new GMap2(document.getElementById('container'), {

6. mapTypes: [G_NORMAL_MAP, G_SATELLITE_MAP, G_HYBRID_MAP, G_SATELLITE_3D_MAP]

7. });

8. ...

9. }

GMap2 is the central class of the Google Maps API, which represents the map. For the map to

be displayed in the integrated browser, it must be connected with a DOM node of the HTML

page. To this end, the previously defined DIV element is passed to the constructor. In addition,

the required map types are also passed to the constructor. The example implementation uses

the following map types:

 G_NORMAL_MAP: Display of the map with standard 2D tiles.

 G_SATELLITE_MAP: Display of the map with photo tiles (satellite images).

 G_HYBRID_MAP: Display of the map with photo tiles and tiles for the display of prominent

functions, such as streets and place names.

 G_SATELLITE_3D_MAP: Display of the map as an interactive 3D model of the earth with

satellite images.

Further properties, for example, for zooming within the map, are defined via the corresponding

methods of the Google Maps API10. The control is added to the map with the addControl(...)

method. Within the init function these are a control for swinging and zooming

9
 http://code.google.com/intl/de/apis/maps/documentation/javascript/v2/introduction.html

10
 see http://code.google.com/intl/de-DE/apis/maps/documentation/javascript/v2/reference.html#GMap2

http://code.google.com/intl/de/apis/maps/documentation/javascript/v2/introduction.html
http://code.google.com/intl/de-DE/apis/maps/documentation/javascript/v2/reference.html#GMap2

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 118

(GLargeMapControl), a control for changing the scale (GScaleControl) and buttons for switching

between the defined map types (e.g. map and satellite) (GMapTypeControl).

4.3.17 maps.html - Center map (center point or display area)

In the next step the map display must be initialized. Maps or objects of the type GMap2 must be

centered before they can be displayed in an HTML page. This initialization is achieved by calling

the setCenter() method on the instance of the type GMap2 (see Chapter 4.3.16 page 117).

To do this, first of all the start coordinate must be defined, which is to be displayed in the map

after it has been loaded. The Google Maps API provides the GLatLng11 class for this purpose. An

object of the type GLatLng is a geographic point, which is defined by the corresponding

coordinates, consisting of the geographic northing and easting, or latitude and longitude

(abbreviated form: LatLng). A new object of the type GLatLng is generated by the new operator:

new GLatLng(latitude, longitude)

The coordinates of a new map display are initially set to 0.0/0.0 (see Chapter page).

The GLatLng coordinate must now be passed to the setCenter() method. Optionally, a zoom

level and a map type can also be passed:

<html>

 <head>

 <script ...>

...

window.GoogleMap = null; // GMap2 instance

window.DefaultMapZoom = 18; // Zoom for ~200 meter

function(latitude, longitude) {

...

var zoomLevel = window.DefaultMapZoom;

window.GoogleMap.setCenter(new GLatLng(latitude, longitude), zoomLevel);

...

}

 </script>

11
 see http://code.google.com/intl/de-DE/apis/maps/documentation/javascript/v2/reference.html#GLatLng

http://code.google.com/intl/de-DE/apis/maps/documentation/javascript/v2/reference.html#GLatLng

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 119

 </head>

 <body>

 <div id='container'></div>

 </body>

</html>

The setCenter() method now sets the centre of the map at the passed coordinate (using the

optionally given zoom level and the map type). This method must always be run initially, before

other operations may take place on the map. This also applies to the definition of other map

attributes, for example, the map type (see Chapter 4.3.18 page 120).

Within the example implementation the map is used in two JavaScript functions. The

function(latitude, longitude) determines a centre point of the map view on the basis

of a single coordinate, the function(minLatitude, minLongitude, maxLatitude,

maxLongitude) determines a visible, rectangular selection area of the map view on the basis

of two coordinates, which define the limits of the selection area.

<html>

 <head>

 <script ...>

...

window.GoogleMap = null; // GMap2 instance

/**

 * Set viewport to specified latitude/longitude position.

 *

 * @param latitude

 * @param longitude

 */

window.setViewPoint = function(latitude, longitude) {

 if (window.GoogleMap.getCurrentMapType() == G_SATELLITE_3D_MAP) {

 window.GoogleMap.getEarthInstance(function(ge) {

 if (ge) {

 ge.getOptions().setFlyToSpeed(window.DefaultEarthFlySpeed);

 var lookAt = createEarthLookAt(ge, latitude, longitude);

 ge.getView().setAbstractView(lookAt);

 }

 });

 } else {

 var zoomLevel = window.DefaultMapZoom;

 if (window.LazyMapType == G_SATELLITE_3D_MAP) {

 zoomLevel = window.DefaultEarthZoom;

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 120

 }

 window.GoogleMap.setCenter(new GLatLng(latitude, longitude), zoomLevel);

 if (window.LazyMapType) {

 _setMapType(window.LazyMapType);

 window.LazyMapType = null;

 }

 }

 // map is initially hidden; show map after viewport modification

 document.getElementById('container').style.visibility = "visible";

};

 </script>

 </head>

 <body>

 <div id='container'></div>

 </body>

</html>

4.3.18 maps.html – define map type

To display the map, the map type must be known beforehand. Within the example

implementation, the required map types are passed to the object of the type GMap2 in the

constructor (see Chapter 4.3.16 page 117).

The definition of a map type is ensured in the example implementation, following initialization of

the map, via the JavaScript function _setMapType(type). Within the function, the Google Maps

method setMapType(type:GMapType) is called on the instance of the type GMap2. The required

map type (GMapType12) is passed to the method. The GMapType must be known to the map,

i.e. either given directly in the constructor (see example) or previously added via the method

addMapType(type:GMapType).

The function is not called until after the map has been initialized (see Chapter 4.3.17) using the

setCenter() method, within the JavaScript functions function(latitude, longitude) und

function(minLatitude, minLongitude, maxLatitude, maxLongitude), which

center the map view on a specific coordinate or a specific selection area.

1. <html>

12
 http://code.google.com/intl/de/apis/maps/documentation/javascript/v2/reference.html#GMapType

http://code.google.com/intl/de/apis/maps/documentation/javascript/v2/reference.html#GMapType

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 121

2. <head>

3. <script ...>

4. ...

5. window.GoogleMap = null; // GMap2 instance

6.

7. // earth plugin apply current location on first maptype switch, no

 matter what.

8. // as workaround we change maptype in that case after viewport

 modification not before.

9. // Maptype to set after viewport modification

10. window.LazyMapType = null;

11.

12. function init() {

13. window.GoogleMap = new GMap2(document.getElementById('container'),

 {

14. mapTypes: [G_NORMAL_MAP, G_SATELLITE_MAP, G_HYBRID_MAP,

 G_SATELLITE_3D_MAP]

15. });

16. ...

17. }

18.

19. /**

20. * Set map type to GMap2 instance.

21. *

22. * @param type new maptype

23. */

24. function _setMapType(type) {

25. window.GoogleMap.setMapType(type);

26. ...}

27.

28. /**

29. * Set viewport to specified latitude/longitude position.

30. *

31. * @param latitude

32. * @param longitude

33. */

34. window.setViewPoint = function(latitude, longitude) {

35. ... window.GoogleMap.setCenter(new GLatLng(latitude, longitude),

 zoomLevel);

36. if (window.LazyMapType) {

37. _setMapType(window.LazyMapType);

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 122

38. window.LazyMapType = null;

39. }

40. // map is initially hidden; show map after viewport modification

41. document.getElementById('container').style.visibility = "visible";

42. };

43.

44. window.setViewBounds = function(minLatitude, minLongitude,

 maxLatitude, maxLongitude) {

45. ...

46. if (window.LazyMapType) {

47. _setMapType(window.LazyMapType);

48. window.LazyMapType = null;

49. }

50. // map is initially hidden; show map after viewport modification

51. document.getElementById('container').style.visibility = "visible";

52. };

53. ...

54. </script>

55. </head>

56. <body>

57. <div id='container'></div>

58. </body>

59. </html>

4.3.19 maps.html - load map object via events

The map (or the DIV container in which the map is displayed) is initialized event-controlled by

onLoad or load events. This ensures that all the necessary files, which are required on running

the JavaScript functions, are already loaded. To do this, the window object is extended to include

the EventHandler "onLoad" or "load" (event depends on the integrated browser used) (for further

information see Chapter Excursus: HTML and JavaScript page 114 f.):

1. if (window.attachEvent) {

2. window.attachEvent("onload", init);

3. } else if (window.addEventListener) {

4. window.addEventListener("load", init, false);

5. }

If one of the events occurs, the JavaScript function init() is called, which creates a new map

object (see Chapter 4.3.16 page 117). This map display is then initialized and assigned

attributes. In order for the map to be displayed within the DIV container, the DIV element (and

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 123

therefore the map too) must then be shown. This is achieved by calling

document.getElementById('container').style.visibility = "visible". This

method is not called until after the map has been initialized (see Chapter 4.3.17) using the

setCenter() method, within the JavaScript functions function(latitude, longitude) und

function(minLatitude, minLongitude, maxLatitude, maxLongitude), which

center the map view on a specific coordinate or a specific selection area.

4.3.20 maps.html – converting address data (Geocoding)

Such geographic coordinates consist of two decimal values, which describe a geographic

longitude and latitude. Geocoding is the term used if an address (as an object of the type string)

is converted into a geographic coordinate. Google provides a service for geocoding, which can

be accessed using the GClientGeocoder() object13.

In the example implementation a new object of the type GClientGeocoder() is generated within

the init function:

1. <html>

2. <head>

3. <script type="text/javascript"

 src="http://maps.google.com/maps?file=api&v=2&key="></script>

4. <script type="text/javascript">

5.

6. window.GoogleGeocoder = null; // Geocoder, address <> lat/lng

7. ...

8. function init() {

9. ...

10. window.GoogleGeocoder = new GClientGeocoder();

11. }

This function first determines a geographic coordinate from the passed address parameter (an

object of the type string). Google provides a service (GoogleGeocoder) for this geocoding (see

Chapter 4.3.20 page 123). The location of the Internet access point, from which the query is

made, is also included. Therefore, if only a street name is given for the address search, a

destination near the (starting) location is looked for. Following successful Google geocoding a

13
 http://code.google.com/intl/de-DE/apis/maps/documentation/javascript/v2/services.html#Geocoding_Object

http://code.google.com/intl/de-DE/apis/maps/documentation/javascript/v2/services.html#Geocoding_Object

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 124

callback takes place in the JavaScript function. There a new marker is added to the map display

(via window.addOverlay(…)) and a new center point is set (see Chapter 4.3.17 page 118).

4.3.21 maps.html – GeolocationUpdater (Injection Java / JavaScript)

A Java object (JavaScript proxy –GeolocationUpdater) must be provided in the JavaScript

environment for the communication between the native level of the integrated browser (or the

Google Maps API) and the Java level of FirstSpirit SiteArchitect (see Chapter 4.3.5 page 76).

This object is used to provide unidirectional communication from the JavaScript environment of

the integrated browser into the Java environment of FirstSpirit SiteArchitect. The required Java

object must be injected into the HTML document from the outside (from the Java environment)

(see Chapter 4.3.5 page 76). The FirstSpirit AppCenter API provides the necessary interfaces

and methods (Interface: BrowserApplication see Chapter 3.7 page 45).

The example implementation first generates a Java object of the type GeolocationUpdater in the

Java MapsPlugin class (see Chapter 4.3.5 page 76). The GeolocationUpdater class has the

methods void update(String uuid, double latitude, double longitude), which

update a GeolocationEntry to the passed coordinate and informs the ModificationListener

belonging to the input component of the update and the void info(String uuid,

String address) method, which updates the address information of the GeolocationEntry.

 @SuppressWarnings({"UnusedDeclaration"})

 public static class GeolocationUpdater {

 private final MapsPlugin _mapsPlugin;

 public GeolocationUpdater(final MapsPlugin mapsPlugin) {

 _mapsPlugin = mapsPlugin;

 }

 public void update(final String uuid, final double latitude, final

double longitude) {

 _mapsPlugin.update(uuid, latitude, longitude);

 }

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 125

 public void info(final String uuid, final String address) {

 _mapsPlugin.info(uuid, address);

 }

 }

A new instance of the type GeolocationUpdater is then injected into the HTML document

(maps.html) by calling the void inject(Object object, String name) method. A name

(here: "GeolocationUpdater") is passed, with which this object can be reached within the

JavaScript environment.

application.inject(new GeolocationUpdater(this), "GeolocationUpdater");

Following the injection, not only the object instance itself is available in the JavaScript

environment but also the corresponding methods of the GeolocationUpdater object. This means

that following injection, all methods of the Java GeolocationUpdater class can also be called

within the JavaScript environment. Therefore, in specific terms, the update and info methods,

which are implemented within MapsPlugin, are also available on the proxy within the JavaScript

environment:

1. <html>

2. <head>

3. <title>Google Maps</title>

4. <script type="text/javascript"

 src="http://maps.google.com/maps?file=api&v=2&key="></script>

5. <script type="text/javascript">

6. ...

7. window.GeolocationUpdater = null;

8. /**

9. * Notify MapsPlugin about latitude/longitude modification.

10. *

11. * @param uuid UUID of geolocation instance

12. * @param latitude

13. * @param longitude

14. */

15. function updateInfo(uuid, latitude, longitude) {

16. var request = new GetLocationsRequest(new

 GLatLng(latitude, longitude));

17. request.execute(function(response) {

18. window.GeolocationUpdater.info(uuid,

 response.Placemark[0].address);

19. });

20. }

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 126

21. ...

22. /**

23. * Use Geocoder to find the exact geolocation of the

24. * specified address pattern

25. * @param uuid UUID of geolocation instance

26. * @param pattern address string

27. */

28. window.findAddress = function(uuid, pattern) {

29. window.GoogleGeocoder.getLatLng(pattern,

 function(point) {

30. if (point) {

31. var latitude = point.lat();

32. var longitude = point.lng();

33. window.addOverlay(uuid, latitude,

 longitude);

34. window.setViewPoint(latitude, longitude);

35. window.GeolocationUpdater.update(uuid,

 latitude, longitude);

36. updateInfo(uuid, latitude, longitude);

37. }

38. });

39. };

40. </script>

Listing 33: Geolocation – GeolocationUpdater (maps.html)

To do this, the FirstSpirit Framework generates a corresponding JavaScript method for each

method of the Java object instances. When called from the JavaScript environment, this method

sends an event, which is in turn evaluated on the Java side. Therefore, this means calling:

window.GeolocationUpdater.update(uuid, latitude, longitude);

in a JavaScript function, leads directly to running of the update() method within the Java

MapsPlugin implementation. The suitable Java method is determined from the name and the

passed parameters and is called accordingly.

1. /**

2. * Updates the geolocation of the specified geolocation entry and may

3. * notify the related modification listener.

4. *

5. * @param uuid UUID of geolocation instance

6. * @param latitude decimal latitude value

7. * @param longitude decimal longitude value

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 127

8. */

9. public void update(final String uuid, final double latitude, final double

longitude) {

10. final GeolocationEntry location = get(uuid);

11. if (location != null) {

12. location.setLatitude(latitude);

13. location.setLongitude(longitude);

14. location.notifyPointModification();

15. }

16. }

All parameters passed within the JavaScript environment, are elevated into the Java

environment, analogous to the object conversion to date. As, unlike Java, JavaScript only

supports a limited set of simple data types, the conversion is subject to certain restrictions:

However, there is still a small restriction here. As synchronicity cannot be guaranteed for event

generation/evaluation, returned values of the Java methods are returned by means of callback.

If, therefore, there is a String getName() method, in JavaScript this becomes a void

getName(function:callback) method. Therefore, here the last parameter is always the

corresponding callback.

The inject method can be used to inject any Java object into a JavaScript environment. However,

certain restrictions apply to the methods of this object. For example, only a range of simple data

types are supported. Complex object types not known in JavaScript are not supported.

FirstSpirit™ AppCenter

 FirstSpirit™ V 5.2  APPC_EN_FirstSpirit_AppCenter  0.53  in process  2016-09-20 128

5 Listings

LISTING 1: GEOLOCATION - GENERATING A NEW INSTANCE OF MAPSPLUGIN (SWINGGADGET-IMPL.) 67

LISTING 2: GEOLOCATION – MAPSPLUGIN CONSTRUCTOR (MAPSPLUGIN-IMPL.) ... 67

LISTING 3: GEOLOCATION –BROWSERAPPLICATION INSTANCE AVAILABLE? (MAPSPLUGIN-IMPL.) 68

LISTING 4: GEOLOCATION – OPENING THE APPLICATION WITHIN A TAB (MAPSPLUGIN-IMPL.) 71

LISTING 5: GEOLOCATION – CREATE SCRIPT FOR THE GEO-CODING OF AN ADDRESS STRING (MAPSPLUGIN-IMPL.) 74

LISTING 6: GEOLOCATION – JAVASCRIPT FUNCTION FINDADDRESS (MAPS.HTML) .. 75

LISTING 7: GEOLOCATION – RUN THE COLLATED JAVASCRIPT FRAGMENTS (MAPSPLUGIN-IMPL.) 76

LISTING 8: GEOLOCATION – INJECTION OF JAVA OBJECT GEOLOCATIONUPDATER (MAPSPLUGIN-IMPL.) 77

LISTING 9: GEOLOCATION – GEOLOCATIONUPDATER (MAPSPLUGIN-IMPL.) ... 78

LISTING 10: GEOLOCATION – CALLING A JAVA METHOD FROM THE JAVASCRIPT CODE (MAPS.HTML-IMPL.) 79

LISTING 11: GEOLOCATION – ADDING A NEW GMARKER OBJECT (MAPS.HTML) ... 80

LISTING 12: GEOLOCATION – GEOLOCATIONENTRY CONSTRUCTOR (MAPSPLUGIN-IMPL.) 81

LISTING 13: GEOLOCATION – PASSING THE GADGETIDENTIFIER TO MAPSPLUGIN (SWINGGADGET-IMPL.) 82

LISTING 14: GEOLOCATION – CREATING A NEW GEOLOCATIONENTRY (MAPSPLUGIN-IMPL.) 83

LISTING 15: GEOLOCATION – PASSING INFORMATION FROM THE GEOLOCATIONENTRY OBJECT (MAPSPLUGIN-

IMPL.) .. 85

LISTING 16: GEOLOCATION – ADDING GMARKER OBJECT TO THE MAP DISPLAY (MAPS.HTML) 86

LISTING 17: GEOLOCATION – ASSIGNMENT OF THE GEOLOCATIONENTRIES BACK INTO THE JAVA ENVIRONMENT

(MAPSPLUGIN-IMPL.) ... 87

LISTING 18: GEOLOCATION – REGISTERING AND USING THE TABLISTENER (MAPSPLUGIN-IMPL.) 90

LISTING 19: GEOLOCATION – REGISTERING AND USING A BROWSERLISTENER (MAPSPLUGIN-IMPL.) 92

LISTING 20: GEOLOCATION – MODIFICATIONLISTENER INTERFACE (NOT PART OF THE APPCENTER-API) 93

LISTING 21: GEOLOCATION – INITIATE UPDATING VIA THE GEOLOCATIONUPDATER OBJECT (MAPS.HTML) 95

LISTING 22: GEOLOCATION – UPDATING THE LATITUDE, LONGITUDE VALUE (MAPSPLUGIN-IMPL.) 97

LISTING 23: GEOLOCATION – USING THE MODIFICATIONLISTENER INTERFACE (SWINGGADGET-IMPL.) 98

LISTING 24: GEOLOCATION – UPDATING THE ADDRESS INFORMATION (MAPSPLUGIN-IMPL.) 100

LISTING 25: GEOLOCATION – USING THE EVENTLISTENER HIERARCHYLISTENER (SWINGGADGET-IMPL.) 102

LISTING 26: GEOLOCATION –UPDATEBROWSER (MAPSPLUGIN-IMPL.) ... 107

LISTING 27: GEOLOCATION – SEARCH BY MEANS OF AN ADDRESS STRING (SWINGGADGET-IMPL.) 108

LISTING 28: GEOLOCATION – SEARCH BY MEANS OF AN ADDRESS STRING (MAPSPLUGIN-IMPL.) 109

LISTING 29: GEOLOCATION – INNER METHOD: GET GEOLOCATIONENTRY (MAPSPLUGIN-IMPL.) 110

LISTING 30: GEOLOCATION – UPDATING MAPSPLUGIN (SWINGGADGET-IMPL.) .. 111

LISTING 31: GEOLOCATION –… (MAPSPLUGIN-IMPL.) .. 112

LISTING 32: GEOLOCATION – UPDATEBROWSER (SWINGGADGET-IMPL.) ... 112

LISTING 33: GEOLOCATION – GEOLOCATIONUPDATER (MAPS.HTML) ... 126

	1 Introduction
	1.1 FirstSpirit AppCenter – FirstSpirit as an integration platform
	1.2 Differences between ContentCreator and SiteArchitect
	1.2.1 Project-specific input components
	1.2.2 AppCenter – integrating web applications
	1.2.3 Reports – integrating external databases and services
	1.2.4 Exchanging data using drag-and-drop motions

	1.3 Enhancement of application integration in version 5.1
	1.4 Classification
	1.5 General information
	1.6 Restrictions
	1.7 License model
	1.8 Preview
	1.9 Topics covered in this document

	2 Concept: Integrating a web application into FirstSpirit
	2.1 Communication: FirstSpirit SiteArchitect – web application
	2.1.1 Controlling the integrated browser
	2.1.2 Communication between the browser instance and SiteArchitect
	2.1.3 Converting data types
	2.1.4 Return by means of callback function

	2.2 DOM access: access to the data of the integrated browser

	3 Standard enhancements
	3.1 Interface: ApplicationService
	3.2 Interface: ApplicationTab
	3.3 Interface: ApplicationTabAppearance
	3.4 Interface: ApplicationTabConfiguration
	3.5 Interface: TabListener
	3.6 Abstract Class: ApplicationType
	3.7 Interface: BrowserApplication
	3.8 Interface: BrowserListener
	3.9 Interface: BrowserApplicationConfiguration
	3.10 Interface: ClientServiceRegistryAgent

	4 Example: Integrating Google Maps in FirstSpirit
	4.1 First steps
	4.1.1 Note on the FirstSpirit license model
	4.1.2 Note regarding legal implications
	4.1.3 Generate Google Maps API key
	4.1.4 Note on configuring the FirstSpirit server
	4.1.5 Installing the Google Earth plug-in
	4.1.6 Example project

	4.2 Application areas of the Google Maps integration
	4.2.1 Address search with geolocalization
	4.2.2 Changing the coordinate using the Google Maps integration
	4.2.3 Showing additional information (Google Balloons)
	4.2.4 3D display using Google Earth
	4.2.5 Route directions ("How to find us")

	4.3 Implementation: Application integration for Google Maps
	4.3.1 (SwingGadget) input component CUSTOM_GEOLOCATION
	4.3.2 MapsPlugin – Generating a new instance of the type MapsPlugin
	4.3.3 MapsPlugin – Opening the application within a tab
	4.3.4 MapsPlugin – run JavaScript (Java » JavaScript)
	4.3.5 MapsPlugin - GeolocationUpdater (Injection Java » JavaScript)
	4.3.6 Show markers and assign an input component
	4.3.7 Listener – responding to changes
	4.3.7.1 TabListener
	4.3.7.2 BrowserListener
	4.3.7.3 ModificationListener

	4.3.8 Updating the geodata of the input component (JavaScript » Java)
	4.3.9 Responding to tree navigation events (Java » JavaScript)
	4.3.10 Updating the browser instance (Java » JavaScript)
	4.3.11 MapsPlugin – Address search (Google-Geolocation)
	4.3.12 maps.html – Introduction
	4.3.13 Excursus: HTML and JavaScript
	4.3.14 maps.html - Loading the Google Maps API
	4.3.15 maps .html - Initializing the container for the map display
	4.3.16 maps.html – Creating a new map object
	4.3.17 maps.html - Center map (center point or display area)
	4.3.18 maps.html – define map type
	4.3.19 maps.html - load map object via events
	4.3.20 maps.html – converting address data (Geocoding)
	4.3.21 maps.html – GeolocationUpdater (Injection Java / JavaScript)

	5 Listings

