FirstSpirit™

Unlock Your Content

FirstSpirit™ AppCenter
FirstSpirit™ Version 5.2

Version 0.53

Status in process

Date 2016-09-20

Department FS-Core

Copyright 2016 e-Spirit AG

File name APPC_EN_FirstSpirit_ AppCenter

e-Spirit AG
Stockholmer Allee 24
44269 Dortmund | Germany

T +49 231 .477 77-0
F +49 231 . 477 77-499

info@e-spirit.com
Www.e-spirit.com

e-Spirit

http://www.e-spirit.com/
mailto:info@e-spirit.com
http://www.e-spirit.com/en

FirstSpirit™ AppCenter FirS t Spirit

Table of contents

1 INtrOAUCTION e 4
1.1 FirstSpirit AppCenter — FirstSpirit as an integration platform..................... 4
1.2 Differences between ContentCreator and SiteArchitect.............ccccccevnenee. 5

1.2.1 Project-specific INPUt COMPONENLS.........cccovurririireirirrrieeesseee e 6
1.2.2 AppCenter — integrating web applicationsccocoeeeecccccenenn, 8
1.2.3 Reports — integrating external databases and services................... 10
1.2.4 Exchanging data using drag-and-drop motionsccccceceveuevennes 13
1.3 Enhancement of application integration in version 5.1ccccccevevneeee. 15
1.4 ClaSSIfICALION.........ceuiiiiieieirrr bbb 19
1.5 General INfOrMEALIONccoviiiiieir s 21
1.6 RESIICHONS ..ottt 21
1.7 LiCeNSE MOAEL ..o 23
1.8 PIEVIEW ..ot 24
1.9 Topics covered in this dOCUMENLccccveveeeccccceee e 25

2 Concept: Integrating a web application into FirstSpirit......26

2.1 Communication: FirstSpirit SiteArchitect — web application..................... 26
2.1.1 Controlling the integrated DrowSer ... 26

2.1.2 Communication between the browser instance and SiteArchitect 27

2.1.3 Converting data tYPES ... 30
2.1.4 Return by means of callback functionccccoovrrriicnniciciceenns 31
2.2 DOM access: access to the data of the integrated browser 32

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

FirstSpirit™ AppCenter FirS t Spirit

3 Standard enhanCements. ... ————— 34
3.1 Interface: APPlICAtIONSEIVICE ..o 35
3.2 Interface: AppPliCAtiONTaD ... 37
3.3 Interface: ApplicationTabApPPEAranCe............ccccoeevereeveereceeeeese e, 39
3.4 Interface: ApplicationTabConfiguration ... 42
3.5 Interface: TabLIStENET ... 44
3.6 Abstract Class: ApPliICAtIONTYPEcveerrrieerree s 45
3.7 Interface: BrowSerAppliCatioN..........cccocovciviviiiiiciiiciecceeee e 45
3.8 Interface: BroWSEILISIENET ... 48
3.9 Interface: BrowserApplicationConfiguration ..o, 49
3.10 Interface: ClientServiceRegiStryAgentcccoeveeeeeerceeicereeeeee e, 52

4 Example: Integrating Google Maps in FirstSpirit ... 53
A1 FIISE SIEPS oottt ne s 54

4.1.1 Note on the FirstSpirit license model..........c.ccoorvvnnninnnnnn 54
4.1.2 Note regarding legal implications ..o 54
4.1.3 Generate Google Maps APl KEY ... 54
4.1.4 Note on configuring the FirstSpirit SErver........cccocoevveecccccee, 55
4.1.5 Installing the Google Earth plug-in........cccccocoeviiiiiiiicceeeeeee 56
4.1.6 EXQMPIE PrOJECT ..ot 56
4.2 Application areas of the Google Maps integrationcccecevvriieeennnn. 57
4.2.1 Address search with geolocalization ... 57
4.2.2 Changing the coordinate using the Google Maps integration........ 58
4.2.3 Showing additional information (Google Balloons)cc.......... 59
4.2.4 3D display using Google Earth...........ccccinnnnnnnessseees 60
4.2.5 Route directions ("HOW t0 find US")ccccerreiiirinnnnrreerrrees 61
4.3 Implementation: Application integration for Google Maps..........cccccceeeee. 63

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

FirstSpirit™ AppCenter FirS t Spirit

4.3.1 (SwingGadget) input component CUSTOM GEOLOCATION........... 65
4.3.2 MapsPlugin — Generating a new instance of the type MapsPlugin66
4.3.3 MapsPlugin — Opening the application withinatab......................... 68
4.3.4 MapsPlugin — run JavaScript (Java » JavaScript)..........ccccceevenenee. 72
4.3.5 MapsPlugin - GeolocationUpdater (Injection Java » JavaScript) . 76
4.3.6 Show markers and assign an input component.............c.cccocceveveneeee. 79
4.3.7 Listener — responding to Changes ..o 88

4.3.8 Updating the geodata of the input component (JavaScript » Java)93

4.3.9 Responding to tree navigation events (Java » JavaScript) 101
4.3.10 Updating the browser instance (Java » JavaScript)cccccoceeee. 103
4.3.11 MapsPlugin — Address search (Google-Geolocation).................... 107
4.3.12 maps.html — INtroduCtion.............ccocveveeecccccceee e 113
4.3.13 Excursus: HTML and JavaScCript ... 114
4.3.14 maps.html - Loading the Google Maps APl........cccccovevvvieircnnen. 115
4.3.15 maps.html - Initializing the container for the map display 116
4.3.16 maps.html — Creating a new map ObJecCt.........ccccoevvnniivvsrnicnes 117
4.3.17 maps.html - Center map (center point or display area) 118
4.3.18 maps.html — define Map tyPe......cccovvirrrieee e 120
4.3.19 maps.html - load map object via events.........cccccoovvvvvicsccccne 122
4.3.20 maps.html — converting address data (Geocoding)cccceuueee. 123

4.3.21 maps.html — GeolocationUpdater (Injection Java / JavaScript) .. 124

5 LISTINGS corrererrrrsmmsmsesesessanas 128

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

FirstSpirit™ AppCenter FirS t Spirit

1 Introduction

n This document is provided for information purposes only. e-Spirit may change the
contents hereof without notice. This document is not warranted to be error-free, nor
subject to any other warranties or conditions, whether expressed orally or implied in law,
including implied warranties and conditions of merchantability or fitness for a particular
purpose. e-Spirit specifically disclaims any liability with respect to this document and no
contractual obligations are formed either directly or indirectly by this document. The
technologies, functionality, services, and processes described herein are subject to
change without notice.

1.1 FirstSpirit AppCenter - FirstSpirit as an integration platform

From the outset, FirstSpirit has been conceived and implemented as an integration platform. This
includes consistent focusing of all in-house implementations on the core components of the
"FirstSpirit" product and deliberate outsourcing of specific functions to third party products of the
respective market leaders. The success of such a best-of-breed strategy stands and falls with the
capability of the system integration. The decisive requirement, to enable successful
implementation of this popular outsourcing idea in a software product, is "seamless integration":
there must be no break between the products used for the end user. The user prompting must be
fully integrated, seamless and visually appear to the user as a unified whole.

This idea of seamless integration of third party applications in the FirstSpirit environment is called
"AppCenter".

The FirstSpirit AppCenter provides an area within the editing system, within which independent
applications can run, which are not part of FirstSpirit (so-called "AppCenter applications"”).
Examples of AppCenter applications are the integration of Microsoft Office or the functions for
integrated image editing. The integrated web browsers Mozilla Firefox and Microsoft Internet
Explorer are also AppCenter applications; they are called "integrated preview". All these
AppCenter applications were implemented by e-Spirit as parts of its product. There is also a
range of AppCenter applications, which are implemented as FirstSpirit modules. These
AppCenter modules can be developed by e-Spirit itself, as well as by a partner.

The following examples, which have already been successfully integrated by e-Spirit within the
scope of the AppCenter, give an impression of the options the AppCenter provides in addition to

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

FirstSpirit™ AppCenter FirstSPirit
the applications currently implemented as product components:

= by integrating Google Maps or Google Earth, geocoordinates can be easily and intuitively
used in FirstSpirit SiteArchitect and in ContentCreator (see Chapter 4 page 53).

= by integrating the online video offering of Movingimage24, videos can be selected and
integrated into FirstSpirit with the click of the mouse.

From a technical point of view, the AppCenter consists of a set of interfaces, which have been
released by e-Spirit for use by partners, so that they can implement and integrate individual
applications within the scope of the AppCenter, in order to adapt the FirstSpirit environment to
their special needs. The implementation of AppCenter applications and their integration into
FirstSpirit is generally called "application integration”. This term is used to describe the most
seamless integration possible of third party software, even if it based on completely different
technology, in the editorial interface of SiteArchitect.

To sum up:

= The editor finds a fully-integrated desktop, in which they can immediately work with the tools
they are familiar with (for example, office applications).

= Existing, customized applications can be integrated without a lot of time or effort, even if they
are non-Java applications.

= New mini-apps can be quickly and effectively developed for the customer, tailored to their
use case and based on existing technology. These can be small .NET-based web
applications or Flash applications.

1.2 Differences between ContentCreator and SiteArchitect

FirstSpirit provides all users, regardless of their tasks, a working environment that is tailored
precisely to their needs.

In terms of usability, the browser-based FirstSpirit ContentCreator (formerly "WebClient") offers
an optimized editing environment for efficient content management. FirstSpirit SiteArchitect
(formerly "JavaClient") provides a convenient, Swing-based user interface for the complex needs
of project developers.

Despite the completely different technologies (Java vs. web application), e-Spirit
has succeeded in providing ways to seamlessly integrate "best-of-breed" products into both
environments. Slightly different integration solutions were implemented for the two applications
for technical reasons as well as due to different user prompting and guidance concepts. Newer

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

FirstSpirit™ AppCenter FirS t Spirit

customers will not notice the difference between the two environments despite the way they were
originally developed.

Starting with FirstSpirit 5.1, the features mentioned are generally available both in SiteArchitect
and in ContentCreator. e-Spirit will naturally strive to continue to offer integration solutions for
both environments as long as it is technically feasible.

1.21 Project-specific input components

The flexible FirstSpirit component model offers interfaces that make simple (new) implementation
and functional expansion of input components possible. The implementation of input components
in this case only has to include the desired interface (or the abstract basic implementation) and
fulfill the requirements specified there for the implementation. The surrounding FirstSpirit Gadget
framework then automatically handles all other functions, such as drop handling or highlighting of
search terms in a component.

(For more information on implementing project-specific input components in SiteArchitect, refer
to the section on "Gadgets, Aspects, Brokers and Agents" in the FirstSpirit Manual for
Component Developers).

The input components can be used to copy information in a simple way from third-party systems
to FirstSpirit and to further process them once there. Usually, the input component takes control
of the integrated third-party application and the storage and processing of data. An example of a
client-side application integration via an input component is the integration of Google Maps. In
conjunction with an input component which saves the geo-coordinates, the integrated Google
Maps web applications are used to determine the desired geographic information and to share
the information with FirstSpirit. FirstSpirit then uses the geo-coordinates to develop travel
directions, including a route planning page (for an application example, refer to section 4.3.1,
page 64).

The development of project-specific input components requires a client-side and server-side
implementation, where the client-side implementation is limited strictly to display and control logic
and thus represents the View and Controller areas of the classic MVC pattern.

Particularly when implementing project-specific components for ContentCreator, special
requirements must be fulfilled:

= View (GUI): an attractive graphical representation is crucial for acceptance of a component.
For this purpose, the input components use the standard browser tools, which means that the
GUI is defined using HTML and CSS.

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

FirstSpirit™ AppCenter FirS t SpiritTM

= Controller (operation): in terms of form and subform handling as well as displaying
validation information and changes, it must be possible to integrate the input component into
the existing FirstSpirit forms. A strict Java implementation would be too slow for the frequent
client/server calls. For this reason, this functionality must be provided using a JavaScript
implementation that enables communication with ContentCreator while also providing access
to associated HTML elements and for their part providing functionality in the form of client-
side features. However, access to the Access API is not possible here.

The value medium (i.e. the model from the MVC pattern) is implemented across the clients in
order to ensure compatibility between the two clients. For ContentCreator, data representation is
also required, including serialization and deserialization functions in a JavaScript-compatible
format. This serialization, like some other functions (e.g. drag-and-drop or gadget request
handling), is provided on the front-end server in the form of server-side features, as is already the
case with input components in SiteArchitect. Even if these SiteArchitect and ContentCreator
interfaces are not identical, it is possible to have a common code base and use the Access API.

Edit contents ? X

= Americas Headquarters English v

Company: Address 470 Atlantic Avenue,
Boston, MA 02210
USA

Company: Inform GOOQk—) Maps
picture

Navigation: Defau
Origin

Close

Figure 1-1: ContentCreator - Control of input component (1) and web application (2)

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20 7

FirstSpirit™ AppCenter FirstSPirit
1.2.2 AppCenter - integrating web applications

The client-side application integration is implemented differently in FirstSpirit ContentCreator and
in FirstSpirit SiteArchitect. This is due to the different technical requirements of the two
environments and to the different user guidance concepts.

Integration of external web applications in ContentCreator initially appear to be easier than the
integration of a web application in SiteArchitect, since the web browser is already part of the
ContentCreator runtime environment.

Upon closer inspection, however, a number of integration problems arise primarily due to the
web browser's JavaScript security model. For instance, accessing the HTML content of another
web application (with a different URL) is difficult, even if it "appears" to be seamlessly integrated
via an IFrame. In principle, each whitebox integration in the context of application integration is
not included for FirstSpirit ContentCreator, i.e. the applications to be integrated have to be
prepared specifically for it and the required functions have to be available as a JavaScript-
capable interface.

This is a fundamental difference from the integration of web applications in SiteArchitect, since
the web browser itself is integrated in SiteArchitect and the JavaScript security model can thus
be completely avoided.

Integrated applications are displayed in FirstSpirit SiteArchitect in a permanently visible
"application area" (see Figure 1-2: PixIr integrated web application). A new tab is generated in the
right-hand side of the window for this purpose and access to the integrated browser is required.
The corresponding interfaces are shown in section 0. In the example shown here, the editor can
edit an image in SiteArchitect in which the actual image editing function is handled by the PixIr
web application (see Figure 1-2), which is seamlessly integrated in the FirstSpirit user interface.
The editor will hardly even naotice that the image editing here is handled by an integrated web
application.

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

FirstSpirit™ AppCenter

= Products B withras Homepage «4 Close-up of thin ...
WMetadata
[Thin-layer modules & Close-up of thin-layer solar panel (second)

close-up-of-iyer-solar-panel2

Innerhalb didemoprojektes "Mithras Energy” werden lizenzfreie Bilder von
iStockPhoto ndet. Diese dirfen weder fur Handelszwecke oder zur
Weitergabe It noch verandert und verwendet werden.

iStockPhoto :s requiring no licence are used within the scope of this Mithras
Energy demect. These may not be copied or changed and used, either for

commercial ses o for passing on to others.
Resolutions
Original Resolution JPG 785x523 Pixel .~ 118 KByte
Teaser-Pictures Homepage (... 0 KByte
Teaser-Picture product page... 0 KByte
Products (246*X) 0 KByte
Teaser-Pictures Teaser-Box(... 0 KByte
Product Highlight (155*X) 0 KByte
Text/Picture Section (160*X) 0 KByte
Picture Gallery (158*158) JPG 158 x 158 Pixel .7 11 KByte
Header Picture (980*X) 0 KByte
Product Highlight small (140... 0 KByte

FirstSpirit™

x E Preview: Products 4| Close-up of thin.. x

Medium

Original Resolution Te:
2 785 x 523 (22%) 1

C}, Enhanced image ediing %

Edt image layer Adjustment Fiter View Language

Figure 1-2: Image editing via the integrated PixIr application in SiteArchitect
In ContentCreator, the difference in user prompting and guidance is slight, since, unlike

SiteArchitect, work here is exclusively done in the preview.

To edit the image, a new browser tab is opened (8) in which the image can be edited using the
corresponding Google Drive application, which is once again Pixlr (9) in this case. After
completing the editing process, the changed image data is copied back over to FirstSpirit (5) and
the preview in ContentCreator (7) is updated.

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20 9

FirstSpirit™ AppCenter FirS t SpiritTM

N
AN
&
=
A4
O

Lre L

ST AT
PG e ¢

B

100 % 785x523 px

Figure 1-3: Image editing using Google Drive App Pixlr in ContentCreator
This example very clearly demonstrates that it is possible to integrate a web-based application to

edit images in SiteArchitect as well as in ContentCreator and the functionality appears to be very
similar to the editor even though completely different technologies are used for the respective
application integration.

1.2.3 Reports - integrating external databases and services

Reports are a key source of information in the project. They provide the display of project data or
data from other sources (e.g. web services). The data can be clearly arranged (Snippet view)
and filtered within the report.

The interfaces are provided for this purpose which allow customers and partners to create their
own reports, design how result entries are displayed and thus, for example, expand the default
search options in FirstSpirit SiteArchitect and ContentCreator for specific projects. Project-
specific report implementation based on these interfaces can be implemented with almost
identical functionality in both FirstSpirit environments.

In addition to the standard ContentCreator reports (1), Figure 1-4 shows three additional reports:
"Google Drive Search" (2), "Google Web Search" (3) and "Fotolia" (4).

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20 10

FirstSpirit™ AppCenter FirS t SpiritTM

% = Contents E Media P Actions ? (Enter search ter Search

Bookmarks
& English 33 Sitemap [Kontakt K3 Impressum & RSS Feeds SUCHEN

Tasks.

W Wy elements

| Startseite

Project history
0 results
Related objects

Notifications

Mithras éﬁ\e}\\g(

Solartec\ ik, iehegeistert N
\ \
AN \\

Google Drive Search

Google Web Search

Willkommen bei Mithras Energy i

09.02.2012

EnEkchirs O Sonnenenergie ist die Zukuntt, der wir uns verschrieben haben. Mit unseren Losungen un
31.01.2012 Produkten machten wir Sie optimal fiir diese Zukunft ausstatten. Nur so kann.

Mithras Energy erneut mit dem & First

Solarpreis der Stadt Sonningen

ausgezeichnet Nachhaltigkeit fiir die eigenen vier Wande

Es gibtviele Optionen, das eigene Heim besonders
FirstSpirit ul g htzu . Eine dieser |
maochten wir Ihnen gern ausfiihrlicher anhand unserer
kristallinen Solarmodule vorstellen. Kristalline Module sind
auRerst effizient, da sie durch das amorphe Silizium in
ihrer Struktur bis zu 10 Prozent héhere Wirkungsgrade bei

Die Website mithras-energy.de ist ein
Demoprojekt der e-Spirit AG aus
Dortmund. Weitere Informationen zum
eingesetzten Content Management
System FirstSpirit haben wir fir Sie
zusammengestelt>

der Erzeugung von Sonnenenergie erzielen kdnnen als
vergleichbare Dinnschichtmodule. Welche weiteren
Vorteile kristalline Module fiir Inre Stromversorgung bieten,
erfahren Sie auf diesen Seiten.

L Absatzanlegen emehr Informationen

Figure 1-4: Integration of additional search options in FirstSpirit ContentCreator

The reports are able to accept a high volume of input parameters set by the user (in, for instance,
search terms via a search field (2) and a filter option to limit searches to particular file types (3) —
in this case web content, images and videos) and thus analyze a sufficient number of results.
Access to Google Search is available primarily for research assistance during the editorial
process and is based on the Google Search API. This means that the search can be configured
for a specific project so the user can limit browsing to only specific areas of the Internet, for
instance. The FirstSpirit application then handles the display of the results in the form of a
uniform, seamless list integrated in the Ul (see Figure 1-5 (4)). This displayed list features,
among other things, a thumbnail preview and continuous scrolling so that the report author does
not have to manage it himself.

In addition, the report interface handles the insertion of report elements into the ContentCreator
via drag-and-drop. For instance, an element from a report (e.g. an image from the Google
Images search) can be added to a FirstSpirit element (such as an image input component or an
FS_BUTTON component). Figure 1-5 shows an example of a Google Images search with the
subsequent drag-and-drop of a search hit (4) from the report onto an image input component (5).

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20 11

FirstSpirit™ AppCenter FirS t SpiritTM

= Contents P Actions

solar panels power

images

Vieb
{Images

09022012 Willkommen bei Mithras Energy
Erreichbares Optimum

S Sonnenenergie ist die Zukunft, der wir uns verschrieben haben. Mitunseren Losungen un

Produkten méchten wir Sie optimal fur diese Zukunft ausstatten. Nur so kann.. < oL B
Mithras Energy erneut mit dem & First SPIRIT STORE HAUL! J
Solarpreis der Stadt Sonningen Media-Referenz [company_1.pdfMEDIASTORE_LEAF]@1345966 ,/‘_
ausgezeichnet =

Kontakt

Haben Sie Fragen zur Solartechnik?
Bitte kontaktieren Sie uns (>

N . Nachhaltigkeit fur die eigenen vier Wande
FirstSpirit

1

Es gibtviele Optionen, das eigene Heim besonders

Die Website mihras-energy.de ist ein umweltgerecht zu gestalten. Eine dieser Mdglichkeiten

Demoprojekt der e-Spirt A aus machten wir Innen gern ausfihrlicher anhand unserer

Dortmund. Weftere Informationen zum kristallinen Solarmodule vorstellen. Kristalline Module sind
eingesetzien Content Management dulerst effizient, da sie durch das amorphe Silizium in
System FirstSpirit haben wir fir Sie ihrer Struktur bis zu 10 Prozent héhere Wirkungsgrade bei
zusammengestaliti> der Erzeugung von Sonnenenergie erzielen knnen als
vergleichbare DUnnschichtmedule. Welche weiteren
B Absatr anlegen Worteile kristalline Module fir Ihre Stromversorgung bieten,
erfahren Sie auf diesen Seiten.
Emehr Informationen

Figure 1-5: Drag-and-drop from the integrated Google Images search (ContentCreator)
While reports in ContentCreator are always opened using the icon bar in the right-hand side of

the window, the report function in SiteArchitect is opened in the left-hand side of the window in

the Organize area (see Figure 1-6). The functionality, including drag-and-drop, is almost the
same in both environments.

The main difference between the report function in SiteArchitect and that in ContentCreator is in
the different client-specific context. While a report in ContentCreator runs on the front-end server
(e.g. Tomcat), a report in SiteArchitect is also instantiated in SiteArchitect (and not on the
FirstSpirit server). Due to these different contexts, certain client-specific information and
functions (e.g. particular agents) in one FirstSpirit environment are not available in the other.
These differences must be taken into account when implementing the report function.

A function that was previously not available in SiteArchitect is the optional detail view, which can

be displayed when mousing over a report entry; it is currently only available for use with
FirstSpirit ContentCreator.

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

12

FirstSpirit™ AppCenter

&= Organize

\ = Example Text Blocks

SiteArchitect
“ou are using FirstSpirit SiteArchitect.

Environment for Project Developers
The SiteArchitect is the ideal enviro

Full Control

This client provides you with tools t
Project Homepage

The hemepage Shows you News su

Tab View
The Tab View function (Cirl-Tab) he

&|em~\ P

Search
(]} F The new search functionality allov

Reporis
Reports provide you with an overvi

1+

Template Inspector & Debugger
Template Inspector and Debugger a

Content Transport & External Sy
The export and impoert tools facilitate
Finizh

Hawe fun with FirstSpirit 5.1 and Site

Elements: 121

(Enter search tenm)
=

[Search for termin titles only
=S

Sortin ascending order
: Example Text Blocks
8

Search results
=
Welcome

] F VWelcome to FirstSpirit 5.1

OEORSDREBO0DR

4

14

(Enter =earch term})

‘s Example Text Blocks

(Enter search term)
Il Search for term in titles only

Sort in ascending order

121 results

o Welcome
Welcome to FirgtSpirit 5.1!

g ContentCreator

Wou are using FirstSpirt Conten ﬂ

g Editing Environment
CaontentCreator is the next-gene

=z Content
This client enables you to edit ¢ 4‘

g Working With the Project

Work directly in yvour web proje n

¢ Preview
View page content the way it w

g Working in the Preview

Hold the Ctrl key and click en co

g Drag and Drop
Replace images or reference D¢

gz Multi-Perspective Preview
With this flexible preview, vou'l

=z Reports

Reports provide you with acces
= Finish

Have fun with FirstSpirit 5.1 anc
=z Welcome

Welcome to FirstSpirit 5.1!

o ContentCreator
You are uging FirstSpirit Conten

Figure 1-6: Report in SiteArchitect (left) and in ContentCreator (right)

For more information on implementing reports and for an example of a report implementation,
refer to the FirstSpirit online documentation (path:

Enhancements / Reports /...).

1.24 Exchanging data using drag-and-drop motions

A key user concept in ContentCreator and in SiteArchitect is the ability to exchange data easily
using drag-and-drop motions, for instance between input components and the AppCenter area

as well as from a report or from the (Windows) Desktop.

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

... | Plug-in Development / Universal

FirstSpirit™

13

FirstSpirit™ AppCenter FirS t Spirit

Version 5.1 now provides a basis for moving and/or referencing a wide range of data (types) in
FirstSpirit using drag-and-drop. This now makes it possible, for example, to drag report data not
only to certain areas of the preview, but into open forms as well. The following use cases are
possible:

Media (e.g. images) can be dragged

= from the Report area (e.g. from the search) to
o the input element for reference selection (FS_REFERENCE) in the edit dialog (cf.
Figure 1-7)
o the input element for image galleries (images only; FS_LIST, type: DATABASE,
media mode) in the edit dialog
o adifferent medium in the preview
and referenced in the new location.
= can be dragged from the desktop to
o the input element for reference selection (FS_REFERENCE) in the edit dialog (cf.
Figure 1-7)
o the input element for image galleries (images only; FS_LIST, type: DATABASE,
media mode) in the edit dialog
o amedium in the preview
in order to create links.
If the media do not come from the project, the project developer may be able to upload them
using the drag-and-drop process, depending on the configuration.

Pages can be dragged

= from the Report area (e.g. from the search) to
o the input element for reference selection (FS_REFERENCE) in the edit dialog (cf.
Figure 1-7)
o the rich text editor (CMS_INPUT_DOM) or the rich text editor for tables
(CMS_INPUT_DOMTABLE)
in order to create links.

Datasets can be dragged
= from the Report area (e.g. from the search) to
o the input element for dataset selection (FS_DATASET)
o the input element for creating dataset lists (FS_LIST, type: DATABASE)
and referenced in the new location.

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

14

™

FirstSpirit™ AppCenter FirS t Spirit

Possible drop zones are highlighted in color to make operation more intuitive. Drag actions
involving data types which do not match the drop zone are rejected.

(&le Elemerte)
(Keine zetliche Einschrankung)

H tein rte

= Produkte im Uberblick

Teaser-Informationen
Info-Box Produkte = Solarspeicher

7

Uberschrift |KDntak‘t = Produktdetails
Produkte s Solarspeicher

Bild [Mithras Energy | [(Buchissgritt singshen)

= Presse
Presse

Mach keln Element ausgewah!f\ |5 Willkommen bei pfithras B
Sonnenencroie ist fle Tukuntt
Startzeite

B 1 =T

i Konstruktiogfeiner Solaranl #§-

= Demoprojektes

Haben Sie Fragen zur Solartechnik? Bitte kontaktieren Sie uns

Farbe der Teaser-Box () Variante 1 (@) Variants 2

k=l Duennschicht-Solarkoliek
Innerhalh dieses Demoprojek

Verweis fir den Text ‘ Mithras Energy (Suchbegriff eingeken) Produkte » Duennschicktmon

= Konzept fiir Solarauto m
Nach ki Element ausgewdl Innerhalh disses Demoprojekte
Homepage

Verweistype () Separater Werweiz (@) Gesamter Text als Werweis d Solar-Wassererwaermer
Innerhalh dieses Demoprojek

Produlte s Solarspeicher

Text fur den separaten

Verweise d Mahansicht von Duennsch
Innerhalh dieses Demoprojek
Produlte » Duennschichtmos

i Duennschicht-Solarkoliek
— N Innerhalh dieses Demoprojek
Speichern Abhrechen
it
wad

Produkte » Duennschichtmos

= Grosser Solarspeicher gi
Innerhslh dieses Demoprojek
Produkte » Solarspeicher

Figure 1-7: Drag-and-drop from report to input element

g If an editing window is open, no information on report entries will be shown in tool
tips and no functions can be performed for the entries (e.g. jump to an object in the
project).

1.3 Enhancement of application integration in version 5.1

The majority of application integration options for both SiteArchitect and ContentCreator have
been enhanced in FirstSpirit version 5.1.

Reports in ContentCreator and in SiteArchitect: In FirstSpirit version 5.1 new interfaces for
reports have been created that can be used both in ContentCreator and SiteArchitect. This
means that a project-specific report implementation based on these interfaces can be

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20 15

FirstSpirit™ AppCenter FirS t Spirit

implemented with almost identical functionality in both FirstSpirit environments (see section
1.2.3, page 10).

Migration from version 5.0 to version 5.1: The original interfaces for implementing reports in
ContentCreator have been retained for the time being as part of FirstSpirit deprecation
management. Reports based on these interfaces can continue to be used in version 5.1 without
having to adapt them to the present functional environment (only in ContentCreator). However, it
is recommended that the existing reports be adapted to the new interfaces in order to be able to
take full advantage of their functions. The adaptation should be limited for the most part to giving
the package a new name. Methods and return values in the old and new interfaces should
largely still be identical:

API homepage prior to version 5.1 (@deprecated since 5.1.5):
Interface WebeditReportPlugin<T>
Package: de.espirit.firstspirit.webedit.plugin)

API homepage for version 5.1 and higher:
Interface Interface ReportPlugin<T>
Package: de.espirit.firstspirit.client.plugin)

For more information on the new interfaces and for an example of a report implementation, refer
to the FirstSpirit online documentation (path: .../Plug-in Development /Universal
Enhancements / Reports/...).

New detailed view for report entries: Mousing over a report entry now gives users the option to
display a detailed view of the report (currently only available for FirstSpirit ContentCreator). For
this purpose, the bpatarRenderer interface (the DpatarRenderer interface replaces the
ReportPluginRenderer interface) features the method pataRenderer.getDetails (T):

API homepage for version 5.1 and higher:
Interface DataRenderer<T>
Package: de.espirit.firstspirit.client.plugin.report)

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

16

™

FirstSpirit™ AppCenter FirS t Spirit

With this flexible preview, you'll [l

o Reports
m REpDI"tS Reports prm-[‘:g vou with acces

Reports provide you with access to project- o Finish .
based and external data which you can Have fun with FirstSpirit 5.1 anc
integrate quickly and easily in your content.

= WWelcome
Welcome to FirstSpirit 5.1

IRA IS

. ContentCreator

Figure 1-8: Detailed view for a report entry in ContentCreator

For more information on the new DataRenderer interface and for an example of a report
implementation, refer to the FirstSpirit online documentation (path: .../ Plug-in Development
/ Universal Enhancements / Reports / Code Example / DataRenderer...).

Drag-and-drop of complex data: The ability to exchange complex data and objects between
reports, input components and forms was previously not available (or was limited). Version 5.1
offers the basis for enhanced drag-and-drop support (see section 1.2.4, page 13). The new
interfaces provide the following functions:

= Processing of complex data for project-specific reports using drag-and-drop.
= |mplementation of (project-specific) input components that can accept complex obijects,
including from reports, using drag-and-drop.

API homepage for version 5.1 and higher:
Interface TransferHandler<T>
Package: de.espirit.firstspirit.client.plugin.report

Interfaces for input components in ContentCreator: New interfaces are available for
implementing project-specific input components in ContentCreator (see section 1.2.1, page 6).

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20 17

FirstSpirit™ AppCenter

FirstSpirit

Comparison of version 5.0 to 5.1:

5.0

SiteArchitect

Reports are not supported.

Implementation of project-specific input components
with processing of complex data for drag-and-drop is
possible, but can only be used with limitations due to
the lack of reports.

5.1

SiteArchitect

Reports are supported. Implementation is based on
interfaces across clients. Processing of complex data
(via TransferHandler) for drag-and-drop is also
supported.

Implementation of project-specific input components
with processing of complex data for drag-and-drop is
supported.

This makes the exchange of data between reports
and input components possible.

5.0

ContentCreator

Reports are supported. Preparing simple drag-and-
drop functions (using strings) is also possible within
reports. Implementation is based on ContentCreator-
specific interfaces.

Implementation of project-specific input components
is not supported.

5.1

ContentCreator

Reports are supported. Implementation is based on
interfaces across clients. Processing of complex data
(via TransferHandler) for drag-and-drop is also
supported.

Implementation of project-specific input components
with the ability to receive complex data (drop only)
is also supported.

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

18

FirstSpirit™ AppCenter FirS t Spirit

1.4 Classification

A differentiation is made between the following variants of web application integration:

a) Blackbox integration:
The web application to be integrated provides an interface, of whatever kind, which is
used for the integration. This interface can either be defined in the form of an API, via
HTTP parameters or JavaScript or can also exist in the form of defined HTML or URL
constructs. In all cases, however: the inner structure of the application to be
integrated does not have to be known, instead, the interaction takes place solely via
the defined API interfaces.

b) Graybox integration:
The Graybox integration assumes that the interface between the web application and
the FirstSpirit Client use the HTML code in the web browser. This HTML code must be
analyzed and if necessary manipulated, in order to reach the information required
(see Chapter 2.2 page 32). This means, knowledge about the internal structure of the
web application to be integrated is required, which is not necessary in the case of
blackbox integration.

c) Whitebox integration:
Whitebox integration exists if the web application has been especially developed or
modified for use within the scope of FirstSpirit application integration. That is to say, in
a whitebox integrated web application, specific FirstSpirit interfaces are addressed or
entry points suitable for FirstSpirit are provided, in order to implement the application
integration. This type of integration naturally not only requires access to the source
code of the web application, but also the possibility of changing the application.

A blackbox integration is therefore especially suitable for the integration of web
applications, which already exist and cannot or should not be changed (enterprise-
specific web application) — however, the absolute requirement is for the necessary
interfaces to be available.

If the web application to be integrated does not provide the necessary interfaces, or the
source code of the web application to be integrated is not to be or cannot be changed, a
graybox integration is the right solution — although here it must be noted that if a change
is made to the web application (e.g. relaunch) adjustments will probably have to be made
to the integration. Graybox integration is therefore only suitable for integrating web
applications, which are only subject to a few (e.g. Wikipedia) or even no changes (legacy

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

FirstSpirit™ AppCenter

enterprise web applications).

The form of integration with the most options is whitebox integration, which enables very
deep integration between the web application and FirstSpirit — on the one hand the web
application can be controlled from SiteArchitect and vice versa, SiteArchitect can be
controlled from the web application. Whitebox integration offers enormous potential,
especially in conjunction with FirstSpirit modules, as parts of the module's user interface
can be implemented in the form of a web application, which provides advantages
especially if specific interfaces only are available for web applications.

To sum up: In principle, within the scope of application integration, all types of web
application can be seamlessly integrated into the user interface of FirstSpirit SiteArchitect
— especially within the scope of graybox integration, even for web applications which were
not actually intended for integration. However, (due to the underlying principle) an
integration without explicit APl involves greater dependency on the specific
implementation of the integrated application, i.e. changes in the application to be
integrated potentially result in the need to adjust the integration code. The techniques and
methods of the FirstSpirit graybox integration reduce these dependencies as far as
possible, but principally cannot completely remove the change dependencies.

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

FirstSpirit

20

FirstSpirit™ AppCenter FirS t Spirit

1.5 General information

When integrating and using individually customized AppCenter applications it must be noted that
FirstSpirit provides the interfaces necessary for the application integration, but in general does
not have any influence on the integrated applications themselves.

Integrated external applications are not part of the FirstSpirit product. Among other things, this
means that responsibility for the function of the integrated applications lies with the manufacturer
of the application or with the customer or partner who implements the application.

Problems can be reported within the scope of the FirstSpirit product support and (where
possible) are corrected, if they lie on the level of the integration interface. However, e-Spirit is not
obliged to provide debugging within the integrated third party applications.

Use of the user's own applications in the AppCenter requires a license. For further information
see Chapter 1.7 page 23.

1.6 Restrictions

The application integration is based on the existing web browser integration, of the Microsoft
Internet Explorer and Mozilla Firefox browsers, in FirstSpirit SiteArchitect (see Chapter 2.1 page
26). When using the web browser integrations in SiteArchitect, in principle, restrictions can occur,
e.g. because several of the integrated applications do not fully work with all platforms or bit
versions (32 or 64 bit).

Use of Internet Explorer Version 8 or higher is recommended. Internet Explorer up to Version 8
does not support Base64 decoding. This can cause problems when image elements are injected
within the scope of the application integration (e.g. with the display of the FS_BUTTON
component in the integrated preview or the integration of an image database).

For details of the requirements and restrictions of application integration, see FirstSpirit™
Release Notes for Version 4.2R4.

In_FirstSpirit version 5.1.209 Google Chrome has been integrated and can now be used as
browser engine, especially under Mac OS.

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

21

FirstSpirit™ AppCenter FirS t Spirit

n The integration of Google Chrome is currently in the BETA test phase and has not
yet been officially released

Known restrictions for Google Chrome:

= The integration of Chrome is based on a special application and does not use any existing,
locally installed version of Google Chrome, or any user data that is used for this purpose. No
automatic updates are carried out either.

= No plug-ins can be installed (e.g., Adobe PDF plug-in for displaying PDFs, Adobe Flash
Player plug-in for displaying Flash files). This also means, for example, that no help PDF files
can be displayed either (“Help /Users (SiteArchitect)”, “Help / Users (ContentCreator)” and
“Help /Administrators” menu items).

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

22

FirstSpirit™ AppCenter FirS t Spirit

1.7 License model

The license parameter license.APPTAB SLOTS specifies how many different application
integrations can be used. These include applications which are available in the AppCenter of
SiteArchitect as well as applications in ContentCreator, for example self-implemented reports.
With 1icense.APPTAB SLOTS=5, for example, five different applications can be used. Which
applications these are is immaterial. Because unlike the licensing of FirstSpirit (module) add-ons,
here it is not the function that is licensed, but the number of integrated applications.

Each of these application integrations licensed through this parameter can be opened in any
number of FirstSpirit environments (SiteArchitect or ContentCreator), moreover in any number of
tabs in SiteArchitect. The first Client, in which an application integration is opened fills a license
("AppTab Slot") for this application (the application is "registered") and increases the counter of
the license parameter by 1.

n The following applies: An AppTab slot is assigned for one calling instance, e.g. a
script, and the opening of one URL. For example, if several URLs are opened within a
script, this is an infringement of the FirstSpirit AppCenter license conditions.

The registration continues to exist, even after the respective Client has been exited. If the value
of the license.APPTAB_SLOTS parameter has been reached, another application integration can
be started in the respective client for test and demo purposes. A corresponding warning will be
shown in the Clients and a warning will be logged in the file fs-server.log. In addition, no
other applications can be started.

Several applications, which are displayed in the AppCenter of SiteArchitect, but are delivered
with the FirstSpirit core product as a standard, or are licensed via a separate parameter (e.g. the
office integration for FirstSpirit), do not fall under the Ilicensing parameter
license.APPTAB SLOTS and are not counted as an application integration; at present, these
are:

= Integrated WYSIWYG preview (via Mozilla Firefox or Microsoft Internet Explorer) (Google
Chrome from FirstSpirit version 5.1.206)

= Integrated preview of media

= Integrated display of the FirstSpirit online Help

= Integrated, enhanced image editing in SiteArchitect

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

23

FirstSpirit™ AppCenter FirS t Spirit

The input component FS BUTTON (see online documentation for FirstSpirit) enables the
integration of the user's own applications in the AppCenter of SiteArchitect. If FS BUTTON Iis
used, each script and each class referenced from FS BUTTON is counted as an application,
which requires licensing via the 1icense .APPTAB SLOTS parameter.

The type and number of applications currently licensed through the 1icense.APPTAB SLOTS
parameter can be checked in Server Monitoring, sub-menu "AppCenter Licenses" below the
"FirstSpirit" / "Control" menu.

The "Reset Uses" button can be used if necessary to reset the number of registered applications
to 0. Registered applications, which are currently open in Clients, can continue to be used until
the application or the corresponding application tab is closed. The server does not have to be
rebooted.

1.8 Preview

Development with regard to web application integration is currently not yet completed in
FirstSpirit: Enhancements in the implementation should enable deeper integration.

Following the application integration for the editing workstation, the intention is to shift the focus
to the developer workstation (e.g. integration of development environments) in a further
development stage. The integration complexity will probably be significantly higher.

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

24

FirstSpirit™ AppCenter FirS t Spirit

1.9 Topics covered in this document

Having explained the term "application integration" in this introductory chapter and compared the
terms "Blackbox" vs. "Graybox" vs. "Whitebox" integration, in the following the technical
principles for customized integration of web applications are described. Equally, the underlying
interfaces, packages and classes are listed and explained. All concepts as well as the necessary
FirstSpirit API interfaces are introduced by way of example implementations.

This document focuses on client-side application integration (see Chapter 4 page 53, section 3)
with FirstSpirit. Concepts as well as the necessary FirstSpirit APl interfaces are introduced by
way of example implementations.

n The documentation is currently being edited. Several aspects and interfaces are not
yet documented or are not yet completely documented.

Chapter 2: In this chapter, the concepts behind the application integration are explained first. In
particular, communication between the integrated web application and FirstSpirit SiteArchitect
(from page 26) is discussed.

Chapter 3: This chapter introduces the standard enhancements of the FirstSpirit Access API for
application integration. Among other things, the interfaces for the control of the application tabs
and the integration of web applications are presented (from page 33).

Chapter 4: This chapter describes the example implementation for integrating Google Maps into
FirstSpirit SiteArchitect. The implementation introduced creates a simple and intuitive option for
working with geographic coordinates within the FirstSpirit environment. To do this, a
SwingGadget input component is developed, which is closely linked to the Google Maps web
application (from page 53).

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

25

FirstSpirit™ AppCenter FirS t Spirit

2 Concept: Integrating a web application into FirstSpirit

21 Communication: FirstSpirit SiteArchitect — web application

FirstSpirit SiteArchitect has had a seamlessly integrated web browser, which not only displays a
direct preview of the editorial content in SiteArchitect, but also visualizes the relationship
between the content entered in the Client and its effect or display on the website. The Mozilla
Firefox, Microsoft Internet Explorer and Google Chrome (from FirstSpirit version 5.1.206) web
browsers are optionally available for this.

This browser integration is also used for the integration of web applications. For a web
application to be integrated in FirstSpirit SiteArchitect, the following aspects must be covered
first:

= Controlling the integrated browser (see Chapter 2.1.1 page 26)

= Communication between the browser instance and SiteArchitect (see Chapter 2.1.2 page 27)
= Converting data types (see Chapter 2.1.3 page 30)

= Return by means of callback function (see Chapter 2.1.4 page 31)

211 Controlling the integrated browser

In order to integrate a web application into FirstSpirit SiteArchitect, it is necessary to control the
browser integrated in FirstSpirit. The FirstSpirit AppCenter API provides the necessary interfaces
in order, for example, to open a new tab (or a new browser instance) within the application area
in which the required web application can be opened (for a description of the interfaces, see
Chapter 3, page 34ff.).

The entry point for the control of a tab is the ApplicationService (see Chapter 3.1 page 34).
This service can be used to open a new application of a specific type within the application area.
The required ApplicationType is passed on opening the application (Abstract Class:
ApplicationType see Chapter 3.6 page 45). Integration of a web application requires the
ApplicationType BrowserApplication, which provides an interface for opening and
controlling a new browser instance in the application area (Interface: BrowserApplication see
Chapter 3.7 page 45).

The openApplication(..) method of the ApplicationService interface returns an
instance of the type ApplicationTab. The ApplicationTab interface provides general

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

26

FirstSpirit™ AppCenter FirS t Spirit

methods for controlling the tab, for example, the tab can be brought to the front or closed using
the corresponding method invocations (Interface: ApplicationTab see Chapter 3.2 page 37). In
addition, the instance of the type ApplicationTab can be used to get the (browser)
application, which was opened within the application tab. This instance then provides access to
other specific options for controlling the integrated application (Interface: BrowserApplication see
Chapter 3.7 page 45). To track changes, suitable listeners can also be registered, an instance of
the type BrowerListener, which responds to changes within the web application (Interface:
BrowserListener see Chapter 3.8 page 48) and an instance of the type TabListener, which
responds to changes within the tab (e.g. selection or deselection by the user (Interface:
TabListener see Chapter 3.5 page 44).

2.1.2 Communication between the browser instance and SiteArchitect

The integrated browser engines are of course not implemented in Java, but native for the
respective Client operating system. The most important point for the integration of a web
application in FirstSpirit is therefore the communication between the Java level of FirstSpirit
SiteArchitect and the native browser level of the web application. Two communication channels
have to be considered:

1) SiteArchitect » Web application: Changes or events, which are triggered via FirstSpirit
SiteArchitect must be made known to the web application. For example, if a certain address
is searched for within the geolocation input component (entry of an address string and click
the Search button), a request for geocoding of this address string must be sent to the web
application (Google Maps) and the map section adjusted within the integrated browser (see
example Address search with geolocalization in Chapter 4.2.1 page 57).

2) Web application » SiteArchitect: The reverse path, i.e. the adoption of a change or event
within the web application in SiteArchitect must also be possible. For example, the coordinate
determined by Google Maps and the complete address information should also be updated in
the geolocation input component (see example Address search with geolocalization in
Chapter 4.2.1 page 57).

The FirstSpirit Client APl (Java) communicates with the integrated browser engine via
JavaScript. The requirement is therefore to enable bidirectional communication between the Java
and the JavaScript level. Specifically, three options have been created for setting up bidirectional
communication:

1) Run JavaScript: targeted, unidirectional communication in the direction Java »
JavaScript.

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

27

FirstSpirit™ AppCenter FirS t Spirit

2) Run JavaScript and evaluated returned value: see above, however, with the ability to
evaluate the returned value.

3) Provide Java object in the JavaScript environment: is mainly used for unidirectional
communication, however, in the direction JavaScript » Java.

Re. 1) For the first communication direction Java » JavaScript an interface is provided for
calling a JavaScript method from Java. Basically, this only involves running JavaScript code in
the form of a string. The BrowserApplication interface has been extended to include the
void executeScript (String script) method, which runs the passed JavaScript code in
the currently open browser document (Interface: BrowserApplication see Chapter 3.7 page 45).

Re. 2) The second option is somewhat more complicated. This also involves running JavaScript
code, but also tries to evaluate the returned value and to convert it into suitable Java objects.
The BrowserApplication interface has been extended to include the Object
evaluateScript (String script) method, which runs the passed JavaScript code in the
currently open browser document and returns a return value. (Interface: BrowserApplication see
Chapter 3.7 page 45). A range of conversion rules are applied to the returned value as, unlike
Java, JavaScript only supports a limited set of simple data types (see Chapter 2.1.3 page 30).

Re. 3) For the second communication direction JavaScript » Java another interface is
provided, in order to make methods of a Java object accessible in a JavaScript environment.
Specifically, a Java object is injected into the JavaScript environment (web browser) to generate
a substitute object (proxy) in the form of a JavaScript object, whose (JavaScript) methods
correspond to those of the Java object. Following the injection the corresponding methods can
be invoked from the JavaScript. The internal FirstSpirit implementation generates a
corresponding JavaScript method for each method of the Java object instances. When called
from the JavaScript environment, this method sends an event, which is evaluated on the Java
side. The suitable Java method is determined from the method signature and the passed
parameters and is called accordingly.

Basically, any Java object can be injected into the JavaScript environment, however, restrictions
must be noted and observed (see Chapter 2.1.3, page 30). The relevant method void
inject (Object object, String name) is provided via the BrowserApplication interface
of the FirstSpirit AppCenter API (Interface: BrowserApplication see Chapter 3.7 page 45).

A further, minor restriction concerns the parameter passing. As synchronicity cannot be
guaranteed for event generation/evaluation, returned values of the Java methods are returned by
means of callback (see Chapter 2.1.4 page 31)

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

28

FirstSpirit™ AppCenter Firs t SpiritTM

{ Java JavaScript Bridge J

Native Code

executeScript

& \\ Operation API (gotoEIement) HTML Document g
=7

API Injection (Operation API (gotoEIement)

%)

executeScript

Parameter
Marshaling
Parameter
Unmarshaling

[Custom JavaScript Code

)

!

\: Custom API (methodA)

_{ methodB
Java E

I [Custom API (methodA)
API Injection

methodB A
Parameter
Marshaling
Parameter)
Unmarshaling

. JavaScript
I Evaluation Callback Method

Figure 9: Java - JavaScript communication (Java-JavaScript bridge)
A prototype for this integration is introduced in the already mentioned example of the geolocation

input component. Here a call interface is implemented between the FirstSpirit Client APl and a
web application, which runs in an instance of the integrated browser (Implementation: Application
integration for Google Maps see Chapter 4.3 page 63).

FirstSpirit™ V 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20 29

FirstSpirit™ AppCenter FirS t Spirit

21.3 Converting data types
In this case too, two communication directions must be considered:

1) Injecting a Java object into the JavaScript environment: The API injection interface can be
used to inject any Java object into a JavaScript environment. All methods of the Java
object are adopted, but no attributes (e.g. name attribute). As, unlike Java, JavaScript
only supports a limited set of data types, certain restrictions also apply to the methods of
this object. Only a range of simple, atomic data types, and lists and maps can be
converted. Complex object types not known in JavaScript on the other hand are not
supported. In addition, the method adoption and mapping of the Java data types on
JavaScript data types is only possible on the highest level, this means:

MyJavaObject {
void helloWorld(String message) ;

can be called on the JavaScript page as follows, after calling inject (MyJavaobject,

"myObject") .
window.myObject.helloWorld ("Hello!")

But a nested structure is not possible, this means:

MyJavaObject {
MyComplexObject getMyComplexObject () ;
}
MyComplexObject {
void helloWorld(String message) ;
}

cannot be called on a JavaScript page as follows after calling inject (MyJavaobject,

"myObject") .

window.myObject.getMyComplexObject () .helloWorld ("Hello!");

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

FirstSpirit™ AppCenter FirS t Spirit

2) Parameter passing from the JavaScript into the Java environment: Apart from the
injection of a Java object in the JavaScript environment, it is also possible for parameters
to be passed from the JavaScript environment into the Java environment, for example, for
the evaluation of a returned value. All parameters passed from the JavaScript
environment, are elevated in the Java environment, analogous to the object conversion to
date (see Figure 9).

In_addition: The converted Java objects are merely copies of the JavaScript objects.
Therefore, a change to the Java object has no effect on the JavaScript environment.

An overview of the possible transformation of the data types (or parameters) on changing
between the Java and the JavaScript environment, is provided by the convertToScript (..)
method of the BrowserApplication interface (see Chapter 3.7 page 45), for example:

= js:number «» Double

= js:boolean «» Boolean

= jsistring «» String

* js:object «» Map<String, Object>

21.4 Return by means of callback function

As synchronicity cannot be guaranteed for event generation or evaluation, the returned values of
the Java methods must be returned by means of the callback function. Therefore, a Java method
String getName (), becomes the void getName (function:callback)method in the
JavaScript environment. The last parameter passed always names the relevant callback function,
which is to be called when the calling function has been dealt with (see Figure 9).

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

31

FirstSpirit™ AppCenter FirS t Spirit

2.2 DOM access: access to the data of the integrated browser

As already explained in Chapter 2.1, the integrated browser engines are a native implementation,
which cannot be readily reached from the Java environment. This means, access to the data of
the integrated browser or the data of the web application (the HTML or the browser document) is
initially not possible in Java. Especially within the scope of a seamless graybox integration, it is
however necessary to access the inner structures of the web application from the Java
implementation, as here either an API is not provided at all or only limited API access
(JavaScript) is provided.

The FirstSpirit AppCenter API has therefore been extended to include an interface, which
enables access to the DOM tree of the integrated browser. The task of this interface is to enable
a Java program (FirstSpirit SiteArchitect or a module) read and write access to precisely the data
currently displayed in the integrated web browser. The Document getCurrentDocument ()
method of the BrowserApplication interface returns the current browser document as w3c-
DOM! (see Chapter 3.7 page 45). Therefore, the complete content of the web browser is made
available as a document model within the Java environment. The HTML structures of the
integrated web application can then be run through and analyzed on this document. The
document model made available to the Java application is however not limited to read access,
but can also be manipulated, whereby all changes to the document immediately become visible
in the integrated browser.

The technical sequences for use of the DOM facade are clearly illustrated in the following figure:

! http://en.wikipedia.org/wiki/Document_Object Model

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

32

http://en.wikipedia.org/wiki/Document_Object_Model

FirstSpirit™ AppCenter FirS t Spirit

DOM Facade
FirstSpirit™ Application . e .
SiteArchitect Integration AP FirstSpirit™ Browser Engine
FirstSpirit W3C DOM

Modul: Application Fassade Native Code

Integration (Java)

.getElementsByTagName ('H1'")

@
HTML

t W3C DOM (— HTML Document @

. fi hild. Value=
irstChild.nodeValue <H1>Hello World</H1>

'modified by FS' Mozilla Native Peer e
Internet Explorer @] l

Native Peer
<Hl>modified by FS</H1>

Figure 10: DOM access
The access to the data shown in the web browser and manipulation of this data is relatively easy

to do via the interface, but in this case there are also principally restrictions.

The document model changes itself dynamically. A change within the web application is
therefore, for example, immediately traced in the DOM. In practice, use of the DOM object can
result in too many "non-reproducible" errors of the class NPE or AIIOB; for example, if child
iteration takes place within the implementation, but the child object "soon thereafter" no longer
exists.

n Therefore, in the implementation of an (graybox) application integration for
FirstSpirit SiteArchitect, suitable error handling is of central importance for the stability of
the implementation.

For the implementation of this DOM interface, particular attention was paid to the aspect of fully
transparent synchronization of all concurrencies (parallel processing), as otherwise deadlock
situations would have been unavoidable in the connection of native running processes and
changing operations.

Note: DOM access to Flash or Silverlight applications is NOT possible, as the (accessible) HTML
code does not contain all the relevant parameters and an insight into the Flash application itself
is not possible!

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

33

FirstSpirit™ AppCenter FirS t Spirit

3 Standard enhancements

From a technical point of view, the AppCenter consists of a set of interfaces ("FirstSpirit
AppCenter API"), which have been released by e-Spirit for use by partners, so that they can
implement and integrate specific applications within the scope of the AppCenter.

At present, the FirstSpirit AppCenter API is limited to the infrastructure needed for the integration
of web applications as well as Swing-based Java applications (see integration for Java image
editing, Java Image Editor). Appropriate interfaces for the integration of native applications (see
integration of Microsoft Office) have already been realized, but are not (yet) publically available.

Interfaces for configuring and controlling the application tab:

= |nterface: ApplicationService (see Chapter 3.1 page 35)
= Interface: ApplicationTab (see Chapter 3.2 page 37)
= Interface: ApplicationTabAppearance (see Chapter 3.3 page 39)
= Interface: ApplicationTabConfiguration (see Chapter 3.4 page 42)
= Interface: TabListener (see Chapter 3.5 page 44)

Interfaces for integrating a web application or a browser:

= Abstract Class: ApplicationType (see Chapter 3.6 page 45)
= |nterface: BrowserApplication (see Chapter 3.7 page 45)
= |nterface: BrowserListener (see Chapter 3.8 page 48)

= Interface: BrowserApplicationConfiguration (see Chapter 3.9 page 49)

n All the interfaces introduced in the following are part of the FirstSpirit Developer
API. In contrast to the Access API, the requirements concerning the stability for the
Developer API are lower: The Developer APl remains stable within a minor version line,
i.e. methods, classes and functions may be changed in case of a minor version change.

The documentation is currently being edited. Several aspects and interfaces are not yet
documented or are not yet completely documented.

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

FirstSpirit™ AppCenter FirS t Spirit

3.1 Interface: ApplicationService
Package: de.espirit.firstspirit.client.gui.applications

The entry point for controlling a tab is always the ApplicationService. This service can be
requested from the FirstSpirit Framework via different brokers. To do this, the typified
SwingGadgetContext (see Developer Manual for Components) must be used to request an
instance of the type SpecialistsBroker with the help of the SpecialistsBroker
getBroker () method.

SwingGadgetContext<..> context;

final SpecialistsBroker specialistsBroker = context.getBroker();

On the SpecialistsBroker, with the help of the <S> S
requireSpecialist (SpecialistType<S> type) method, can then be used to request a
specialist of the type ServicesBroker . By «caling the method <T> T

getService (Class<T> serviceClass), this broker returns an instance of the type
ApplicationService (see Chapter 4.3.2).

final ServicesBroker servicesBroker =

_specialistsBroker.requireSpecialist (ServicesBroker.TYPE) ;

final ApplicationService service = servicesBroker.getService (ApplicationService.class) ;

final BrowserApplication app = service.openApplication (BrowserApplication.TYPE,

configuration) .getApplication() ;

ApplicationService can be used to open new applications of a certain type within the
application area (see Interface: ApplicationTab) or to get the applications from existing browser
instances (see Interface: BrowserApplication). The ApplicationService can only be used within
FirstSpirit SiteArchitect.

The ApplicationService provides access to the following methods:

" ApplicationTab<T> openApplication(final ApplicationType type, final
C configuration): The method opens an application of a certain type
(rpplicationType) in a new tab in the application area of FirstSpirit SiteArchitect. The
type (Abstract Class: ApplicationType) of the required application and the configuration for
the integrated browser are passed to the method (see Interface: ApplicationTabConfiguration
and Abstract Class: ApplicationType). The method returns a typified instance of the type

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

35

FirstSpirit™ AppCenter FirS t Spirit

ApplicationTab (for example implementation see Chapter 4.3.3 page 68).

Note: For the passing parameter ApplicationType: FirstSpirit currently only provides an
interface of the type BrowserApplication and Swing2Application, via which the new
browser instances can be opened in the application area of SiteArchitect (see Abstract Class:
ApplicationType).

Note: For the passing parameter ApplicationTabConfiguration: If an
ApplicationTab is to be reused within the implementation, the
ApplicationTabConfiguration should be used to define an identifier (see Interface:
ApplicationTabConfiguration). The tab can then be got later using the method
ApplicationTab<T> getApplication(final ApplicationType<T, C> type,
final Object tabIdentifier) (see below).

" ApplicationTab<T> getApplication(final ApplicationType<T, C> type,
final Object tablIdentifier): This method returns an instance of an
ApplicationTab, which was opened in the application area of SiteArchitect, or null if no
ApplicationTab is found, which corresponds to the passed parameters. The type
(Abstract Class: ApplicationType) of application and the identifier for the ApplicationTab are
passed (see Interface: ApplicationTabConfiguration). The method returns a typified instance
of the type ApplicationTab (see Chapter 3.6 page 45).

* Dboolean isVisible () : The method determines whether the application area is visible in
SiteArchitect (true) or not (false).

» void setVisible(final boolean visible): The method opens (true) or closes
(false) the application area in SiteArchitect.

The following example beanshell script demonstrates access to the ApplicationService and
the opening of an ApplicationTab.

import de.espirit.firstspirit.client.gui.applications.*;

import de.espirit.firstspirit.client.gui.applications.browser.*;

apps = context.connection.getService (ApplicationService.class);
tab = apps.openApplication (BrowserApplication.TYPE, "Browser");
browser = tab.getApplication();

browser.openUrl ("www.e-spirit.com") ;

tab.setTitle ("e-Spirit AG");

tab.close();

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

36

FirstSpirit™ AppCenter Fi]_'S t SpiritTM

For an example of use of the ApplicationService see Chapter 4.3.3 page 68.

3.2 Interface: ApplicationTab
Package: de.espirit.firstspirit.client.gui.applications

Each page or media preview is displayed in the application area of FirstSpirit SiteArchitect in a
preview tab. On requesting a new preview (for example, a new page view), the view of the
preview tab is automatically updated by the FirstSpirit Framework.

To integrate a web application, first, a new tab must be opened in the application area of
SiteArchitect. This Application tab is independent of the actual Preview tab. This means that if
the web application is integrated, for example, via an input component in FirstSpirit (see
geolocation input component), alongside the actual page preview, another tab with the integrated
application can be opened within the application area.

preview tab application tab select application tlab

| |
1 I
! @ cooale Maps! Vorschau; Anfahrt @ Google ap

html (HTML), | Pdf (PDF - FOP 0 | RS (xuL) [b~ %Eﬁ;‘;»:""

a Vorschau: Anfahrt

Jv et 8 Wes e | 08.12.2010 14:06:30 Admin - Zwischenspeichern

™ Deutsch 3 Sitemap [Contact ¥3 Imprint 3 RSS Feeds

‘ .
Mithras Energy \\

Insplrallo"q through Innovation

\ N\ \ \ 9\
= > % N =
W === i | Karte | sateliit
- | '
[€IBd= 220 o Brackel = B
| N4 CvambeiNoral N Lol i~
3 S 5 e
e Wambel =08 ’% G
E FomesY” /\/ =~ QX,&
Innenstadt-Ost L vam | Hauptfriedhof % :
- \
A i PR\ !
= I:“ } h\lﬂ\di"““ N R !
i A st s H H H
i % / integrated web application
1 5) i % o
N/ Gemed
.“]‘y Aplerbe))
o) \ - integrated page preview
gs (4 ".z"_d(anendmen ©2010 Tele A}bs-I,J\ut:ungsbe%mgungen
Berlin Route: Google Maps \
Berlin [Route: Eingimraps"

Figure 11: Preview tab and Application tab
Access to the application tab (and the applications contained in it) is controlled by the

ApplicationTab interface. Unlike the preview tab, which is controlled by the FirstSpirit
Framework, the application tab must be controlled by the developer. When the user requests the

FirstSpirit™ V 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20 37

FirstSpirit™ AppCenter FirS t Spirit

web application, the developer must first open a new browser instance. To do this, the
openApplication(..) method is called on the ApplicationService (see Interface:
ApplicationService). The method returns an instance of the type ApplicationTab, via which
the new instance of the integrated browser can be controlled (e.g. closing the tab).

To track changes within the tab (e.g. selection or deselection by the user), an instance of the
type TabListener must be added (see Interface: TabListener).

The ApplicationTab interface provides the following methods:

"= void addTabListener (@NotNull final Tablistener listener): The method
adds a TabListener to an instance of the type ApplicationTab. A TabListener
responds to events within the application tab, for example, the closing or deselection of a tab
by the user (see Interface: TabListener in Chapter 3.5 page 44) (for an example, see
Chapter 4.3.3 page 68).

" vyoid removeTablListener (@NotNull final Tablistener listener): This
method removes an existing TabListener.

= void close () : This method closes the instance of the ApplicationTab on which it was
called.

" Dboolean isClosed(): this method checks whether or not the instance of the
ApplicationTab has been closed. The method is closely related to the void
tabClosed () method from the TabListener interface (see Chapter 3.5 page 44). On
closing an application tab, these methods are called to enable correct reply to the "Tab has
been closed" status. For example, this information is required if an existing application tab is
to be reused. In this case the developed must be able to decide whether an
ApplicationTab opened once is available for a new request (tab has already been opened
and can be used for the new request) or not (tab has been closed — a new tab must be
opened for the request).

= void setAppearance (ApplicationTabAppearance appearance): This method
affects the display of the ApplicationTab in the application area. An instance of the type
ApplicationTabAppearance is passed to the method, which enables configuration of the
outer appearance, for example, the addition of an icon to the tab (see Chapter 3.3 page 39).

= T getApplication(): This method returns the instance of the application, which was
integrated in the application area. The returned value is standardized (see Chapter 3.6 page
45).

= boolean isSelected(): The method returns whether the ApplicationTab actively
appears in the foreground (true) or is only opened in the background (false). This
information is relevant, for example, if a change is made to the corresponding SwingGadget
input component, which affects the integrated web application. As long as the relevant tab is
in the background, the change should not have an effect within the application.

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

38

FirstSpirit™ AppCenter FirS t Spirit

= void setSelected(): The method marks the instance of the application tab on which it
was called as being active. This means that the corresponding tab is displayed in the
foreground in the application area of SiteArchitect.

For an example of use of the ApplicationService see Chapter 4.3.3 page 68.

3.3 Interface: ApplicationTabAppearance
Package: de.espirit.firstspirit.client.gui.applications

The display of a tab in the application area of the FirstSpirit SiteArchitect is influenced using the
ApplicationTabConfiguration (see Chapter 3.4 page 42) and
ApplicationTabAppearance interfaces. These interfaces, for example, can be used to define
a text or a specific icon, which are to be displayed within the tab. In addition, the
ApplicationTabAppearance interface provides further configuration options, for example, the
possibility of changing the font weight (plain/bold) for the title lettering of the tab (see Figure 12).

r -icon(IconLibrary.firstSPIRIT)

| .titlc_'{"r:-SpIirit AG")

: |

ke = .'a.s|3iriu‘u3 X

-t

: fontStyle(ApplicationTabAppearance. FontStyle. BOLD)

L .borderType(Store. Type.PAGESTORE)

Figure 12: Example of the ApplicationTabAppearance

The methods of the two interfaces partly overlap. For example, an icon can be added to an
ApplicationTab not only using the ApplicationTabConfiguration.icon (..) method

but also using the ApplicationTabAppearance.Builder icon (...) method.

To simplify the configuration, the ApplicationTabAppearance interface provides a builder
implementation (ApplicationTabAppearance.Builder interface) with the following
methods:

" ApplicationTabAppearance.Builder borderType (final Store.Type
borderType): The bar, which separates a higher-level ApplicationTab from its lower-
level tabs, can be displayed in color (see Figure 12). The display depends on the Store type.
The default behavior in SiteArchitect displays the strip for a page preview (in the Page Store),
for example, in green, while in a preview of a page reference (in the Site Store) it is shown in
blue. This method can be used to define a Store type (Store.Type), to adjust the color of

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

39

FirstSpirit™ AppCenter FirS t Spirit

the bar. If a Store type is not defined, a colorless bar is displayed.

"= ApplicationTabAppearance.Builder fontStyle (final FontStyle
fontStyle): This method can be used to influence the font weight, which is applied to the
lettering within an ApplicationTab. To do this, the method of the required
ApplicationTabAppearance.FontStyle can be passed. At present, the types
FontStyle.PLAIN (default value) and FontStyle.BOLD are supported (see Figure 12).

= ApplicationTabAppearance.Builder icon(Icon icon): This method can be used
to pass an icon (preferred size: 20x20 pixels), which is shown within the ApplicationTab (see
Figure 12).

= ApplicationTabAppearance.Builder title (String title): This method can be
used to pass a text, which is displayed as lettering within the ApplicationTab (see Figure 12).

= ApplicationTabAppearance get (): This method returns the instance of the type
ApplicationTabAppearance, which is built on this building.

A new instance of the type ApplicationTabAppearance can be created by calling
ApplicationTabAppearance.GENERATOR. invoke (). The configuration then takes place
using the simplified builder pattern. In order for the changed parameters to subsequently have an
effect on the display of the ApplicationTab, the ApplicationTabAppearance must be
passed to the ApplicationTab using the ApplicationTab.
setAppearance (ApplicationTab Appearance appearance) method (see Chapter 3.2) .
Example:

private ApplicationTab<BrowserApplication> tab;

final ApplicationTabAppearance appearance =
ApplicationTabAppearance.GENERATOR. invoke ()
.title ("e-Spirit AG")
.borderType (Store.Type.PAGESTORE)
.fontStyle (ApplicationTabAppearance.FontStyle.BOLD)
.icon(IconLibrary.firstSPIRIT)

.get () ;

_tab = service.openApplication (BrowserApplication.TYPE,
(BrowserApplicationConfiguration) null);

_tab.setAppearance (appearance) ;

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

40

FirstSpirit™ AppCenter FirS t Spirit

An instance of the type ApplicationTabAppearance can also be got directly from an
instance of the type ApplicationTabConfiguration by calling the
ApplicationTabConfiguration.appearance () or ApplicationTab
Configuration.getAppearance () methods (see Chapter 3.4). In this case the
ApplicationTabAppearance is part of the ApplicationTabConfiguration and can, for
example, easily be passed when a new ApplicationTab is opened. Example:

private ApplicationTab<BrowserApplication> tab;

final BrowserApplicationConfiguration configuration =

BrowserApplicationConfiguration.GENERATOR. invoke () ;

final ApplicationTabAppearance appearance = configuration.appearance ()
.title ("e-Spirit AG")
.borderType (Store.Type.PAGESTORE)
.fontStyle (ApplicationTabAppearance.FontStyle.BOLD)
.icon(IconLibrary. firstSPIRIT)
-get () ;

_tab = service.openApplication (BrowserApplication.TYPE, configuration);

The ApplicationTabAppearance interface provides the following methods for querying the

values, which have been configured for the display of an ApplicationTab:

= Store.Type getBorderType (): This method returns the Store type (Store.Type),
which was previously set using the
ApplicationTabAppearance.Builder borderType (Store.Type borderType)

method of the builder implementation. If no Store.Type has been designed, the method
returns null.

= TFontStyle getFontStyle (): This method returns the font style, defined for the lettering
within the ApplicationTab . The font style can be influenced using the
ApplicationTabAppearance.Builder fontStyle (ApplicationTabAppearance.
FontStyle fontStyle) method. If a special font style has not been defined for the
lettering, a normal font style is used (default value FontStyle.PLAIN).

= TIcon getIcon (): This method returns the icon, which was previously defined using the
ApplicationTabAppearance.Builder icon(Icon icon) method of the builder
implementation or was set using the

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

41

FirstSpirit™ AppCenter FirS t Spirit

ApplicationTabConfiguration.icon (Icon icon) method for the display within the
ApplicationTab.

» String getTitle(): This method returns the text, which is displayed as lettering within
the ApplicationTab. The text is defined using the ApplicationTabAppearance.
Builder title(String title) method of the builder implementation.

3.4 Interface: ApplicationTabConfiguration
Package: de.espirit.firstspirit.client.gui.applications

The display of a tab in the application area of FirstSpirit SiteArchitect is influenced using the
ApplicationTabConfiguration and ApplicationTabAppearance Iinterfaces (see
Chapter 3.3 page 39). These interfaces, for example, can be used to define a text or a specific
icon, which are to be displayed within the tab (see Figure 12).

Other configuration options exist, depending on the type of application, which is opened within an
ApplicationTab. The BrowserApplicationConfiguration interface, for example, extends
the ApplicationTabConfiguration, interface to include methods for the configuration of the
web application. This means an address line can be shown within the application area, or a
specific browser engine can be specified for opening the web application (see Chapter 3.9 page
49).

The following applies: The ApplicationTabConfiguration interface merely forms the base
class. This base class is extended by other configuration interfaces, which are precisely tailored
to the respective application type. When a new ApplicationTab is generated (call the method:
ApplicationTab<T> openApplication(final ApplicationType type, final C

configuration)the required application type is passed. An application-specific instance is
also expected for the passing of the configuration. Therefore, if an application of the type
BrowserApplication, is opened within the ApplicationTab, the configuration passed must
be an instance of the type BrowserApplicationConfiguration.

FirstSpirit currently only offers interfaces for the application type web applications
(BrowserApplication) and Swing-based Java applications (SwingApplication) and the
corresponding configuration interfaces BrowserApplicationConfiguration and
SwingApplicationConfiguration. Other application types are already being developed
and are released at a later date (see Chapter 3.6)

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

42

FirstSpirit™ AppCenter

The ApplicationTabConfiguration interface provides the following methods:

ApplicationTabAppearance.Builder appearance (): This method returns a builder
instance of the type ApplicationTabAppearance.Builder, which provides other
options for configuring the tab display (see Chapter 3.3 page 39).

ApplicationTabAppearance getAppearance (): This method returns an instance of
the type 2ApplicationTabAppearance, which provides further options for the configuration
of the tab display (see Chapter 3.3 page 39). It is recommended that the simplified builder
implementation of the ApplicationTabAppearance interface be used at this point (see
above).

Object getIdentifier (): This method returns the identifier, which was defined using
the ApplicationTabConfiguration with the help of the public T
identifier (final Object tabIdentifier) method for an instance of the type
ApplicationTab (see below). If a specific identifier has not been defined, the method
returns a string, which is formed from the prefix "BrowserApplication_" and the system time. If
the identifier is known, the corresponding ApplicationTab can be fetched later using the
ApplicationService with the help of the ApplicationTab<T>
getApplication (final ApplicationType<T, C> type, final Object
tabIdentifier) method (Interface ApplicationService see Chapter 3.1 page 35).

public T identifier (final Object tabIdentifier): If an ApplicationTab is
to be reused within the implementation, this method can be used to assign an identifier. The
identifier can be used to get the corresponding ApplicationTab later using the
ApplicationService with the help of the ApplicationTab<T>
getApplication(final ApplicationType<T, C> type, final Object
tabIdentifier) method (Interface ApplicationService see Chapter 3.1 page 35).

public T icon(final Icon icon): This method can be used to pass an icon
(preferred size: 20x20 pixels), which is shown within the ApplicationTab (see Figure 12) (see
also Chapter 3.3 page 39).

public T openInBackground (boolean openInBackground) : This method can be
used to influence whether the ApplicationTab, which is based on this configuration, is
opened in the background (true) or not (false).

boolean openInBackground (): The method returns whether the ApplicationTab,
which is based on this configuration, is to be opened active in the foreground (false) or only
in the background (true).

public T title(final String title): This method can be used to pass a text,

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

FirstSpirit

43

FirstSpirit™ AppCenter FirS t Spirit

which is displayed as lettering within the ApplicationTab (see Figure 12) (see also Chapter
3.3 page 39).

For an example, see Chapter 3.9 page 49.

3.5 Interface: TabListener

Package: de.espirit.firstspirit.client.gui.applications

A new tab is opened in the application area of SiteArchitect for the integration of an application in
FirstSpirit. This application tab (unlike the conventional preview tab) must be controlled by the
developer. The methods required for this are described in the ApplicationTab interface (see
Chapter 3.2 page 37).

The tab can be controlled by events. To respond to internal or external event, an instance of the
type TabListener must be registered on the application tab. This listener contains methods,
which inform the developer of events, which take place on the tabs in the application area. For
example, if an application tab is closed by the user, the FirstSpirit Framework responds by calling
the void tabClosed () method.

The interface (and all methods contained in the interface) can be implemented to generate a new
instance of the type TabListener. However, it is recommended that the internal, abstract
adapter implementation (Abstract Adapter Class), provided by the TabListener interface be
used instead. This predefined class implements all the interface's methods. The developer only
has to implement the methods relevant for them (see Listener — responding to changes, Chapter
4.3.7, page 88) and can otherwise fall back on the existing default implementation. The adapter
class is also advantageous for subsequent extension of the interface. If the interface is
supplemented, for example, with a new method, existing implementations remain compatible.
The new method only has to be implemented by the developer if and when necessary.

An instance of the type TabListener must then be registered on the event source (here the
application tab) by calling the addTabListener (..) method.

The TabListener interface (or the corresponding adapter implementation) provides the
following methods:

* void tabSelected(): This method is called when the corresponding ApplicationTab
is selected, i.e. is displayed visible in the foreground. The method is closely linked to the
void setSelected () method from the ApplicationTab interface (see Chapter 3.2 page
37).

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

44

FirstSpirit™ AppCenter FirS t Spirit

= void tabDeselected(): This method is called when a new tab (application or preview
tab) is brought to the foreground. In this case the corresponding ApplicationTab moves
into the background. For example, if the change within an input component is only to be
traced, if the ApplicationTab concerned is actively displayed in the foreground, this can
be achieved using the void tabDeselected () method.

= void tabClosed(): This method is called by the FirstSpirit Framework, when the
instance of an ApplicationTab is closed. Whether a tab has already been closed can be
determined by calling the boolean isClosed() method of the ApplicationTab
interface (see Chapter 3.5 page 44).

3.6 Abstract Class: ApplicationType
Package: de.espirit.firstspirit.client.gui.applications

On opening a new application via the ApplicationService a specific application type is passed
(see Chapter 3.1 page 35), for web applications and Swing-based Java applications for example:

= BrowserApplication: Interface for opening and controlling a new browser instance in the
application area of FirstSpirit SiteArchitect (see Chapter 3.7 page 45).

* SwingApplication: Interface for opening and controlling a Swing-based Java application
in the application area of FirstSpirit SiteArchitect.

The abstract class provides the following methods:

= String name (): The method returns the full name of the respective ApplicationType.

3.7 Interface: BrowserApplication
Package: de.espirit.firstspirit.client.gui.applications.browser

In order to integrate web applications in the application area of SiteArchitect, access to the
integrated browser of FirstSpirit is required. The BrowserApplication interface provides
methods, for generating and controlling a new instance of the respective browser. Many of the
methods it contains are run asynchronously. In order for ordered access to the content of the
web application to be possible, an instance of the type BrowserListener should be registered
on the BrowserApplication.

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

45

FirstSpirit™ AppCenter

The interface provides access to the following methods:

EngineType getEngineType (): This method returns the current EngineType of the
browser. FirstSpirit currently integrates several web browser engines, which can be optionally
used. The required browser engine can be selected via the configuration (see Chapter 3.9
page 49). Apart from a rigid definition, by specifying
BrowserApplicationConfiguration.GENERATOR. invoke () .engineType (Engine
Type.DEFAULT) it is also possible to give the default browser engine, saved by the
respective user in FirstSpirit SiteArchitect (SiteArchitect menu bar: Menu item: View —
Browser Engine). In this case, the getEngineType () method returns the corresponding,
specific type.

BrowserApplication.getEngineVersion (): This method returns the current version of
the browser as a string. Note: In the case of "Mozilla Firefox" this is not the Firefox version,
but the Xulrunner version. Assignment to the Firefox version must be carried out
independently here (if necessary).

void openUrl (final String url): The method opens the passed URL within a
browser instance in the application area of SiteArchitect. This can either be the URL of an
external web application or a customized implementation, which has to be globally installed
on the FirstSpirit server first, and can then be opened in the application area using the
openUrl (..) method (see Chapter 4.3.3 page 68). This method is run asynchronously. A
BrowserListener must be registered to determine at what time the method is run. This informs
the user at the time it is run, that the location has changed.

void openUrl (final Location location):
String getUrl ()

void addBrowserlListener (@NotNull final BrowserListener listener): The
method registers a BrowserListener on an instance of the type BrowserApplication.
A BrowserListener responds to changes or events within the web application (Interface:
BrowserListener see Chapter 3.8 page 48, for example implementation, see Chapter 4.3.7.2
page 90).

String convertToScript (Object object): The method converts the passed Java
object into JavaScript code and returns this as a string. As, unlike Java, JavaScript only
supports a limited set of data types, certain restrictions also apply to the methods of this
object. Only a range of simple, atomic data types, and lists and maps can be converted.
Complex object types not known in JavaScript on the other hand are not supported. If a
passed Java object is null or is not supported, the method returns null:

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

FirstSpirit

46

FirstSpirit™ AppCenter

Java JavaScript

= Number, Boolean = (related toString mechanism)

= String = "stringcontent"(escapes newline and ")
= List<Object> = [entryO,entryl,entry2,...]

= Map<String,Object>= {'keyQ"valueO,'keylvaluel,...}

For further information on the conversion of data types, see Chapter 2.1.3 page 30).
<T> BrowserNodeHandlerBuilder<T> createNodeHandlerBuilder ()

void executeScript (String script): This method runs the passed JavaScript code
in the currently opened browser document and therefore enables targeted, unidirectional
communication in the direction: Java » JavaScript. The JavaScript code to be run is passed
as a string (for example, see Chapter 4.3.4 page 72).

Object evaluateScript (String script): This method runs the passed JavaScript
code in the currently opened browser document and therefore enables targeted,
unidirectional communication in the direction: Java » JavaScript, but also returns a returned
value. The return values passed from the JavaScript environment are converted into Java
objects according to specific conversion rules, for example, a js:number object becomes an
object of the type Double (Converting data types see Chapter 2.1.3 page 30).

volid removeBrowserListener (@NotNull final BrowserListener listener)

void focus (): Calling this method shifts the focus onto the current browser instance. This
is useful, for example, if the integrated web application contains a form element, which is to
be directly assigned an input cursor or, as in the example of Google Maps integration, to
enable direct zooming with the mouse wheel, if the application tab is selected by the editor
(see example in Chapter 4.3.7.1).

void setHtmlContent (String html)

Document getCurrentDocument ()

void inject (Object object, String name): This method is required for
communication between the Java level of FirstSpirit SiteArchitects and the JavaScript level of
the web application. The method injects the passed Java object as an attribute of the window
object in the browser instance on which it was called (for information on the window object,
see Chapter 4.3.13). The injection generates a substitute object (proxy) in the form of a
JavaScript object and registers it under the passed name (for example, see Chapter 4.3.5
page 76).

Access to the DOM tree of the browser instance is not possible at any time. The registration
can only take place if the document has been fully loaded. To ensure this, an instance of the

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

FirstSpirit

47

FirstSpirit™ AppCenter FirS t Spirit

type BrowserListener must be used (see Interface: BrowserListener)(DOM access concept
see Chapter 2.2 page 32).

following registration the JavaScript object can be used in the JavaScript environment using
the call window. {name}. All Java objects methods can then also be called from the
JavaScript environment of the integrated browser.

Background: With the injection the FirstSpirit framework generates for each method of the
Java object instances a corresponding JavaScript method with (approximately) identical
method signature. On being called from the JavaScript environment, this JavaScript method
sends an even, which is evaluated on the Java side and triggers the running of the
corresponding Java method there. The suitable Java method is determined from the method
signature and the passed parameters and is called.

Example (generation of an instance of the type BrowserApplication):

ApplicationService appService = servicesBroker.getService (ApplicationService.class);
BrowserApplication browser = appService.openBApplication (BrowserApplication.TYPE,
null) .getApplication () ;

browser.openUrl ("www.e-spirit.de") ;

3.8 Interface: BrowserListener
Package: de.espirit.firstspirit.client.gui.applications.browser

Access to the content of the browser instance can be controlled with the help of a
BrowserListener. To do this, an instance of the type BrowserListener must be registered
on the browser instance (BrowserApplication). An instance of the type BrowserListener contains
methods, which inform the developer about changes to the browser instance in the application
area. If, for example, the URL of the browser instance is changed, the FirstSpirit Framework
responds by calling the void onlocationChange (@NotNull String url)method.

The interface (and all methods contained in the interface) can be implemented to generate a new
instance of the type BrowserListener. However, it is recommended that the internal, abstract
adapter implementation (Abstract Adapter Class), provided by the BrowserListener interface be
used instead. This predefined class implements all the interface's methods. The developer then
only has to implement the methods relevant for them (see Listener — responding to changes,
Chapter 4.3.7, page 88) and can otherwise fall back on the available default implementation. The
adapter class is also advantageous for subsequent extension of the interface. If the interface is
supplemented, for example, with a new method, existing implementations remain compatible.

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

48

FirstSpirit™ AppCenter FirS t Spirit

The new method only has to be implemented by the developer if and when necessary.

An instance of the type BrowserListener must then be registered by calling the
addBrowserListener (..) method on the event source (here the BrowserApplication).

The BrowserListener interface (or the corresponding adapter implementation) provides the
following methods:

= void onLocationChange (@NotNull String url): The method is called if the
BrowserListener reports that the URL of the browser instance (instance of the type
BrowserApplication) has changed.

= void onDocumentComplete (String url): The void onDocumentComplete (..)
method is called if the BrowserListener of the browser instance (instance of the type
BrowserApplication) reports that the document (including all images) has been
completely loaded (for DOM access concept see Chapter 2.2 page 32).

3.9 Interface: BrowserApplicationConfiguration

Package: de.espirit.firstspirit.client.gui.applications

The BrowserApplicationConfiguration interface extends the base class
ApplicationTabConfiguration (see Chapter 3.4 page 42) to include configuration options
for the display of BrowserApplications within an ApplicationTab. For example, a specific
browser engine can be defined for opening the web application or an address line can be shown
for display of the called URL in the application area.

r — -title("e-Spirit AG")

1

I I_I:.engineType(EngineType.FIREFD}()

I Tl useEngineTypeDependenticon(true)
1

[e P
\g. e-SpirtAG x
| |

B c-Spirit

4
r—- hitpeifwoww . e-spirt.com/

|
L — showAddressBar(true)

Figure 13: Example of BrowserApplicationConfiguration

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

49

FirstSpirit™ AppCenter FirS t Spirit

The BrowserApplicationConfiguration interface is derived from the base class
ApplicationTabConfiguration and therefore provides all methods described in Chapter
3.4. Furthermore, the BrowserApplication Configuration interface contains the following
methods:

" BrowserApplicationConfiguration usekEngineTypeDependentIcon (boolean u
seEngineTypeDependentIcon) : If a specific icon has not been defined for the tab
display, this method can be used to show the icon of the BrowserEngine.

" BrowserApplicationConfiguration showAddressBar (final boolean
showAddressBar): This method can be used to define whether an address field with the
called URL is to be displayed in the bottom part of the application area (default value: true)
or not (false). This method can be used, for example, to show the URL of an external web
application or a web application installed on the FirstSpirit Server; the application having
been opened in the application area using the openUrl (..)) method (see Chapter 3.7 page
45). If, on the other hand, an HTML code is initiated (using the setHtmlContent (..)
method, see Google Maps example) the display of an address field can be suppressed.

= Dboolean showAddressBar (): This method returns whether, for the ApplicationTab,
which was opened based on this configuration, a address field is shown (true) or not
(false) (see method: BrowserApplicationConfiguration showAddressBar (final

boolean showAddressBar)).

= public BrowserApplicationConfiguration engineType (@NotNull final
EngineType type): This method can be used to define a browser engine, which is to be
used to open the web application in the application area. FirstSpirit currently integrates
several web browser engines, which can be optionally used. Apart from a rigid definition, by
specifying
BrowserApplicationConfiguration.GENERATOR. invoke () .engineType (Engine
Type.DEFAULT) it is also possible to give the default browser engine, saved by the
respective user in FirstSpirit SiteArchitect (SiteArchitect menu bar: Menu item: View —
Browser Engine).

= public EngineType getEngineType (): The method returns the EngineType, which
was previously defined using the
BrowserApplicationConfiguration.engineType (@NotNull final EngineType

type) method for the opening of the web application in the application area. Note: If,
instead of a specific type, a default browser engine was defined (EngineType.DEFAULT),
this method returns the EngineType DEFAULT. The
BrowserApplication.getEngineType () method can be used to obtain the respective

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

50

FirstSpirit™ AppCenter FirstSPirit
specific type (see Chapter 3.7 page45).

A new instance of the type BrowserApplicationConfiguration can be generated with the
call BrowserApplicationConfiguration.GENERATOR. invoke (). The configuration then
takes place using the simplified builder pattern. The application specific configuration is passed
on calling the ApplicationTab<T> openApplication(final ApplicationType type,
final C configuration) method and must match the passed application type (here:

BrowserApplication).

Example:

final ApplicationService service =

_servicesBroker.getService (ApplicationService.class);

final BrowserApplicationConfiguration configuration =
BrowserApplicationConfiguration.GENERATOR. invoke ()
.icon(IconLibrary.firstSPIRIT)
.title("e-Spirit AG")
.1dentifier ("test")
.engineType (EngineType.FIREFOX)
.showAddressBar (true)
.useEngineTypeDependentIcon (true)

.openInBackground (false) ;

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

51

FirstSpirit™ AppCenter FirS t Spirit

3.10 Interface: ClientServiceRegistryAgent

Package: de.espirit.firstspirit.agency

For further information see online documentation of FirstSpirit (ODFS), chapter Plug-In
development.

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

52

FirstSpirit™ AppCenter FirS t Spirit

4 Example: Integrating Google Maps in FirstSpirit

In the area of presentation layer integration, applications for travel directions, which work with
geographic coordinates (geographic latitude and longitude), such as site plans and route
planners, have firmly established themselves on the websites of most businesses. In general,
these applications have the problem that initially only the address is known, but not the
absolutely relevant geographic coordinate.

The example implementation introduced in this chapter is intended to create a simple and
intuitive option for working with geographic coordinates within the FirstSpirit environment. To this
end, a geolocation input component has been developed, which determines all relevant
geographic information for an address and saves it for further editing. To do this, the component
uses the web application Google Maps, which is seamlessly integrated into the applications area
of FirstSpirit SiteArchitect. Search queries can be directly forwarded from the input component to
the Google Maps API, but it is also possible to search using the Google Maps map display in the
application area. The geographic information determined is then saved within the input
component for further processing.

In the example, close integration of the web application with FirstSpirit SiteArchitect is to be
achieved which, for example, also enables Google Maps objects to be dragged and dropped into
the geolocation input component.

= Objective: Introduction of an easy to handle solution for geographic coordinates

= Technique: Web application integration, HTML based graybox technique (see Chapter 1.1
page 4).

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

53

FirstSpirit™ AppCenter FirS t Spirit

41 First steps
41.1 Note on the FirstSpirit license model

Use of the FirstSpirit AppCenter is subject to a new license model. Unlike licensing of a FirstSpirit
(module) add-on to date, here it is not the function that is licensed, but the number of integrated
applications (see Chapter 1.7 page 23). An example implementation can be used for test and
demo purposes, and yet be installed on the FirstSpirit Server without a valid license.

41.2 Note regarding legal implications

The example implementations presented here for the integration of Google Maps (or the
integration of a picture database) are not standard FirstSpirit functions (see Chapter 1.5 page
21). The implementation is only intended to show by way of example, the possibilities provided
by application integration in FirstSpirit and how these can be implemented.

n If an application integration (for example, for Google Maps) is to be implemented
within a project, the licenses required for use of the integrated application must be
requested directly from the application manufacturer. In particular, use of the Google
technology is subject to strict restrictions (see Terms of Service for creating a Google
account).

41.3 Generate Google Maps API key

To use Google Maps on your website you will need the Google Maps API. To use this, you will in
turn need a Google Maps API key. This must be requested directly from Google. A Google Maps
API key is then valid for a "directory” or a domain. |.e. a key can be used for the following URLS:

= http://www.myserver.com/maps/index.php
= http://www.myserver.com/maps/map.htmi

but not, e.g. for

= http://subdomain.myserver.com/index.html

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

54

FirstSpirit™ AppCenter FirS t Spirit

In general, it is advisable to register the domain name. The key is then valid for this domain, its
sub-domains, all URLs of hosts in these domains and all ports on these hosts?.

Note: If Google maps is also to be used in the preview of the editing system, the FirstSpirit
Server must be operated in the same domain as the domain registered here. The start page of
the FirstSpirit Server must therefore lie within the domain of the registered API key (Note on
configuring the FirstSpirit server see Chapter 4.1.4).

First, an account with Google must exist. The API key, which is requested in the next step, is
coupled with this Google account. If a Google account is not yet available it can be created under
the following URL.:

https://www.google.com/accounts/NewAccount

Several API keys can be requested for an account.

The API key is requested using the following URL:

http://www.google.com/apis/maps/signup.html

To do this the URL, which is to be used for the Google Maps service, is entered in the "URL of
my website" field. If the terms of services are accepted and the "Generate API key" button is
clicked the key is displayed in the next window.

41.4 Note on configuring the FirstSpirit server

The Google Maps API key is only registered for a domain (not for a host name) (see Chapter
4.1.3).

To prevent FirstSpirit from being used via URLs, which do lie within the registered domain, that
is, for example, via http://fs4server instead of http://fs4server.myserver.com, the
external Apache httpd, which can be used for FirstSpirit in addition to the integrated Jetty web
server, should be configured as follows:

RewriteCond %{HTTP_ HOST} ! “hostname\.domain$ [nocase]
RewriteRule "~/ (.*) http://hostname.domain/$1 [redirect=permanent,noescape,last]

All calls of the FirstSpirit Start page are then forwarded to a defined URL (with domain).

2 For more detailed information on the validity of a Google Maps API key, see also
http://code.google.com/intl/de/apis/maps/fag.html#keysystem

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

https://www.google.com/accounts/NewAccount
http://www.google.com/apis/maps/signup.html
http://hostname.domain/$1
http://code.google.com/intl/de/apis/maps/faq.html#keysystem

FirstSpirit™ AppCenter FirS t Spirit

41.5 Installing the Google Earth plug-in

To use the 3D display of Google Earth in the integrated applications area of FirstSpirit (see
Chapter 4.2.4) the Google Earth plug-in must be installed. If the plug-in is not installed, a page
appears within the application area of FirstSpirit SiteArchitect, which prompts you to download
the plug-in. Click the "Download Google Earth plug-in" button; the plug-in is saved directly on
your workstation. To install the plug-in, open the relevant file GoogleEarthPluginSetup.exe
with a double-click. Follow the instructions of the installation program?®.

Following installation the Google Earth View can is visible within the application area.

41.6 Example project

An example project, which uses the geolocation input component described here, can be made
available by the FirstSpirit Technical Support on request.

Please contact:
https://help.e-spirit.de/.

The input component can also be integrated in any FirstSpirit projects required. To do this, the
page or section templates concerned merely have to be extended.

For further information on template development see online documentation of FirstSpirit (ODFS).

For information on the development of SwingGadget input components, see Developer Manual
for Components.

3 For further information on installing and uninstalling the Google Earth plug-in see also

http://maps.google.com/support/bin/answer.py?hl=en&answer=178389

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

56

https://help.e-spirit.de/
http://maps.google.com/support/bin/answer.py?hl=en&answer=178389

FirstSpirit™ AppCenter First SpiritTM
4.2 Application areas of the Google Maps integration

421 Address search with geolocalization

In this example implementation a geolocation input component is developed for FirstSpirit, which
determines the correct geographic position data for an entered address or part of an address (for
example, a street name) and saves it for further processing. The input component has an input
field for an address string, which can be edited by the editor. By clicking the "Search
Geolocation" button the editor can start a text-based search via the Google Maps API. To do this,
web application Google Maps is integrated into the applications area of FirstSpirit SiteArchitect.
The implementation behind the input component (see Chapter 4.3 page 63) initially opens
another tab next to the Preview tab in the application area of SiteArchitect, which contains the
Google Maps web application. The geographic coordinates determined via the search are

assigned a marking (marker) within the map ,, copied into the SwingGadget input component
where it is displayed both as full address information and with the geographic longitude and
latitude.

Search Geolocation: Opens an Vorschau: Anfahrt @ Google Maps' x
application tab in the application area
and starts a text-based search by means
of the Google Maps API.

1

1

address string 1
[1

T

T
Company: Geolocation | 1
barcelonaweg | | Search G.P?‘.‘lq ‘
Address |
Barcelonaweg 9-13, 44269 Dortmund, Deutschland ;\
Latitude, Longitude . \g
51°30"12.51"N, 7° 31"44.30"E FOWERED. B
(51.503475, 7.5289712) [Pﬂﬁ TR
I g

1
Saves the determined coordinates
for further processing ~ = === === == == == —— -

AR o

~ 1
marks the determined 1
coordinate in the web application

Editing > Google Maps integration
(form based) (interactive preview)

Figure 14: Use case - address search with geolocalization

FirstSpirit™ V 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20 57

FirstSpirit™ AppCenter

FirstSpirit™

4.2.2 Changing the coordinate using the Google Maps integration

The marking of the coordinate within the integrated Google Maps application can be changed by

the editor. The change within the map display then affects the coordinate saved in the
SwingGadget input component.

Company: Geolocation

Barcelonaweg Search Geolocation

Address
Barcelonaweg 9-13, 44269 Dortmund, Deutschland
Latitude, Longitude o if }
51°30"12.51"N, 7° 31"44.30"E pe 21 ¥
(51.503475, 7.5289712
3| 1 Tele Atlas
R Y]

The search for "Barcelonaweg" provides a
marker object in the map !
I

Company: Geolocation

Barcelonaweg

2 b |
b = \
. 2 =3 ~ = - e \
Y o v : \
ﬁemwo\sama i Ak i / . \
.--, , Wik S oy & -
V. Ee 50 "
> S
R A v ¥ e e

Search Geolocation

5

Address - ’ W

Barcelonaweg 14, 44269 Dortmund, Deutschland) B o @.ﬁ

Latitude, Longitude 1 7'“ ‘ 6

51730 11.06"N, 7" 31 4464°E romeRED Ry o v ' Move the marker

(51.50307284385776, 7.5290679931640625) i 1 Telé Atlas i \\ via Drag and Dl’Op
New position data is updated in
the geolocation input component - - - — - — — — — — - — — —

Editing >> Google Maps Integration
(form based) (interactive preview)

Figure 15: Use case — moving the marker in the map display
The editor must first lock the section concerned to prevent it from being edited. Click the =
button to open an (applications) tab with the web application in the application area of
SiteArchitect. In edit mode the marker set by the example implementation is always displayed

within a hybrid map. This applies even if the web application has already been opened in the
application area and the editor has selected a display form beforehand.

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20 58

™

FirstSpirit™ AppCenter FirS t Spirit

Within the hybrid map the editor can simply move the marker @ by means of drag-and-drop or
via the Google Context menu ("What is here?"). In this way, for example, after searching for a
geographic position via the Google Maps API, the marker within the map is corrected and move
to the required building. The corrected position data is then copied by the example
implementation into the geolocation input component.

4.2.3 Showing additional information (Google Balloons)

Apart from the geographic data, other information on a marker is to be shown within the map. To
this end, the form area provides the editor with other input fields (company: infotext and
company: info picture). In this way, each marker saved within a geolocation input component can
be assigned short information text and a picture from the FirstSpirit Media Store.

8 geolocation x B vorschau; Anfahrt @ coogleMaps x
EN. @! DE Metadaten
& inhate O geolocation) Anfahrt I© mittlerer Bereich = geol Visit the Solar Exhibition in the new
v business building of Mithras Energy.
Company: Infotext 4 ; fl The exhibition wil be held on 13

February to 20th February 2013. We
look forward to your visit!

Visitthe Solar Exhibition in the new business building of Mithras Energy.
The exhibition will be held on 13 February to 20th February 2013. We look forward t

< 5

Company: Infopicture
Reference <4 business building E

Status

Company: Geolocation

I sydney Search Geolocation

| I

I Address il 1 Point -
Circular Quay Ferry Terminal Wharf 4, Sydney New grove / L";!wes Point 2
2000, Australien rs Roint /! e 1
i T | Presentation of additional information :
33°51'36.90° S, 151° 12 40.00° E il PiS)its Poin from other FirstSpirit input components - -
{53 B30T ST =T within the Google Maps integration.

Editing >> Google Maps Integration
(form-based) (Interactive preview)

Figure 16: Use case — showing additional information
This information entered by the editor is shown as Google "balloons" by clicking the marker, not

only within the integrated preview (Preview tab) but also in the integrated web application
(Applications tab). These "balloons" are small information windows, which can contain HTML,
CSS or JavaScript code.

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20 59

FirstSpirit™ AppCenter FirS t Spirit

4.2.4 3D display using Google Earth

Apart from the conventional display of the coordinate within a hybrid map with low altitude, the
input component also offers a 3D view (Google Earth) with high altitude via the Google Maps
integration.

n This display requires the installation of a Google Earth plug-in (see Chapter 4.1.5
page 56).

If Google Maps is not already open in the integrated application area of FirstSpirit, an Application

tab is opened first by clicking the %= putton. The implementation behind the input component
now shows a map of the type G_SATELLITE_3D_MAP instead of the conventional hybrid map.
This type of map shows an interactive 3D model of the earth with satellite images. (If the
application was already open in the application area, the map display is simply switched to the
existing Application tab.)

Within the 3D view the user can conveniently switch between different coordinates (saved in
several geolocation input components). On changing between the coordinates (for example, on
selecting a new geolocation section via the FirstSpirit havigation tree), 3D fading in and out (aka
cross-fading/fading over) from one position to the other takes place in the application tab, with
the classic "Zoom-to-Location" effect of Google Earth®. All additional information about a marking
saved can also be shown within this display (injection of additional information as Google Earth
Balloons) (see Chapter 4.2.3). The implementation therefore provides an interactive live preview
for the display of geographic information.

* For an example, see http://earth-api-samples.googlecode.com/svn/trunk/examples/balloon-change-content.html

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

60

FirstSpirit™ AppCenter FirS t SpiritTM

(3 contents (page store) & ENuo) ! i © Saelit | rons | Earin]

B FirstSpiit s B nhate geokcaton Anfant mitierer Bereich oeol

ation
IR Contentrignt Company: Infopicture

Reference | business building a8

switch N
between two e m

sections
fading between
two locations
Navigation >> Editing >> Google Maps integration
(tree-oriented) (form-based) (Interactive preview)

Figure 17: Use case — 3D fading in / out between two positions

4.2.5 Route directions ("How to find us")

The geolocation input component saves the geographic coordinate determined using the Google
Maps API for further processing (see Chapter 4.2.1 page 57). This data is used within the
website for route planning or directions ("How to find us" instructions in the navigation menu). As
soon as a geographic coordinate has been determined using the Google Maps integration (for
example, using search) and has been saved in the geolocation input component, a form based
on the saved coordinates is generated within the website (or in the Preview tab). The updated
website shows a map section (map tile) with the saved coordinates marked on it. In addition,
input fields for two integrated route planners (Google Maps and Bing Maps) are displayed with a
preselected start location. The coordinates saved within the component are used as the end
location/destination. The start location can be changed by the visitor to the website (or by the
editor within the application area). When the corresponding button is clicked a Google Maps or
Bing Maps window opens with the respective parameters.

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20 61

™

FirstSpirit™ AppCenter Fi]_'S t Spirit

& geolocation x B} vorschau: Anfahrt @ Google Maps
lenw@l DE @] Metadaten | htmi (HTML) | pdf (PDF - FOP v0. | RSS (XML)
‘Company: Infopicture
Reference <4 b i =568 i Y ay |
4| business building | =4 =) L Mithras'Ene rgy \
Inspiratiofthroush Infovation
| Status: Released \ \
(Admin)
Last change: Jul 29, 2009 1:43:47 PM
(unknown) o e~ Cramiama
'y e 3
: L% D Map | satelite [Hyorid |
1§) He
& Bf Visit the Solar Exhibition in the new business.
Company: Geolocation RE buiiging of Mithras Energy. The exhibition wil
Gore Cove hekd on 13 February to 20th February 2013, Wi IClifton:
sydney Search Geolocation gl 100k forward to your visit! Bardens
b
Address it APo’im
Circular Quay_ Ferry Terminal Wharf 4, Sydney New Bmvf s Point Snails Bay. oo
2000, Australien rs Point A N, Nackeon ¢
e | e Rocks | A - Dawes Porit
Latitude, Longitude 7 | The website shows a form E
33°51'35.90°S, 151° 12 40.00°E i Polts Poin | with a map tile with the Millers Point Yz
Lo L AR e i = e e e == == | saved coordinates marked | == ~ : e
on it, input fields and Aarour R Sk Point Pip

buttons for integrated
route planners

|University of Sydney

ereis(R), Sensis Pty Ltd - Tenfiesipune

L || Route: Bing Maps-
= |

R University of Sydney to Cal Expressmay - Google Maps k

(]
I
1
Google rom: Unwersiy of Sydney o 338599722, 1612111111 [T Spn 1
Lava Cove Visoughby) T I
Cetdirections My places. & oo ¢ N "
(= S {1 S 1
- ¢ o - 5 Satelite 1
x chCans g el e
CHELRE s o) A Y, 2 T |1
RIS e F Bl
@ ooty ot Sycney . 3 o7 ol !
® -mesowr ss2mmm Cramérne. start route planning:
AdtDusimaten. Noitar 3y ..

GET DIRECTIONS

A: the entered start location

Cahil Exprossway

B: The coordinates saved within the
geolocation component are used

T4 Westom Distrutor

FrecumyMevosds » as the end location/destination
A
Driving directions to Cahill 300 R 5
Expressway 8 Pewtt Prod
This route has olls. -
Thi route has resricted usago or prvate s tont o
roste fo
Uniorsity of Sydnoy | TR oows sy
, Ciy Road @ Daringhurst
Unwersity of Sydney New South Wales 2006, o). Paddington B
Ataka SR 1. i
1. Hadsouth tomad Sate Route 54 . S sy i i P
Restrcted usage read B s - Corarm
Pasegnim g e waeko
ot ot ; 2 e
2.Tun o o State Rowte 54 ot el s

3. Tum ght osto Beoadway!State Route 31
4. Tum lek onto Wanle St

5. Tum ght onta Fig St

> 3 2+ 3 2

6. Take the ramp 1o Metroad 1/CityHorbour
Bridge.

Editing >> Preview
(form-based) (Live Rendering)

Figure 18: Use case - directions

FirstSpirit™ V 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20 62

FirstSpirit™ AppCenter FirS t Spirit

4.3 Implementation: Application integration for Google Maps

In the preceding chapters the concept of the seamless integration of a web application in
FirstSpirit SiteArchitect (see Chapter 2 page 26) and the necessary extensions of the FirstSpirit
Client API were introduced (see Chapter 3 page 34). This chapter, by way of example, now
shows a specific implementation of an application integration for FirstSpirit SiteArchitect.

The web application Google Maps is to be integrated in the application area of SiteArchitect. The
integration is controlled by a SwingGadget input component (see Chapter 4.3.1 page 65), which
is closely linked to the application. The connection between the Java level of FirstSpirit
SiteArchitect and the native browser level of the web application is made by means of the new
FirstSpirit AppCenter API.

To avoid the implementation of an independent web application, an HTML code is initiated within
the example implementation, which initializes a Google Maps container on loading (see
maps.html - Initializing the container for the map display Chapter 4.3.15 page 116). Within this
HTML page, JavaScript methods are defined, which provide core functions such as "Add entry",
"Remove entry" and "Modify viewport". These JavaScript methods are called accordingly on the
Java side, in order to display or change a geographic position.

Identification of the individual map entries, IDs are generated, which are used for direct
assignment and control (Show markers and assign an input component see Chapter 4.3.6 page
79). A way back (return path), provided by means of an object injection, is required for the
modification of the geographic position data and the corresponding change notification
(MapsPlugin - GeolocationUpdater (Injection Java » JavaScript) see Chapter 4.3.5 page 76).
This object has a method for updating the exact geographic position and a method by means of
which the address string can be updated.

The following chapters describe selected code of the example implementation and represent
orientation for the user to develop their own integration solutions. In particular, use of the
FirstSpirit AppCenter API is explained. The Google Maps API also used is only explained to the
extent necessary to understand the example (implementation details are given in the Google
Maps API®> documentation and the Google Earth API° documentation.) The development of the

® http://code.google.com/intl/de/apis/maps/documentation/javascript/v2/reference.html

® http://code.google.com/intl/de/apis/earth/documentation/reference/index.html

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

63

http://code.google.com/intl/de/apis/maps/documentation/javascript/v2/reference.html
http://code.google.com/intl/de/apis/earth/documentation/reference/index.html

FirstSpirit™ AppCenter FirS t Spirit

SwingGadget input component used (see Chapter 4.3.1) is also not described here. All
information and interfaces required to develop SwingGadget input components are given in the
Developer Manual for Components.

= (SwingGadget) input component CUSTOM GEOLOCATION
(see Chapter 4.3.1 page 65)

= MapsPlugin — Generating a new instance of the type MapsPlugin
(see Chapter 4.3.2 page 66)

= MapsPlugin — Opening the application within a tab
(see Chapter 4.3.3 page 68)

= MapsPlugin — run JavaScript (Java » JavaScript)
(see Chapter 4.3.4 page 72)

= MapsPlugin - GeolocationUpdater (Injection Java » JavaScript)
(see Chapter 4.3.5 page 76)

= Show markers and assign an input component
(see Chapter 4.3.6 page 79)

= Listener —responding to changes
(see Chapter 4.3.7 page 88)

= Updating the geodata of the input component (JavaScript » Java)
(see Chapter 4.3.8 page 93)

The complete source code of the application integration implementation for Google Maps
described in this example is located in the Zip archive of the Developer Manual. The archive file
can be downloaded from using the online documentation of FirstSpirit (area: Documentation for
developers — example implementations).

n If using the Google Maps integration the license requirements of the manufacturer
must be met (see Chapter 4.1.2 page 54).

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

FirstSpirit™ AppCenter FirS t Spirit

431 (SwingGadget) input component CUSTOM GEOLOCATION

The application areas are introduced in Chapter 4.2 (page 57 ff.). A new input component
CUSTOM GEOLOCATION has been developed for these areas. This input component saves a
geographic coordinate, consisting of two decimal values (geographic longitude and latitude) and
displays not only the coordinate but also the complete address information belonging to this
coordinate (street, town, country). Furthermore, a simple text field for (unformatted) address input
is available to the editor, to simplify the search. The address string enter there is used for a text-
based search by means of the Google Maps APIl. As Google Maps includes (provided it is
possible/known) the location of the Internet access point, from which the request is made, in this
search, for destinations near the access point location it can be sufficient to enter a street name.

starts a text-based search
via the Google Maps API
|
|
Company: Geolocation |
|

simple text field for (unformatted) = = = =Barcelonaweg, Dortmund Search Geolocation
address input (String)

_ Address

After successful search, the = = =19 00 14, 44269 Dortmund, Deutschiand

complete address is displayed Q'1
geographic coordinates — — — |— Latitude, Longitude |
(longitude and latitude) 517301137 N, 77 31°44.93°E FOWERED By I

(51.50309287907482, 7.529148459434509 .
- - 0 Tele Atlas
|
d

| =l =)
| |
I I
I I

display or modification of the exact geographical position

|
|
|
|
|
within the Google Maps integration in the preview area |
|

preview bitmap with a reduced size map display
and marking of the currently selected position

Figure 19: Geolocation input component
The special feature of the geolocation input component lies in its close integration with the web

application Google Maps. The component includes a button for display/modification of the
precise geographic position and a button which initiates a search on the basis of the address
string. With both actions - if it has not already happened or been closed - an application tab is
opened in the integrated browser of SiteArchitect (MapsPlugin — Opening the application within a
tab see Chapter 4.3.3 page 68). The web application for displaying the geocoordinate is opened
in this tab. The user can change the displayed coordinate there (for example, using drag-and-
drop to move the marking within the map display). The new coordinate (incl. address information)
is then dynamically updated in the input component. In addition, the input component shows a
preview bitmap with a reduced size map display and marking of the currently selected position
from the web application. This preview image does not come from the FirstSpirit Media Store, but
instead is provided via the integrated web application and is also dynamically updated if the

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

65

FirstSpirit™ AppCenter FirS t Spirit

position within the integrated application (Google Maps) is changed. The opening of the
application tabs and live updating of the map display is carried out by the implementation behind
the input component (see Chapter 4.3.2 ff.).

4.3.2 MapsPlugin - Generating a new instance of the type MapsPlugin

Within the SwingGadget implementation (of the input component CUSTOM GEOLOCATION) a new
instance of the type MapsPlugin must be generated first. The MapsPlugin class is responsible
for the integration of Google Maps in the application area of FirstSpirit SiteArchitect.

This requires a so-called SpecialistsBroker. An instance of the type SpecialistsBroker
provides access to specific services or information via different "specialists”. A specialist of the
type ServicesBroker is required for working with integrated web applications. This can be
requested on the SpecialistsBroker with the help of the <S> S
requireSpecialist (SpecialistType<S> type) method. In addition, a service can be
requested by calling the getService () method. This method is required, for example, later in
order to use the ApplicationService (see Chapter 4.3.3 page 68).

The typified SwingGadgetContext (see Developer Manual for Components) can be used
within the SwingGadget implementation to request an instance of the type ServicesBroker
within the help of the <S> S requireSpecialist (SpecialistType<S> type) method.
The new instance of the type ServicesBroker is finally passed to the MapsPlugin class when the
MapsPlugin.getInstance (..) method is called.

public class GeolocationSwingGadget. .. {
private final SwingGadgetContext<GomGeolocation> context;

1
2
3
4. private ServicesBroker servicesBroker;
5
6
9

public GeolocationSwingGadget (final

SwingGadgetContext<GomGeolocation> context) ({

8. super (context) ;

9 _context = context;

10. }

11.

12. private MapsPlugin getMapsPlugin () {

13. if (_servicesBroker == null) {

14. _servicesBroker =
_context.getBroker () .requireSpecialist (ServicesBroker.TYPE) ;

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

66

FirstSpirit™ AppCenter FirS t Spirit

15. }

16. return MapsPlugin.getInstance (_servicesBroker) ;
17. }

18. }

Listing 1: Geolocation - generating a new instance of MapsPlugin (SwingGadget-Impl.)

The MapsPlugin.getInstance (..) method generates a Singleton instance of the MapsPlugin
class. This Singleton instance initially has a ServicesBroker (which is requested within the
SwingGadget implementation and is passed to the MapsPlugin class) and the MapType
G _HYBRID MAP. This MapType is a default map type of the Google Maps API, which represents
a mixture of photo tiles and additional information, for example, street or place names.

1. public class MapsPlugin implements TabListener, BrowserListener {

2.

3. @SuppressWarnings ({"UnusedDeclaration"})

4. public enum MapType {

5. G_NORMAL MAP, G_SATELLITE MAP, G_HYBRID MAP,

G_SATELLITE 3D MAP

6. }

7. private final ServicesBroker _servicesBroker;

8. private static MapsPlugin INSTANCE;

9.

10.

11. private MapsPlugin (final ServicesBroker servicesBroker) ({

12. _servicesBroker = servicesBroker;

13. _mapType = MapType.G _HYBRID MAP;

14. }

15.

16. public static MapsPlugin getInstance (final ServicesBroker
servicesBroker) {

17. if (INSTANCE == null) ({

18. INSTANCE = new MapsPlugin (servicesBroker) ;

19. }

20. return INSTANCE;

21. }

22.

23. }

Listing 2: Geolocation — MapsPlugin constructor (MapsPlugin-Impl.)

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

67

FirstSpirit™ AppCenter FirstSPirit
4.3.3 MapsPlugin - Opening the application within a tab

In order to integrate a web application into FirstSpirit SiteArchitect, it is necessary to control the
browser integrated in FirstSpirit (Controlling the integrated browser see Chapter 2.1.1 page 26).
To do this, firstly, a new browser instance (or a new tab) must be generated within the application
area, in which the required web application can be opened.

On requesting the integrated web application, for example, by clicking the = putton of the
geolocation component, the program first checks whether a browser instance of the web
application already exists in the application area of SiteArchitect. This condition is checked by
calling the ensureApplicationTab () method within the MapsPlugin implementation:

1. public class MapsPlugin implements TabListener, BrowserListener {
2. private BrowserApplication _application;

3.

4. public void add(final GadgetIdentifier gadgetId, ...) {
5. ensureApplicationTab () ;

6.

7. }

8.

9.

10. iner method

11. private void ensureApplicationTab () {

12. if (_application == null) {

13. getApplication(); // open application tab

14. }

15. }

16. }

Listing 3: Geolocation —BrowserApplication instance available? (MapsPlugin-Impl.)

If a browser instance has not yet existed for the web application, the getApplication ()
method is called, which returns a new instance of the web application of the type

BrowserApplication.
The interfaces of the FirstSpirit AppCenter API required are described in the following:

1) ApplicationService: The entry point for controlling a tab is always the
ApplicationService. An instance of the type ApplicationService is requested
by calling the <T> T getService (Class<T> serviceClass) method on the
passed ServicesBroker (see Chapter 4.3.2). This service can be used to open new
applications of a certain type within the application area (see section 3) or to get the

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

68

FirstSpirit™ AppCenter

2)

3)

4)

5)

applications from existing browser instances (see section 5) (for a description of the
ApplicationService interface see Chapter 3 page 34).

BrowserApplicationConfiguration: In addition, a configuration is required for the
integrated browser instance. For this, an instance of the type
BrowserApplicationConfiguration is generated using the call
BrowserApplicationConfiguration.GENERATOR. invoke (). The
BrowserApplicationConfiguration interface provides methods, for example, for
selecting a specific browser engine for the integration or for showing or hiding an address
line within the browser instance. The configuration is passed as a parameter when a new
browser instance is opened using the openApplication (..) method (see section 3)
(for a description of the BrowserApplication Configuration interface see Chapter
3.9 page 49).

ApplicationTab: To integrate a web application, first, a new tab (next to the Preview
tab) must be opened in the application area of SiteArchitect. To do this, the
openApplication (..) method is called onthe ApplicationService (see section 1).
The type (Abstract Class: ApplicationType see Chapter 3.6 page 45) of application
required (here: BrowserApplication, see section 5) and the configuration for the
integrated browser are passed to the method (see section 2). The
openApplication (...) method returns an instance of the type ApplicationTab. The
ApplicationTab interface provides general methods for controlling the tab, for
example, the tab can be brought to the front or closed using the corresponding method
invocations (Interface: ApplicationTab see Chapter 3.2 page 37).

TabListener: To track changes, for example, the selection of a tab by the user, an
instance of the type TabListener must be added to the Application tab (Interface:
TabListener see Chapter 3.5 page 44). A TabListener is added to the Applications tab
by calling the addTabListener (..) method; in this example the MapsPlugin class is
implemented by the TabListener interface itself. However, it is recommended that you
use the corresponding adapter implementation. The methods of the interface for
selecting, deselecting and closing the application tab can then be implemented as and
when necessary (see Listener — responding to changes, Chapter 4.3.7, page 88).

BrowserApplication: By calling the getApplication () method on the instance of
the type ApplicationTab, a new instance of the integrated web application of the type
BrowserApplication is returned (see section 3 — openApplication(..)). The
BrowserApplication interface provides methods for controlling the new integrated
browser instance, for example, opening a URL within the browser instance (Interface:

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

FirstSpirit

69

FirstSpirit™ AppCenter

6)

BrowserApplication see Chapter 3.7 page 45). The required web application (here:
Google Maps) must then be opened in the new browser instance generated. Two
different ways are available for this integration:

a) On the one hand, a global web application can be implemented and installed on the
FirstSpirit server. In this case the URL of the web application can be called in the
application area (using the openUrl (..) method). This method is also used to open an
external web application.

b) If an independent web application is to be bypassed, but the required HTML code can
be easily initiated and called (using the setHtmlContent (..) method). This second
way is also used for the Google Maps integration introduced here. The maps.html file is
used to initiate the HTML code; this forms a kind of capsule around the Google API calls
required (see Chapter 4.3.12 ff.).

BrowserListener: Access to the content shown in the web browser (DOM tree), for
example, to manipulate the data, is not possible at any time. To ensure controlled access
to the content, an instance of the type BrowserListener must be used (Interface:
BrowserListener see Chapter 3.8 page 48). A BrowserListener is added to the
BrowserApplication by calling the addBrowserListener (..) method. In this
example the MapsPlugin class implements the BrowserListener interface itself.
However, it is recommended that you use the corresponding adapter implementation.
The methods of the interface can then be implemented as and when necessary (see
Listener — responding to changes, Chapter 4.3.7, page 88).

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

FirstSpirit

70

FirstSpirit™ AppCenter FirS t SpiritTM

1. private BrowserApplication _application;

2. private ApplicationTab<BrowserApplication> _tab;

3. private final ServicesBroker _servicesBroker;

4.

5o Vi

6. * Get BrowserApplication instance and may initialize 1it.

7. * @return BrowserApplication instance

8. */

9. private BrowserApplication getApplication () {

10. if (_application == null) {

11. final ApplicationService service =
_servicesBroker.getService (ApplicationService.class);

12. final BrowserApplicationConfiguration configuration =
BrowserApplicationConfiguration.GENERATOR. invoke () ;

13. configuration.title ("Google Maps") ;

14. configuration.showAddressBar (false) ;

15. configuration.engineType (EngineType . FIREFOX) ;

16. _tab = service.openApplication (BrowserApplication.TYPE,

configuration) ;

17. _tab.addTabListener (this);

18. _application = _tab.getApplication();

19, _application.addBrowserListener (this);

20. _application.setHtmlContent (getHtmlContent ()) ;

21. }

22. return _application;

23. }

Listing 4: Geolocation — opening the application within a tab (MapsPlugin-Impl.)

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20 71

FirstSpirit™ AppCenter Firs t SpiritTM

Interface:
BrowserApplicationConfiguration

final Br Appli =
li GENERATOR.invoke();

Interface: .
ApplicationService .
——— final ApplicationService service = Interface: EnglneTypj

ervi .getService(ApplicationService.class);
configuration.engineType(EngineType.FIREFOX);

SERVICE: By calling the method openApplication(...)
on the Object ApplicationService, a new typed 2

licati ill b d in a tab in th licati))) -
appiication Wi be opened in a tab In the application CONFIGURATION: Configuration option for ApplicationTabs, for
area of SiteArchitect. o X ;
example, specifying a browser engine for the integrated browser.

Interface: +
ApplicationTab l

..... B ion> tab = service. A ion| ion.

TAB: Control option for ApplicationTabs, for example, to close
the tabs, to add a TabListener or to request the application
contained in the tab.

Interface: l i Interface:
TabListener BrowserApplication l
SSSSSSSSST tap addTabListener(this); b othpplicatin on=

Tracking changes in the -

ApplicationTabs.

APPLICATION: Generating and controlling a new instance
of the BrowserApplication within the integrated browser, for
example, to add a BrowserListener.

Interface: . {_A y

BrowserListener
\ ¢ ication.addBrowserLi: (this); ication.setHtmICor HtmlIContent())

Tracking changes in the browser Gets the HTML content and passes it to
instance. the browser instance of the application.

[Open an application within a tabj

Figure 20: Opening an application within a tab

4.3.4 MapsPlugin - run JavaScript (Java » JavaScript)

As already explained in Chapter 2.1, interfaces must be created for the communication between
the Java level of FirstSpirit SiteArchitect and the native level of the integrated browser (or the
Google Maps API) (see concept in Chapter 2.1.2 (page 27 ff.)).

For example, if a certain address is searched for within the geolocation input component (entry of
an address string and click the Search button), a request for geocoding of this address string
must be sent to the web application (Google Maps) and the map section adjusted within the
integrated browser (see use case Chapter 4.2.1 page 57). This requires an interface, which
enables a JavaScript method to be called from the Java environment (communication: Java »
JavaScript).

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20 72

FirstSpirit™ AppCenter FirS t Spirit

The geolocation implementation uses the void executeScript (String script) method
for this. This method runs the passed JavaScript code in the currently opened browser document
and therefore enables targeted, unidirectional communication in the direction: Java » JavaScript.
The JavaScript code to be run is passed as a string. The method is made available to the
FirstSpirit AppCenter APl via the BrowserApplication interface (Interface:
BrowserApplication see Chapter 3.7 page 45).

However, first the JavaScript code required must be created. To this end, within the MapsPlugin
implementation, numerous methods are implemented which, depending on the respective use
case, compile a script using the StringBuilder. The void updateBrowser (), method,
which is used to update the map display in the browser, for example, calls different methods with
the prefix "getScript" in the method name, which return individual JavaScript fragments. For the
use case "Address search" for example, the getScriptFindAddress (..) method is called
there:

public class MapsPlugin implements TabListener, BrowserListener {

public void updateBrowser () {

LT > C CO Ur

final StringBuilder buf = new StringBuilder() ;

for (final GeolocationEntry location : ...) {

0 ~J o0 0N W N

if (location.isSearchMode()) {

9. buf.append (getScriptFindAddress (location)) ;
10. }

11.

12. }

13. final String script = buf.toString() ;

14.

15. }

16.

17.

18. //—-—— 1inner m
19,

20. VA
21. * Bu

22 . A
23. *
24. *

25. “y
26. private String getScriptFindAddress(final GeolocationEntry

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

73

FirstSpirit™ AppCenter FirS t Spirit

location) {

27 . final StringBuilder buf = new StringBuilder() ;

28. final String pattern = location.getAddress() .replaceAll("'",
"\N\\\T)

29. buf.append ("window. findAddress ('")

30. .append (location.getUUID()) .append ("', '")

31. .append (pattern) .append("') ;") ;

32. return buf.toString() ;

33. }

34.

35. }

Listing 5: Geolocation — create script for the geo-coding of an address string (MapsPlugin-Impl.)

A so-called GeolocationEntry is passed to the method (see Chapter 4.3.6 page 79). This
entry contains, among other things, the address string, which was entered in the search field of
the geolocation input component. The getScriptFindAddress (..) method now uses this
information to compile a JavaScript code, which not only contains the address string but also the
uuid of the corresponding SwingGadget input component. The uuid is required, in order to
establish clear, unique assignment of the GeolocationEntries to an input component (see
Chapter 4.3.6 page 79).

The script fragment returned by the getScriptFindAddress (...) method, for example, looks
like this (for information on the window object, see Chapter 4.3.13):

‘window.findAddress('uuid:—1336359343', 'Barcelonaweg') ;

Other methods are also called within the void updateBrowser () method. The returned
JavaScript fragments are then compiled to form a script, for example:

window.clearOverlays () ;

window.setMapType (G_HYBRID MAP) ;

window.findAddress ('uuid:-1336359343"', 'Barcelonaweg');
window.setEditable ('uuid:-1336359343', true);
window.setInfoHtml ("uuid:-1336359343', ".");

Each of these calls has its equivalent in a JavaScript function of the maps.html file (maps.html —
Introduction see Chapter 4.3.12 page 113). The call window.findAddress ('uuid:-
1336359343', 'Barcelonaweg') for example, runs the following JavaScript function:

N W N =
%
t
t

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

74

FirstSpirit™ AppCenter FirS t Spirit

5o 2 1

6. 2

7o *

8.

9. window. findAddress = function (uuid, pattern) {

10. window.GoogleGeocoder.getLatlLng (pattern, function (point) {

11. if (point) {

12. var latitude = point.lat();

13. var longitude = point.lng() ;

14. window.addOverlay (uuid, latitude, longitude) ;

15. window.setViewPoint (latitude, longitude) ;

16. window.GeolocationUpdater.update (uuid, latitude,
longitude) ;

17. updateInfo (uuid, latitude, longitude) ;

18. }

19. }) s

20. };

Listing 6: Geolocation — JavaScript function findAddress (maps.html)

This function starts a geocoding request via the Google Maps API. The precise procedure is
described in Chapter 4.3.20 (page 123). Other calls, for example, remove the markings
(selections) to date from the map display (window.clearOverlays ()) or define the MapType
for the map display (window.setMapType (G _HYBRID MAP)).

The entire script with all the functional calls it contains, which is compiled within the void
updateBrowser () method, is then run by calling the void executeScript (String
script) method on the instance of the type BrowserApplication (Interface:
BrowserApplication see Chapter 3.7 page 45):

1. public class MapsPlugin implements TabListener, BrowserListener {
2.

3 private BrowserApplication _application;

4.

5 public void updateBrowser () {

6 final StringBuilder buf = new StringBuilder();

7 buf.append (getScriptClearOverlays()) ;

8

9. buf.append (getScriptFindAddress (location)) ;
10.

11. final String script = buf.toString() ;

12.

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

FirstSpirit™ AppCenter FirS t Spirit

13. _application.executeScript (script);
14. }
15. }

Listing 7: Geolocation — run the collated JavaScript fragments (MapsPlugin-Impl.)

With this the first communication channel (Java » JavaScript) is adequately described. In the
second step, the information from the web application must be returned back into the FirstSpirit
input component (JavaScript » Java) (see Chapter 4.3.5 page 76).

4.3.5 MapsPlugin - GeolocationUpdater (Injection Java » JavaScript)

In the previous chapter, the communication was described starting from FirstSpirit SiteArchitect
in the native level of the integrated browser by running JavaScript code (see Chapter 4.3.4 page
72). This chapter looks at the reverse communication channel (JavaScript » Java). Starting from
the integrated web application (or the integrated browser instance), changes or events, for
example, due to moving of the marking within the map display, should also be updated in the
geolocation input component. In this case, the Java side must be informed of the change in the
web applications and must be able to suitably respond to this change (see concept
Communication between the browser instance and SiteArchitect in Chapter 2.1.2, page 27)

To update the Java side, the Java object GeolocationUpdater is used within the example
implementation. A new instance of the type GeolocationUpdater is generated with the void
onDocumentComplete (final String url) method is run and is injected into the web
application under the name "GeolocationUpdater".

Background: Access to the DOM tree of the browser instance is not possible at any time. The
injection can only take place if the document has been fully loaded. To ensure this, an instance
of the type BrowserListener must be used (Interface: BrowserListener see Chapter 3.8 page
48). The void onDocumentComplete (...) method is always called if the BrowserListener
of the browser instance (instance of the type BrowserApplication) reports that the document
(including all images) has been completely loaded (DOM access concept see Chapter 2.2 page
32) (Listener — responding to changes, see Chapter 4.3.7, page 88).

1 public class MapsPlugin implements TabListener, BrowserListener {
2

3 private boolean _active;

4

OF

6

5

8

public void onDocumentComplete(final String url) ({

L

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

76

FirstSpirit™ AppCenter FirS t Spirit

9. final BrowserApplication application = getApplication() ;
10.

11. // doc is 1 ed; inject j ript bridge

12. application.inject(new GeolocationUpdater (this),

"GeolocationUpdater") ;
13.
14. _active = true;
15.
16. // initialize map viewport and marker
17. updateBrowser () ;
18.
19. }
20. }

Listing 8: Geolocation — injection of Java object GeolocationUpdater (MapsPlugin-Impl.)

On an instance of the type BrowserApplication the void inject (Object object,
String name) method is called. The method is made available to the FirstSpirit AppCenter API
via the BrowserApplication interface (Interface: BrowserApplication see Chapter 3.7 page
45).

The method injects the passed Java object GeolocationUpdater as an attribute of the
window object in the browser instance on which it was called (for information on the window
object see Chapter 4.3.13). The injection generates a substitute object (proxy) in the form of a
JavaScript object and registers it under the passed name (here: "GelocationUpdater"). Following
registration the JavaScript object can be used in the maps.html file by calling window. {name}
(here: window.GeolocationUpdater) (see Chapter 4.3.21 page 124). All methods of the
Java object GeolocationUpdater can then also be called from the JavaScript environment of
the integrated browser.

Background: With the injection the FirstSpirit framework generates for each method of the Java
object instances a corresponding JavaScript method with (approximately) identical method
signature. On being called from the JavaScript environment, this JavaScript method sends an
even, which is evaluated on the Java side and triggers the running of the corresponding Java
method there. The suitable Java method is determined from the method signature and the
passed parameters and is called.

The Java object GeolocationUpdater, for example, has the Java method public void
update (final String uuid, final double latitude, final double
longitude), which updates a GeolocationEntry on the passed coordinate and informs the
ModificationListener belonging to the input component of the update (use of the

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

77

FirstSpirit™ AppCenter FirS t Spirit

ModificationListener see Chapter 4.3.7.3).

1. @SuppressWarnings ({"UnusedDeclaration"})

2. public static class GeolocationUpdater ({

3o

4. private final MapsPlugin _mapsPlugin;

5.

6.

7. public GeolocationUpdater (final MapsPlugin mapsPlugin) {

8. _mapsPlugin = mapsPlugin;

9o }

10.

11.

12. public void update(final String uuid, final double latitude,
final double longitude) {

13. _mapsPlugin.update (uuid, latitude, longitude) ;

14. }

15.

16.

17. public void info(final String uuid, final String address) ({

18. _mapsPlugin.info(uuid, address);

19. }

20. }

21. }

Listing 9: Geolocation — GeolocationUpdater (MapsPlugin-Impl.)

Following the injection of the Java object GeolocationUpdater the update method can be
called on the JavaScript- proxy object window.GeolocationUpdater. Within the example
implementation, the updating is triggered by an event in the web application (for example, by
moving the marker in the map display or the geocoding of an address string). In this case, the
corresponding EventListener on the JavaScript side calls the JavaScript function

window.GeolocationUpdater.update (uuid, newlat, newlng).

* /

@ J oy oA W N R

window.addOverlay = function (uuid, latitude, longitude) {

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

78

FirstSpirit™ AppCenter FirS t Spirit

9. var marker = new GMarker (new GLatLng(latitude, longitude),
{draggable: true}) ;

10. window.GoogleMap.addOverlay (marker) ;

11. GEvent.addListener (marker, 'dragend',6 function() ({

12. var point = marker.getLatLng() ;

13. var newlat = point.lat();

14. var newlng = point.lng() ;

15. window.GeolocationUpdater.update (uuid, newlat, newlng);

16. updateInfo (uuid, newlat, newlng) ;

17. b

18.

19. };

Listing 10: Geolocation — calling a Java method from the JavaScript code (maps.html-Impl.)

This call is evaluated on the Java side where it triggers the running of the Java method public
void update(final String wuuid, final double latitude, final double
longitude) . The Java method receives the (new) address information from the integrated web
application, for example, which is determined during the geocoding of an address string by the
Google Maps API (JavaScript » Java). The renewed assignment of the entry for the geolocation
input location in the Java environment is made using the uuid parameter (see
GeolocationEntry get (final String uuid) method in Chapter 4.3.6, page 79).

Basically, any Java object can be injected into the JavaScript environment. However, certain
restrictions apply to this object for the method adoption and the mapping of the Java data types
on JavaScript data types (see Chapter 2.1.3 page 30).

4.3.6 Show markers and assign an input component

The input component CUSTOM GEOLOCATION can be used to display a geographic coordinate,
consisting of two decimal values (geographic longitude and latitude) within a Google Maps map
(see (SwingGadget) input component CUSTOM GEOLOCATION in Chapter 4.3.1, page 65). For
this, the Google Maps API uses an object of the class GMarker. This marker object contains the

values for the geographic coordinate and displays this within a map ?. The object is added to the
map display with the help of the Google Maps method addoverlay ().

" For further information see Google Maps AP reference:
http://code.google.com/intl/de/apis/maps/documentation/javascript/v2/reference.html#GMarker

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

http://code.google.com/intl/de/apis/maps/documentation/javascript/v2/reference.html#GMarker

FirstSpirit™ AppCenter FirS t Spirit

1. var marker = new GMarker (new GLatLng(latitude, longitude), {draggable:
true}l);
2. window.GoogleMap.addOverlay (marker) ;

Listing 11: Geolocation — adding a new GMarker object (maps.html)

The Java object GeolocationEntry is used on the Java side. An instance of the type
GeolocationEntry not only contains the values, which describe the coordinate (double
latitude, double longitude) but also an instance of the type GadgetIdentifier.

Background: In order for a marker to be uniquely assigned to an input component, a
GadgetIdentifier is used within the Java implementation. A GadgetIdentifier is
provided by the FirstSpirit Framework and is used to uniquely identify a named form element
within the FirstSpirit component model. The GadgetIdentifier of a SwingGadget input
component can be got using the GadgetIdentifier getGadgetId () method of the abstract
class AbstractValueHoldingSwingGadget <T, F extends GomFormElement>.

Within the example implementation, each GeolocationEntry can therefore be uniquely
assigned to a specific SwingGadget input component using a GadgetIdentifier. This means
that if the input component is changed, for example, by selecting a new section in the FirstSpirit
navigation tree, the marker to date within the Google Maps integration is removed and replaced
with the new marker (the currently selected input component).

Furthermore, a GeolocationEntry has a ModificationListener, which responds to changes
to the entry within the input component (see Listener — responding to changes, Chapter 4.3.7,
page 88).

3. public class MapsPlugin implements TabListener, BrowserListener {
4.

5 private static class GeolocationEntry {

6. private final String uuid;

7. private final GadgetIdentifier gadgetId;

8. private ModificationListener listener;

9 private double latitude;

10. private double _longitude;

11.

12.

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

80

FirstSpirit™ AppCenter FirS t Spirit

13. GeolocationEntry(final GadgetIdentifier gadgetId, final double
latitude, final double longitude, final ModificationListener
listener) {

14. _uuid = "uuid:" + gadgetId.hashCode();

15. _gadgetId = gadgetId;

16. _latitude = latitude;

17. _longitude = longitude;

18. _listener = listener;

19. }

20.

21. }

22. }

Listing 12: Geolocation — GeolocationEntry constructor (MapsPlugin-Impl.)

The addition of a marker to the Google Maps map is initiated from the Java environment of the
SwingGadget input component. The input component GeolocationSwingGadget, triggered by
an event, calls the addToMap (...) method. This method first calls the getGadgetId () method
to get the GadgetIdentifier of the component. The MapsPlugin implementation is then
called, which checks whether an entry for the SwingGadget input component with this
GadgetIdentifier already exists. If no entry exists, the getMapsPlugin () .add (..) method
is called to add a new entry (of the type GeolocationEntry). The method not only passes
the geographic longitude and latitude for the entry but also the Gadgetldentifier of the input
component to the MapsPlugin implementation:

1. public class GeolocationSwingGadget extends
AbstractValueHoldingSwingGadget<...> implements ... ({

2.

3o public JComponent getComponent () {

4. @Override

5. public void actionPerformed(final ActionEvent e) {

6. if ('isDefault()) {

7. addToMap (GeolocationSwingGadget.this.getValue()) ;

8.

9. }

10.

11. }

12.

13. private void addToMap(final Geolocation value) {

14. final GadgetIdentifier gadgetId = getGadgetId() ;

15. if (! getMapsPlugin () .contains (gadgetId)) ({

16. getMapsPlugin () .add (gadgetId, value.getlLatitude(),

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

81

FirstSpirit™ AppCenter FirS t Spirit

value.getLongitude (), this);
17. }
18.
19. }
20. updateMapsPlugin (gadgetId) ;
21. }
22.
23. }

Listing 13: Geolocation — passing the Gadgetldentifier to MapsPlugin (SwingGadget-Impl.)

Within the MapsPlugin implementation, the inner method GeolocationEntry get (final
GadgetIdentifier gadgetId) is called first. This returns the GeolocationEntry, which is
assigned to the input component with the passed GadgetIdentifier. If a
GeolocationEntry still does not exist for this input component (entry==null), a new entry
is created (new GeolocationEntry(gadgetId, ...);). The GadgetIdentifier of the
input component (among other things) is passed to the constructor.

1. public class MapsPlugin implements TabListener, BrowserListener {
2.

3. //7‘(>«

4. * Checks if registered geolocation entries contains one with the
5, * specified gadget 1id.

6. 2

7. * @param gadgetId gadget id to search for

8. * @return {@code true} if the given identifier exists in this maps
9. * plugin, {@code false} otherwise

10. V4

11. public boolean contains(final GadgetIdentifier gadgetId) ({
12. return application != null && get(gadgetId) != null;
13. }

14.

15, S

16. * Regi

17. *

18. *

19, * @param gadgetId gadget id of geolocation

20. */

21. public void add(final GadgetIdentifier gadgetId, ...) {

22. ensureApplicationTab () ;

23. GeolocationEntry entry = get (gadgetId);

24 . if (entry == null) {

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

82

FirstSpirit™ AppCenter FirS t Spirit

25. entry = new GeolocationEntry(gadgetId, ...);

26. synchronized (entries) {

27. _entries.add(entry) ;

28. }

29. } else {

30.

31. }

32. }

33.

34.

35. private GeolocationEntry get (final GadgetIdentifier gadgetId) {

36. synchronized (_entries) {

37. for (final GeolocationEntry entry : new
ArraylList<GeolocationEntry>(entries)) {

38. if (entry.getGadgetId() .equals (gadgetId)) {

39. return entry;

40. }

41. }

42, return null;

43. }

44 . }

45.

46.

47. private static class GeolocationEntry {

48. private final String _uuid;

49. private final GadgetIdentifier _gadgetId;

50.

51. GeolocationEntry(final GadgetIdentifier gadgetlId, ...) {

52. _uuid = "uuid:" + gadgetId.hashCode();

53. _gadgetId = gadgetId;

54.

55. }

56.

57.

58. }

59. }

Listing 14: Geolocation — creating a new GeolocationEntry (MapsPlugin-Impl.)

A new instance of the type GeolocationEntry, in addition to the passed
GadgetIdentifier, for the unique assignment of the entry to a SwingGadget input component
on the Java side, contains another variable uuid (universal unique identifier), for unique

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

83

FirstSpirit™ AppCenter FirS t Spirit

assignment of the entry on the JavaScript side. Within the example implementation, this variable
is assigned a unique hash value, which is based on the hash value of the corresponding
GadgetIdentifiers and is returned via the int hashCode() method of the
GadgetIdentifier class.

Background: Communication between the Java environment of FirstSpirit SiteArchitect and the
native level of the integrated browser takes place via JavaScript. The JavaScript code to be run
is passed as a string. The additional variable is necessary, as an instance of the type
GadgetIdentifier cannot be converted into an object of the type String. (MapsPlugin — run
JavaScript (Java » JavaScript) see Chapter 4.3.4 page 72).

Initially therefore, only one Java object exists (of the type GeolocationEntry), which contains
the required coordinate and information for assignment of this coordinate to an input component.
In the next step this information must be assigned to a Google GMarker object within the
JavaScript environment. The insertion of a marker (GMarker) in the map display is controlled by
a JavaScript function. The corresponding call is first compiled within the MapsPlugin
implementation and is then run using the void executeScript (String script) method
(see Chapter 4.3.4).

1 public class MapsPlugin implements TabListener, BrowserListener {
2

3 /% 4

4 * Updates browser and google map instance.

5. * Thi alled t pdat olocati
6 *

7 *

8 public void updateBrowser () {

9

10. final GeolocationEntry location;

11. buf.append (getScriptAddOverlay (location)) ;

12.

13. final String script = buf.toString() ;

14.

15. _application.executeScript (script) ;

16. }

17.

1 8 . 7(*

19. * Build script code to adding a geolocation entry to map.
20 . *

21 * (@param location related geolocation entry

22. * (@return script code

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

84

FirstSpirit™ AppCenter FirS t Spirit

23. */

24. private String getScriptAddOverlay(final GeolocationEntry location)
{

25. final StringBuilder buf = new StringBuilder() ;

26. buf.append ("window.addOverlay ('")

27. .append (location.getUUID()) .append("',")

28. .append (location.getLatitude()) .append(',")

29. .append (location.getLongitude()) .append (") ;") ;

30. return buf.toString() ;

31. }

32. }

Listing 15: Geolocation — passing information from the GeolocationEntry object (MapsPlugin-Impl.)

The script fragment returned by the getScriptAddOverlay (..) method looks like this (for
information on the window object, see Chapter 4.3.13):

‘ window.addOverlay ('uuid:-336359343"',51.50297,7.52914) ; I

This call is used not only to pass the latitude and longitude value but also the uuid value of the
current GeolocationEntrys from the Java implementation to the JavaScript implementation.
The corresponding JavaScript function window.addoverlay = function(uuid, latitude,
longitude) from the maps.html file accepts this parameter and, based on this information, inserts
a new GMarker object in the map display®.

window.Mapping = {}; // UUID <> GMarker instance

W © N o G N W Nh =
%

window.addOverlay = function (uuid, latitude, longitude) {

8 For further information see Google Maps AP reference:
http://code.google.com/intl/de/apis/maps/documentation/javascript/v2/reference.html#GMarker

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

85

http://code.google.com/intl/de/apis/maps/documentation/javascript/v2/reference.html#GMarker

FirstSpirit™ AppCenter FirS t Spirit

10. var marker = new GMarker (new GLatLng(latitude, longitude),

{draggable: true});

11. window.GoogleMap.addOverlay (marker) ;

12. GEvent.addListener (marker, 'dragend', function() {

13. var point = marker.getLatLng() ;

14. var newlat = point.lat();

15. var newlng = point.lng() ;

16. window.GeolocationUpdater.update (uuid, newlat, newlng);
17. updateInfo (uuid, newlat, newlng);

18. }) i

19. if (window.HtmlCache[uuid]) {

20. marker.bindInfoWindowHtml (window.HtmlCache [uuid],

{maxWidth:300}) ;

21. }

22. if (window.EditableCache[uuid] === false) {
23. marker.disableDragging() ;

24. }

25. window.EditableCache[uuid] = null;

26. window.Mapping[uuid] = marker;

27. };

Listing 16: Geolocation — adding GMarker object to the map display (maps.html)

The Java environment (or the input component GeolocationSwingGadget) must be informed of
all changes to the marker (GMarker object). For example, if a geocoding request is sent via the
Google Maps API, the address information determined should be updated in the SwingGadget
input component. The same applies to a change to the GMarker object within the web
application (e.g. by moving the marker in the map display). This means that the information from
the GMarker object must be reassigned to a GeolocationEntry of the Java environment. The
uuid variable is used for this.

If an update is made using the GeolocationUpdater object, the uuid value (and the changed
latitude and longitude values) is passed to the update method of the MapsPlugin implementation
(see Chapter 4.3.5 page 76). The uuid value can be used for renewed assignment of the entry
to an input component in the Java environment. The internal method GeolocationEntry
get (final String uuid) of the MapsPlugin implementation is used for this. The method
returns the GeolocationEntry of the input component with the passed uuid. The changed
latitude and longitude values can then be updated on the matching GeolocationEntry within the
Java environment. The ModificationListener belonging to the input component is informed
of the update.

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

86

FirstSpirit™ AppCenter FirS t Spirit

1. public class MapsPlugin implements TabListener, BrowserListener {

2o private final List<GeolocationEntry> entries = new
Arraylist<GeolocationEntry>() ;

3.

4 . VA .

S * the geolocation of the d geolocation entry and

6. 2 tener.

7. 2

8. * @param tion instance

9 * @param itude value

10. * @param longitude decimal longitude value

11. 74

12. public void update(final String uuid, final double latitude, final
double longitude) {

13. final GeolocationEntry location = get (uuid) ;

14. if (location !'= null) {

15. location.setLatitude (latitude) ;

16. location.setLongitude (longitude) ;

17. location.notifyPointModification() ;

18. }

19. }

20.

21. //=—— 1ir hods ---//

22. private GeolocationEntry get (final String uuid) {

23. synchronized (_entries) ({

24. for (final GeolocationEntry entry : new

ArrayList<GeolocationEntry>(_entries)) {

25. if (entry.getUUID() .equals (uuid)) {

26. return entry;

27. }

28. }

29. return null;

30. }

31. }

32.

33.

34. }

Listing 17: Geolocation — assignment of the GeolocationEntries back into the Java environment (MapsPlugin-Impl.)

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

FirstSpirit™ AppCenter FirS t Spirit

4.3.7 Listener - responding to changes

The FirstSpirit AppCenter APl has been enhanced to include two listener interfaces, which
respond to events within the browser instance and within the application tab:

= TabListener interface (for a description of the interface, see Chapter 3.5, page 44, for
an example see Chapter 4.3.7.1, page 88).

= BrowserListener interface (for a description of the interface see Chapter 3.8 page 48, for
an example implementation, see Chapter 4.3.7.2 page 90).

Apart from these default interfaces of the FirstSpirit AppCenter API, integration of the Google
Maps web application requires a further listener implementation which responds to events within
the integrated application, for example, moving a marking (GMarker) by means of Drag&Drop by
the user:

= ModificationListener interface (for a description of the interface see Chapter 4.3.7.3
page 92, for an example see Chapter 4.3.8 page 93).

In addition, within the example implementation, a Java AWT EventListener is used, which should
at least be mentioned briefly here. A HierarchyListeners can be used to hang the
GeolocationSwingGadget input component into the hierarchy of the FirstSpirit input
components. This is necessary so that updating of the application area takes place on changing
workspaces (or the geolocation input component) (see Chapter 4.3.9 page 101).

4.3.7.1 TabListener

An application tab can be controlled by events. To respond to internal or external event, an
instance of the type TabListener must be registered on the application tab. A TabListener
is added to the ApplicationTab by calling the addTabListener (..) method. In this example
the MapsPlugin class implements the TablListener interface itself, therefore, all methods of
the interface must also be implemented (Note: If this is not wanted, the corresponding adapter
class should be used (see Chapter 3.5)).

When the application tab is closed by the user, the FirstSpirit Framework responds by calling the
void tabClosed () method. This method is implemented within the example implementation.
Background: The implementation provides for the assignment of a certain marker (a geographic
coordinate) to each CUSTOM GEOLOCATION input component within a Google Maps map display
(see Chapter 4.3.6). The GeolocationEntries are managed in an ArrayList. If an editor
closes the Applications tab of the Google Maps integration, the list of GeolocationEntries should

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

88

FirstSpirit™ AppCenter FirS t Spirit
be discarded.

When the application tab is selected by the user, the FirstSpirit Framework responds by calling
the wvoid tabClosed()method. This method is implemented within the example
implementation, in order to focus on the currently selected browser instance. To do this, the
SwingUtilities.invokelLater (new Runnable () {.. call is used to pass the
BrowserApplication.focus () method to the Swing-EventQueue (see Chapter 3.7). As a
result the focusing is performed asynchronously, only after the end of all events.

Background: It is only possible to use the mouse wheel to zoom within the integrated web
application if the focus is also on the application. This can either be implemented manually by the
user (click the application) or by the developer, as in this example.

1. public class MapsPlugin implements TabListener, ... {
2.

3. P

4. * Get BrowserApplication instance and may initialize 1
5o b

6. * (@retur BrowserApplicatic t ce

7. 2

8.

9. private BrowserApplication getApplication () {

10. if (_application == null) {

11.

12. _tab = service.openApplication(...);

13. _tab.addTabListener (this) ;

14.

15. }

16. return application;

17. }

18.

19. //—-—— TabListener —---//

20.

21. public void tabSelected() {

22. if (_focus) {

23. SwingUtilities.invokelLater (new Runnable () {
24. public void run() {

25. _application.focus();
26. }

27. 1)

28. _focus = false;

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

FirstSpirit™ AppCenter FirS t Spirit

29. }

30. }

31.

32.

33. public void tabDeselected() {
34. }

35.

36.

37. public void tabClosed() {

38. synchronized (entries) {
39. _entries.clear();
40. }

41. _active = false;

42. _application = null;

43. }

44 . }

Listing 18: Geolocation — registering and using the TabListener (MapsPlugin-Impl.)

43.7.2 BrowserListener

In addition to the TabListener, the example implementation uses an instance of the type
BrowserListener. Access to the content of the browser instance can be controlled with the
help of a BrowserListener. A BrowserListener Iis registered by calling the
addBrowserListener (..) method on the BrowserApplication. In this example the
MapsPlugin class implements the BrowserListener interface itself, therefore, all methods of
the interface must also be implemented (Note: If this is not wanted, the corresponding adapter
class should be used (see Chapter 3.8)).

The example implementation uses the void onDocumentComplete (..) method to inject the
Java object GeolocationUpdater into the web browser instance (see Chapter 4.3.5 page 76). The
method is called if the BrowserListener of the browser instance (or of the instance of the type
BrowserApplication) reports that the Html document (including all images) has been
completely loaded. Background: This is necessary to ensure orderly access to the Dom tree
(w3c-DOM) (DOM access concept - see Chapter 2.2 page 32).

In addition, the void onLocationChange (@NotNull String url) method is used. The
method is called if the BrowserListener reports that the URL of the browser instance (or the
instance of the type BrowserApplication) has changed. In this case the Boolean _active is
set to value false. As a result, updating of the browser instance and focusing are prevented.

1. public class MapsPlugin implements ..., BrowserListener ({

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

90

™

FirstSpirit™ AppCenter FirS t Spirit

2.

3o private boolean _active;

4. Jx*

5. * Get BrowserApplication instance and may initialize it.

6. 2

7. * @return BrowserApplication instance

8. */

9.

10. private BrowserApplication getApplication () {

11. if (_application == null) {

12.

13. _tab = service.openApplication(...);

14.

15. _application = tab.getApplication();

16. _application.addBrowserListener (this);

17.

18. }

19. return application;

20. }

21.

22.

23. //--- BrowserListener ---//

24.

25.

26. public void onLocationChange (@NotNull final String url) {

27. _active = false;

28. }

29.

30.

31. public void onDocumentComplete (final String url) {

32. final BrowserApplication application = getApplication () ;

33.

34. // document is loaded; inject java/javascript bridge

35. application.inject (new GeolocationUpdater (this),
"GeolocationUpdater") ;

36.

37. _active = true;

38.

39, // initialize map viewport and marker

40. updateBrowser () ;

41.

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20 91

FirstSpirit™ AppCenter FirS t Spirit

42, if (_focus) {

43, SwingUtilities.invokelLater (new Runnable () {
44, public void run () {

45, application.focus () ;

46. }

47. 1)

48. _focus = false;

49. }

50. }

Listing 19: Geolocation — registering and using a BrowserListener (MapsPlugin-Impl.)

4.3.7.3 ModificationListener

Apart from the two default listeners, another interface is also required for the example
implementation — a ModificationListener, which is responsible for updating the information within
the SwingGadget input component.

n The ModificationListener interface is not a part of the FirstSpirit AppCenter API, but
instead is part of the example implementation for Google Maps integration.

The input component GeolocationSwingGadget saves a geographic coordinate, consisting of two
decimal values (geographic longitude and latitude) and the complete address information (street,
town, country) corresponding to this coordinate (see description of the input component in
Chapter 4.3.1). These values are determined by the web application Google Maps and must be
communicated from the browser instance into the FirstSpirit Java environment.

To this end, the GeolocationSwingGadget class implements the ModificationListener
interface. The interface provides the following methods:

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

92

FirstSpirit™ AppCenter FirS t Spirit

package de.espirit.firstspirit.opt.geolocation.google;

public interface ModificationListener {

void onModification (double latitude, double longitude);

void onModification (String address) ;

0 J o oo w N

}

Listing 20: Geolocation — ModificationListener interface (not part of the AppCenter-API)

The corresponding methods are implemented in the example implementation and are
responsible for:

= updating the latitude, longitude values
= updating the address information
= updating the thumbnail display

which are displayed within the input component (see Chapter 4.3.8 page 93). The methods of the
interfaces are then called, if the address information or the coordinate (latitude and longitude
values) within the browser instance have changed.

4.3.8 Updating the geodata of the input component (JavaScript » Java)

The input component GeolocationSwingGadget is closely linked to the web application Google
Maps. This means, if the geoinformation (or the position of the GMarker object) changes within
the integrated Google Maps application, the values of the corresponding SwingGadget input
component must also be updated (for a description of the use case, see Chapter 4.2.2, page 58).

The passing of the values from the web application into the FirstSpirit Java environment is
triggered by the Java object GeolocationUpdater, which is injected into the browser instance
at a suitable time (see Chapter 4.3.5 page 76). The GeolocationUpdater class has the
void update (String uuid, double latitude, double longitude) method and the
void info (final String uuid, final String address) method, which communicate
the changed values to the Java object GeolocationEntry of the SwingGadget input
component and inform the ModificationListener belonging to the input component of the
update (for a description of the ModificationListener interface see Chapter 4.3.7.3).

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

93

FirstSpirit™

FirstSpirit™ AppCenter

"uonewou|

ssalpe mau
auyy arepdn o3 198[qo
1a1epdnuones0j0an)

3y} uo poyiaw
ojul eAer 8y} Buljed

‘(ssalppe’[o]yrewaoe|d asuodsal ¢
pInn)ojur iarepdnuoIeI0|099) MOPUIM

aua_mco_
‘apnine| ‘pinn)ojujarepdn uonouny

S

sanfen Buye] mau
ay) arepdn o1 103[qo
121epdnuoIed0|099)

ay
uo poyaw arepdn
eAer ay Buled

Lﬁm_u_d_mco_ ‘apnie| ﬁ_::vcE_mﬁuazg

{(apnuBuol ‘apnire| ‘pinn)
arepdn 1arepdnuones0j0e9 mopuim

1dLoSEARE 8INd9X

J1arepdnuonesn|oas 193(qo eAer Jo UONDB(U| |dY l

‘Papeo|
Aliny s1uswinoo@ TNLH
:SAYNOU JBUBISITIBSMOIG

~
7

QEmsERED

A2, _ jusawinooq TNILH
— apo) aAleN

auigua

J1asmouq Ju1dsysiiy

sjuauodwod ndui Bunepdn

lausjsiiesmolg pue
lauaisiqge] sadepuaiu|

{(ssaippe)uoneolyipoNuoiebpesbuims

Y\

(Juoneayip
OSsalppyAouAluguonesojoay ulbnjdsdey

(JuoneayiponssaippvAyiou
*Anu3uonedsojoas uibnigsdey

M |
(

Bums reuy ‘pinn Buins reuy)ojuruibnidsden

UUJ

‘(ssaippe ‘pinn)oyuruibnigsde|y

(ssaippe Bulas feuy ‘pinn Bulns reul)
ojurterepdnuonedojoa uibnidsdein

ssaipe

‘uonewoul

auodwod

ndui ays sarepdn

{(apnubuoj ‘apnire))
uonealypouo1ebpesbuimsuonesnjoad

(JuoneayipopIuIodAyiou
‘Anu3uonedojoa uibnidsdeln

{(JuoneauipouIOdAIOU
‘Aug3uonesojoay uibnidsdepy

(spnybuoj 8|gnop feuy ‘apniire| 2|gnop euly
‘pinn Bus reuy)arepdn-uibnigsdey

UUJ

™\ Yy Y

{(apnubuo| ‘epnmine| ‘pinn)arepdn-uibnidsden

(apnuBuo sjgnop
[euy ‘apnire| a|gnop [eul ‘pinn Buiis reul)
arepdn-iayepdnuonedo|oas uibnidsde

ay) pue sanjea

.Jarepdnuoneoan|osn,
‘(s1yy)Jerepdnuonesnjoas
mau)efurruopesddyiasmoig

(un
Buiis reurj)srsjdwoniusawndoquo uibinjdsdey

uignidsdeiy

auy) syuawadw)

"9]eulpIood Mau ay} 0}
deuwniq mainaid [reuquinyy

ndui ayy sarepdn

J1aud)sITUONEdLIPON

é__smom,%%w

[euly)uoieslIpo U0 1eBpeS BUIMSUOIRI0|089)

ﬁ (ssaippe m:_:ww

jusuodwod

”Q__m:nE::._.EmuQ:w
”o__ﬁmoo,%%w
(apnubuo ajqnop .mua_ﬁ@

a|gqnop)uonesyipojpuo-ebpesbuimsuonesn|oas

jJuauodwod nduj
ERlENENT]

oy} syuawa|dw

198pensuims

109)YDIVIUS wiMIdSISIId

Figure 21: Updating the input component

The Java methods responsible for the update are called from the HTML document via JavaScript
calls (see Chapter 4.3.5.). This always takes place if the GMarker object is changed within the
Google Maps application, for example, by a drag-and-drop action of the editor within the Google

Maps map display or by a search query via the address field of the SwingGadget input

94

FirstSpirit™ V 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

FirstSpirit™ AppCenter FirS t SpiritTM

component.

<html>
<head>

<title>Google Maps</title>

window.GeolocationUpdater = null;
/**
* Notify MapsPlugin about latitude/longitude modification.
* @param uuid UUID of geolocation instance
* @param latitude
* @param longitude
=
function updateInfo (uuid, latitude, longitude) {
var request = new GetLocationsRequest (new GLatLng (latitude, longitude)) ;
request.execute (function (response) {
window.GeolocationUpdater.info (uuid,

response.Placemark[0] .address) ;

* Add an marker to the GMapZ2 instance.
* @param uuid UUID of geolocation instance
* @param latitude
* @param longitude
*/
window.addOverlay = function (uuid, latitude, longitude) ({
var marker = new GMarker (new GLatLng(latitude, longitude), {draggable:
true});
window.GoogleMap.addOverlay (marker) ;
GEvent.addListener (marker, 'dragend', function() {
var point = marker.getLatLng() ;
var newlat = point.lat();
var newlng = point.lng();
window.GeolocationUpdater.update (uuid, newlat, newlng) ;
updateInfo (uuid, newlat, newlng);

i) 5

i

Listing 21: Geolocation — Initiate updating via the GeolocationUpdater object (maps.html)

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20 95

FirstSpirit™ AppCenter FirS t Spirit

If the GMarker object within the web application is changed, first of all
window.GeolocationUpdater.update (uuid, newlat, newlng) is called (see Figure

21). This call is evaluated on the Java side where it triggers the running of the Java method
GeolocationUpdater.update (final String wuuid, final double latitude,

final double Ilongitude) (see Chapter 4.3.5 page 76). The changed latitude and
longitude values and a uuid value are passed to the method. The uuid value is used to get the
GeolocationEntry of the SwingGadget. This is done using the internal method
GeolocationEntry get (final String uuid) of the MapsPlugin implementation (see
Chapter 4.3.6). The changed latitude and longitude values are then set on the
GeolocationEntry and the corresponding ModificationListener is informed about the
update. To do this, the GeolocationEntry.notifyPointModification () method is

called. This method in turn calls the Method
ModificationListener.onModification (double latitude,

double longitude) method of the inner GeolocationEntry class.

35. public class MapsPlugin implements TabListener, BrowserListener {
36. private final List<GeolocationEntry> entries = new

ArraylList<GeolocationEntry>() ;

37.

38. J

39. () ion e and

40. * may not

41. 2

42. * @pars

43. * @pars

44. * @param longitude decimal longitude value

45.)

46. public void update(final String uuid, final double latitude, final
double longitude) {

47. final GeolocationEntry location = get (uuid) ;

48. if (location '= null) {

49. location.setLatitude (latitude) ;

50. location.setLongitude (longitude) ;

51. location.notifyPointModification () ;

52. }

53. }

54.

55. //-—-— inner methods ---//

56. private GeolocationEntry get (final String uuid) {

57. synchronized (_entries) ({

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

96

FirstSpirit™ AppCenter FirS t Spirit

58. for (final GeolocationEntry entry : new
ArrayList<GeolocationEntry>(_entries)) {
59. if (entry.getUUID() .equals (uuid)) {
60. return entry;
61. }
62. }
63. return null;
64. }
65. }
66.
67.
68. private static class GeolocationEntry {
69. private ModificationListener _listener;
70.
71. GeolocationEntry (..., final ModificationListener
listener) {
72.
73. _listener = listener;
74. }
75.
76. public void notifyPointModification() {
77 . if (_listener != null) {
78. _listener.onModification(_latitude, _longitude) ;
79. }
80. }
81.
82. }
83.
84. public static class GeolocationUpdater {
85.
86. private final MapsPlugin _mapsPlugin;
87.
88. public void update(final String uuid, final double
latitude, final double longitude) ({
89. _mapsPlugin.update (uuid, latitude, longitude);
90 . }
91 }
920 }

Listing 22: Geolocation — updating the latitude, longitude value (MapsPlugin-Impl.)

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

FirstSpirit™ AppCenter FirS t Spirit

The GeolocationSwingGadget class implements the ModificationListener interface
(for a description of the interface see Chapter 4.3.7.3). The call onModification (double
latitude, double Ilongitude) of the MapsPlugin implementation is therefore passed
directly to the GeolocationSwingGadget.onModification (final double latitude,
final double longitude) method. This accepts the changed latitude and longitude values
and ensures, by calling the updateDetail () method, for updating the values in the input
component. The preview bitmap shown in the input component is also updated by calling the
updateThumbnail () method, is and then displays the changed position.

1. public class GeolocationSwingGadget ... implements

ModificationListener, ...{

private double _valuelLatitude;
private double _valueLongitude;

private String _valueAddress;

o J o oo w N

public void onModification (final double latitude, final double

longitude) {

9. _valueLatitude = latitude;
10. _valueLongitude = longitude;
11. updateDetail () ;

12. updateThumbnail () ;

13. }

14.

15.

16. public void onModification (final String address) {
17. _valueAddress = address;

18. updateDetail () ;

19, }

20. }

Listing 23: Geolocation — Using the ModificationListener interface (SwingGadget-Impl.)

The address information, which matches the changed coordinates, must also be updated. To do
this, within the JavaScript environment, first of all a Geolocation request with the changed
latitude, longitude values is sent to Google (new GetLocationsRequest (new
GLatLng (latitude, longitude)); see page 125). This call requests detailed address
information on the basis of the Ilatitude and longitude values passed.
window.GeolocationUpdater.info (uuid, response.Placemark[0]. address) IS
then called. This call is evaluated on the Java side where it triggers the running of the Java

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

98

FirstSpirit™ AppCenter FirS t Spirit

method GeolocationUpdater.info (final String uuid, final String address)
(see Chapter 4.3.5 page 76). The result of the geocoding query and a uuid value are passed to
the method. The uuid value gets the matching GeolocationEntry again. This is done using
the internal method GeolocationEntry get(final String uuid) of the MapsPlugin
implementation (see Chapter 4.3.6).

The address information is then set on the GeolocationEntry and the responsible
ModificationListener is informed about the update. To do this, the
GeolocationEntry.notifyAddressModification () method is called. This method in
turn calls the ModificationlListener.onModification (final String address)
method of the inner GeolocationEntry class (see Figure 21).

1. public class MapsPlugin implements TabListener, BrowserListener {

26 private final List<GeolocationEntry> entries = new
ArraylList<GeolocationEntry>() ;

3

4 / * K

5 * Updates the address 1in ion of > specified geolocation entry

6 * and may notify the related modification stener.

7 i

8 2 Ut

9, 2 on

10. =y

11. public void info(final String uuid, final String address) ({

12. final GeolocationEntry location = get (uuid) ;

13. if (location '= null) {

14. location.setAddress (address) ;

15. location.notifyAddressModification() ;

16. }

17. }

18.

19. //-—-- inner methods ---//

20. private GeolocationEntry get (final String uuid) {

21. synchronized (_entries) {

22. for (final GeolocationEntry entry : new

ArrayList<GeolocationEntry>(_entries)) ({

23. if (entry.getUUID() .equals (uuid)) {

24. return entry;

25. }

26. }

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

99

FirstSpirit™ AppCenter FirS t Spirit

27 o return null;

28. }

29, }

30.

31.

32. private static class GeolocationEntry {

33. private ModificationListener _listener;

34.

35. GeolocationEntry (..., final ModificationListener
listener) {

36.

37. _listener = listener;

38. }

39,

40. public void notifyAddressModification () {

41. if (_listener != null) {

42. _listener.onModification(address);

43. }

44. }

45.

46. }

47.

48. public static class GeolocationUpdater {

49.

50. private final MapsPlugin _mapsPlugin;

51.

52.

53. public void info(final String uuid, final String

address) {

54. _mapsPlugin.info (uuid, address);

55. }

56. }

57. }

Listing 24: Geolocation — Updating the address information (MapsPlugin-Impl.)

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20 100

FirstSpirit™ AppCenter FirS t Spirit

4.3.9 Responding to tree navigation events (Java » JavaScript)

The integrated web application should respond to events within SiteArchitect. This not only
concerns the events triggered by the Geolocation input component (for example, the address
search via the "Search coordinate" button), but also tree navigation events or the change to the
active workspace by the editor. When a new geolocation input component is selected (for
example, via the tree navigation), the map display in the application area must be updated (see
description of the use case in Chapter 4.2.4, fading in/out the map display from one coordinate to
the next on changing between different input components (page 60 f.)). Background: Each input
component is assigned a GeolocationEntry. On changing between two input components the
current map display must be discarded and replaced by a new display with the new coordinate.

With the help of the Java AWT EventlListeners HierarchyListener, a mechanism is
implemented, which decides when the map display in the application area has to be updated. To
do this, the input component GeolocationSwingGadget is attached to the hierarchy of the
FirstSpirit input component. If the component hierarchy changes, for example, on changing the
tab in the middle workspace, the HierarchyListener is informed and calls the public void
hierarchyChanged (HierarchyEvent e) method.

The GeolocationSwingGadget class implements this method and calls the
void onShowing (boolean showing) method in it. This method controls the updating of the
Google Maps application in the application area, depending on the viewability of the input
component in the workspace of SiteArchitect. The updating of the browser instance is controlled
by the Boolean showing. Updating should only take place if the geolocation input component is
also visible in the editor's workspace. On calling the void onShowing (boolean showing)
method, e.getChanged () .isShowing () is therefore passed. The HierarchyEvent returns the
component, which is at the highest point of the component hierarchy at the time of the event, and
checks whether this component is visible or not.

If the component is visible (showing) the initial map type for the display in the application area is
selected first. Depending on whether or not the input component has been locked to prevent
editing, either the map type Hybrid map is set here or (if the content cannot be changed), the 3D
map display (see Chapter 4.3.18 page 120). The geolocation is then determined by calling the
getValue () method. The method returns an instance of the class GeolocationImpl. The
returned value is passed to the addToMap (..) method, which registers the passed value for a
geolocation input component (see Chapter 4.3.6). In the next step the
getMapsPlugin () .updateBrowser () method is called, which initiates the updating of the
browser instance (see Chapter page).

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

101

FirstSpirit™ AppCenter FirS t Spirit

1. public class GeolocationSwingGadget implements Hierarchylistener

2 {

3.

4. public JComponent getComponent () {

5.

6. _panel = new JPanel (layout) ;

7. _panel.addHierarchyListener (this) ;

8.

9o }

10.

11. public void hierarchyChanged(final HierarchyEvent e) {

12. if ((e.getChangeFlags() & HierarchyEvent.SHOWING CHANGED) '= 0)
{

13. onShowing (e.getChanged () .isShowing ()) ;

14. }

15. }

16.

17. private void onShowing(final boolean showing) ({

18. if (getMapsPlugin().isAccessible() && _valueSet) {

19. GuiUtil.execute (new Runnable () {

20. public void run() {

21. if (showing) {

22. final boolean isEditable = _editable;

23. if (isEditable) ({

24. getMapsPlugin () . setMapType (MapsPlugin.MapType.G HYBRID MAP) ;

25. } else {

26. getMapsPlugin () . setMapType (MapsPlugin.MapType.G SATELLITE 3D MAP) ;

27. }

28. addToMap (getValue()) ;

29. getMapsPlugin () .updateBrowser () ;

30. } else {

31. getMapsPlugin () . remove (getGadgetId()) ;

32. }

33. }

34. b

35. }

36. }

37. }

Listing 25: Geolocation — Using the EventListener HierarchyListener (SwingGadget-Impl.)

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20 102

FirstSpirit™ AppCenter FirS t Spirit

4.3.10 Updating the browser instance (Java » JavaScript)

The browser instance of the integrated web application must be updated depending on certain
events.

The updateBrowser () method updates the browser instance within the integrated preview of
FirstSpirit SiteArchitect. The method is only run if a Google Maps application already exists and
the Applications tab is displayed in the foreground of the application area.

Search and determining the address details: The search and determination of the address details
takes place by means of the Google Maps API. The geolocation and address detail updates are
passed on to SiteArchitect by means of the injected object and result in updating of the
corresponding input component. The route directions - or the call of the relevant Google Maps /
Bing page - is implemented by a form within the section template. Google Maps and Bing
understandably have different URL parameters, which must be taken into account individually.

1 public class MapsPlugin implements TabListener, BrowserListener {

2

3 private BrowserApplication _application;

4 private boolean _active;

5.

6

7 %

8 * Updates browse ana googile ap stance

9. * This method must be called to update geolocation entries and

10. * viewport.

11. */

12. public void updateBrowser () {

13. if (_application != null && _active) ({

14. // build script code to update google map

15. final StringBuilder buf = new StringBuilder() ;

16. buf.append (getScriptClearOverlays()) ;

17. buf.append (getScriptSetMapType (_mapType)) ;

18. for (final GeolocationEntry location : new
ArrayList<GeolocationEntry>(_entries)) {

19. if (location.isSearchMode()) {

20. buf.append (getScriptFindAddress (location)) ;

21. } else {

22. buf. append (getScriptAddOverlay (location)) ;

23. }

24 . buf.append (getScriptSetEditable (location)) ;

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

103

FirstSpirit™ AppCenter

25. buf.append (getScriptSetInfoHtml (location)) ;
26. }
27. buf.append (getScriptSetViewport()) ;
28. final String script = buf.toString() ;
29.
30. // prevent unnecessary rapidly script executions (may
31. //interfere camera movement), caused by multiple showing
32. //events
33. if (_updateScript == null ||
! updateScript.equals(script) || (_updateTime +
EQUAL UPDATE TIMEOUT < System.currentTimeMillis())) {
34. _application.executeScript (script) ;
35, _updateScript = script;
36. _updateTime = System.currentTimeMillis() ;
37. }
38. }
39, }
40. /**
41. * Builds script code to clear all overlays from map.
42. *
43. * @return script code
44, */
45. private String getScriptClearOverlays () {
46. return "window.clearOverlays();";
47. }
/**

* Builds script code for map type switch.
*
* @param type map type to show
* @return script code
*/
private String getScriptSetMapType (final MapType type) ({
final StringBuilder buf = new StringBuilder() ;

buf. append ("window. setMapType (") . append (type) .append (") ;") ;

return buf.toString() ;

48. }
49. /**
50. * Build script code for an address search entry.

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

FirstSpirit

104

FirstSp

irit™ AppCenter Fil‘StSpil‘it

51.
52
53,
54.
55.
56
57 ¢
"\
58.
59,
60.
61.
62.
63.
64.
entry.
85
66.
67.
68.
69.
70.
1.

*
* @param location related geolocation entry
* @return script code
*/
private String getScriptFindAddress (final GeolocationEntry location) {
final StringBuilder buf = new StringBuilder() ;
final String pattern = location.getAddress() .replaceAll ("'",
")
buf.append ("window. findAddress ('")
.append (location.getUUID()) .append ("', '")
.append (pattern) .append("') ;") ;
return buf.toString() ;
}
/**
* Builds script code to modify editable-state of related geolocation

*

* @param location related geolocation entry.
* Qreturn script code
*/
private String getScriptSetEditable (final GeolocationEntry location) {
final StringBuilder buf = new StringBuilder() ;

buf.append ("window.setEditable('") .append(location.getUUID()) .append ("',

") .append (location.isEditable()) .append (") ;") ;

2.
73.
74.
7955
76.
77 o
78 o
79,
80.
81.
82.

83.
84.
©5.

return buf.toString() ;

/**

* Build script code to update the info html balloon.

*

* @param location entry to build info html for.

* @return script code

*/

private String getScriptSetInfoHtml (final GeolocationEntry location) ({

final StringBuilder buf = new StringBuilder() ;

buf.append ("window.setInfoHtml ('") .append(location.getUUID()) .append ("', ")’
String text = location.getInfoText() ;
if (location.getInfoPicture() '= null || text !'= null) ({

buf.append ("\"<span style='font-family: Arial, Sans-Serif;

font-size: 1llpx;'>");

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

105

FirstSpirit™ AppCenter

86.
87.

if (location.getInfoPicture() '= null) ({

buf.append("<img align='right'

src='") .append (location.getInfoPicture()) .append ("' />");

88. }

89. if (text != null) {

90. text = text.replaceAll("\n", "
");
91. text = text.replaceAll("\"", """);
92. buf.append (text) ;

93. }

94. buf.append ("\"") ;

95. } else {

96. buf.append("null") ;

97. }

98. buf.append (") ;") ;

99. return buf.toString() ;

100. }

101. /**

102. * Builds script code to modify viewport and show registered geolocation

entries on map.

103. J

104. * @return script code.

105. *x/

106. private String getScriptSetViewport() ({

107. synchronized (_entries) ({

108. final StringBuilder buf = new StringBuilder() ;

109. final MapViewport viewBounds = new MapViewport() ;

110. for (final GeolocationEntry entry : _entries) ({

111. viewBounds.include (entry) ;

112. }

113. if (viewBounds.getPointCount() == 1) {

114. final double lat = viewBounds.getMinLatitude () ;
115. final double 1lng = viewBounds.getMinLongitude () ;
116. buf.append ("window.setViewPoint (")

117. .append(lat) .append(',"')

118. .append (1lng) .append (") ;") ;

119. } else if (viewBounds.getPointCount() > 1) ({

120. final double minlat = viewBounds.getMinLatitude() ;
121. final double minlng = viewBounds.getMinLongitude () ;
122. final double maxlat = viewBounds.getMaxLatitude() ;
123. final double maxlng = viewBounds.getMaxLongitude () ;
124. buf. append ("window. setViewBounds (")

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

FirstSpirit

106

FirstSpirit™ AppCenter FirS t Spirit

125. .append (minlat) .append(',"')
126. .append (minlng) .append(',")
127. .append (maxlat) .append(',")
128. .append (maxlng) .append (") ;") ;
129. }

130. return buf.toString() ;

131. }

132, }

Listing 26: Geolocation —UpdateBrowser (MapsPlugin-Impl.)

4.3.11 MapsPlugin - Address search (Google-Geolocation)

Use case (see Chapter 4.2.1 page 57).

The entry point is, for example, a click on the Search button of the geolocation input component
(see Chapter 4.3.11 page 107). This action triggers the call of the internal search method. The
search method of the SwingGadget implementation passes the GadgetIdentifier of the input
component, the address string from the text field and the ModificationListener (see

Chapter 4.3.7.3 page 92) to the search method of the MapsPlugin implementation.

1. public class GeolocationSwingGadget {

2.

3o public JComponent getComponent () {

4.

5. final AbstractAction searchAction = new AbstractAction() ({
6. public void actionPerformed(final ActionEvent e) {
7. search () ;

8. getMapsPlugin () .updateBrowser () ;

9. getMapsPlugin () . focusBrowser() ;

10. }

11. };

12.

13. }

14.

15. private void search() {

16. final String address = _searchField.getText();

17.

18. getMapsPlugin () . search (getGadgetId() , address, this);
19.

20. updateMapsPlugin (getGadgetId()) ;

21. }

=

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

107

FirstSpirit™ AppCenter FirS t Spirit

22. }

There the search mode is switched on first, but a search via the Google Maps API is not yet
started:

public class MapsPlugin implements TablListener, BrowserListener {
public void search(final GadgetIdentifier gadgetId,...) {
entryl.setSearchMode (true) ;

entryl.setAddress (search) ;

o 0w N

}

The search for a new geographic position takes place via the Search button of the SwingGadget
input component CUSTOM GEOLOCATION. The editor can enter an address or part of an address
(for example a street name) in the text field provided and start the search within the integrated
web application by clicking the button (see Chapter 4.2.1 page 57).

1 public class GeolocationSwingGadget. .. {

2 private JTextField searchField;

3

4 private void search() {

5. final String address = _searchField.getText();
6 if (!'StringUtil.isEmpty (address)) ({

7 getMapsPlugin () .search (getGadgetId (), address, this);
8 }

9 updateMapsPlugin (getGadgetId()) ;

10. }

11. }

Listing 27: Geolocation — Search by means of an address string (SwingGadget-Impl.)

The MapsPlugin getMapsPlugin () method first generates the Singleton instance of the
MapsPlugin class (see Chapter 4.3.2 page 67). The MapsPlugin class has its own search
method. The search method of the SwingGadget implementation passes the
GadgetIdentifier of the input component (Gadgetldentifier see Chapter page), the address
string from the text field and the ModificationListener to the search method of the MapsPlugin
implementation:

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

108

FirstSpirit™ AppCenter FirS t Spirit

1. public class MapsPlugin implements TabListener, BrowserListener {

N

private final List<GeolocationEntry> entries = new

ArraylList<GeolocationEntry>() ;

o

4. A

5. * adc tring
6. =

7o #

8. 2

9. e

10. *

11. #

12. public void search(final GadgetlIdentifier gadgetlId, final String

search, final ModificationListener listener) ({

13. ensureApplicationTab() ;

14. final GeolocationEntry entry = get(gadgetlId) ;
15. if (entry != null) {

16. _entries.remove (entry) ;

17. }

18. GeolocationEntry entryl = get(gadgetId) ;

19. if (entryl == null) {

20. entryl = new GeolocationEntry(gadgetId, 0, 0, listener);
21. synchronized (_entries) ({

22. _entries.add(entryl) ;

23. }

24. }

25. entryl.setModificationListener (listener) ;

26. entryl.setSearchMode (true) ;

27. entryl.setAddress (search) ;

28. }

29, }

Listing 28: Geolocation — Search by means of an address string (MapsPlugin-Impl.)

There the ensurelApplicationTab () method first checks whether a browser instance of the
web application already exists in the application area of SiteArchitect. If a browser instance does
not yet exist, a new instance is generated (see Chapter 4.3.3 page 68).

To display a new entry within the Google Maps integration, it is necessary to first determine
whether old entries already exist. The example implementation uses the inner method
GeolocationEntry get (final GadgetIdentifier gadgetId) to do this. The method
returns a GeolocationEntry (provided an entry was saved for the component when the Gadget ID

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

109

FirstSpirit™ AppCenter FirS t Spirit

was passed) or zero (if no entry exists).

1. public class MapsPlugin implements TabListener, BrowserListener {
2o private final List<GeolocationEntry> entries = new

ArraylList<GeolocationEntry>() ;

3

4 private GeolocationEntry get(final GadgetIdentifier gadgetId) ({
5. synchronized (_entries) ({

6 for (final GeolocationEntry entry : new

7 ArrayList<GeolocationEntry>(_entries)) {

8 if (entry.getGadgetId() .equals(gadgetId)) ({
OF return entry;

10. }

11. }

12. return null;

13. }

14. }

15. }

Listing 29: Geolocation — Inner method: Get GeolocationEntry (MapsPlugin-Impl.)

If a GeolocationEntry already exists, the returned entry is then removed from the list of
GeolocationEntries with the help of the remove method (see example on page 109).

The search method then calls the inner method GeolocationEntry get(final
GadgetIdentifier gadgetId) once again. This time there is no entry; the method returns
zero. The search method then creates a new instance of the type GeolocationEntry with the
coordinates 0.0/0.0 and adds this to the list of GeolocationEntries (see example on page 109).

In the next step the setSearchMode (final boolean searchMode) method is called, which
activates the search mode for the new entry. The void setAddress(final String
address) method is then used to save the search string from the input field.

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

110

FirstSpirit™ AppCenter

FirstSpirit

The SwingGadget implementation now calls the void updateMapsPlugin (final
GadgetIdentifier gadgetId) method (see example on page 108).

R ©O© 0 J o U b w N o=

0.

public class GeolocationSwingGadget...{

private boolean _editable;

private void updateMapsPlugin(final GadgetIdentifier gadgetId)
getMapsPlugin () .setEditable (gadgetId, _editable);
getMapsPlugin () .setInfoPicture (gadgetId, getInfoPicture(),
"image/jpeg") ;
getMapsPlugin () .setInfoText (gadgetId, getInfoText());

{

Listing 30: Geolocation — Updating MapsPlugin (SwingGadget-Impl.)

Other methods of the MapsPlugin implementation are called here on the instance of the type
MapsPlugin. First, the edit mode of the component is switched on, then an info image and an info
text are added:

N W NP

O© © N o O

10.
11.
12.
13,
14.
15,
16.
17
18.
19,
20.

public class MapsPlugin implements TabListener, BrowserListener {

yadget 1id.

tlId gadget 1d of the rel

new editable-state

public void setEditable(final GadgetIdentifier gadgetId, final
boolean editable) {
final GeolocationEntry entry = get(gadgetId) ;

if (entry '= null) {
entry.setEditable (editable) ;

private static class GeolocationEntry {

private boolean _editable;

public void setEditable(final boolean editable) ({

lify editable-state of an google map marker entry specified by th

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

111

FirstSpirit™ AppCenter FirS t Spirit

21 . _editable = editable;
22. }
23. }
24. }
Listing 31: Geolocation —... (MapsPlugin-Impl.)
1. public class GeolocationSwingGadget...{
2
3. public JComponent getComponent () {
4. @SuppressWarnings ({"serial"})
5. final AbstractAction searchAction = new AbstractAction() {
6. public void actionPerformed(final ActionEvent e) {
7. search () ;
S getMapsPlugin () .
setMapType (MapsPlugin.MapType .G HYBRID MAP) ;
OF getMapsPlugin () .updateBrowser () ;
10. getMapsPlugin () . focusBrowser () ;
11. }
12. }i
13. }
14. }

Listing 32: Geolocation — UpdateBrowser (SwingGadget-Impl.)

This entry is first re-created with the coordinates 0.0/0.0 for the address search (see Chapter
4.3.11 page 107). Then the address string from the input component is set for the
GeolocationEntry (see Listing 7).

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20 112

FirstSpirit™ AppCenter FirS t Spirit

4.3.12 maps.html - Introduction

In principle, two different ways are available for integrating a web application in FirstSpirit. On the
one hand, a global web application can be implemented and installed on the
FirstSpirit server. In this case, the URL of the web application can be called in the integrated
browser. If an independent web application is to be circumvented, however, the required HTML
code can also be easily initiated and called. This second way is also used for the Google Maps
integration introduced here.

The maps.html file is required to initiate the HTML code. The file initially consists of a simple
HTML structure. This structure must now be extended to include the suitable JavaScript or
Google Maps API expressions:

= Load the Google Maps API

= [nitialize the container for the map display

= Create new map object

= Centre map on a coordinate

= Define map type

= Load map via events

= Convert address data — geocoding

= GeolocationUpdater (Injection Java / JavaScript)

To do this, the browser must first be informed that it must load an external JavaScript file
The file maps.html has a windows object.
The map is displayed in a Google Maps container:

To prevent an independent web application, an HTML code is directly initiated here, which
initializes a Google Maps container on loading.

The connection between web and Java is made by means of the application integration API. To
prevent an independent web application, an HTML code is directly initiated here, which initializes
a Google Maps container on loading. Within this HTML page, JavaScript methods are defined,
which provide core functions such as "Add entry”, "Remove entry" and "Modify viewport". These
JavaScript methods are called on the Java side accordingly in order to display geolocations or to
make them modifiable. IDs are generated for identification of the individual map entries, these
IDs are then used for direct assignment and control. A way back (return path), provided by
means of an object injection, is required here for the modification of the geolocation and the
corresponding change notification. This object has a method for updating the exact geolocation

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

113

FirstSpirit™ AppCenter FirS t Spirit

and a method by means of which the address string can be updated.

4.3.13 Excursus: HTML and JavaScript

Knowledge of HTML and JavaScript is advantageous in order to understand the following
chapter, but is not absolutely necessary. This chapter provides a brief introductory explanation of
the most important HTML tags and JavaScript object types, which are used within the example
implementation.

Standard HTML basic structure:

<html>
<head>
</head>
<body>
</body>

</html>

JavaScript: The script language JavaScript can be used to subsequently change HTML pages,
which are displayed within a browser (i.e. have already been loaded by visitors to the page).
JavaScript is an event-controlled language. Certain actions of the user (e.g. a mouse click), can
result in a change to the page. JavaScript is closely linked to the browser, which displays the
HTML page and provides objects and methods for controlling the browser window (see object
window) and for manipulating the DOM tree of an HTML page (see DOM).

Within the HTML file, the browser must be notified that the following code is a JavaScript. To this
end the MIME type ("text/javascript") iS given within the script tag. The opening and closing
script tag define where the JavaScript begins and where it ends and therefore form the limits of
the script.

<html>
<head>

<script type="text/javascript">

</script>
</head>
<body>
</body>
</html>

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

114

FirstSpirit™ AppCenter FirS t Spirit

window object: Each browser window or each frame has a window object. The window object is
automatically provided by the browser instance, i.e. does not have to be generated beforehand
using the new operator. The object provides methods for modifying the display (e.g. show status
bar) and for controlling with the help of events.

Document Object Model (DOM): The DOM is a standard for the access to the content of an
HTML document. The individual HTML elements of an HTML document are set in a relation to
each other via a tree structure. On the basis of this structure, starting from an element, the script
can navigate to another element of the page and if necessary change it (for example, insert a
tag). The corresponding methods of the DOM can be used to insert tags in specific places in the
HTML page, manipulate attributes or restructure elements. In the following example, for example,
the Google Maps map is inserted within a DIV element in the HTML page.

document object: The document object lies below the window object in the object hierarchy and
is responsible for the content, which is displayed within a browser instance. The document object
is the root node of the tree structure within the DOM. The lower level HTML elements are
accessed by calling the methods made available by the DOM, e.g. getElementByld(...). In this
case an element of the HTML page, which has an id attribute, is loaded. In the following
example, the DIV element, which displays the Google Maps map, is referenced. Analogous to
the window object, the document object is also automatically provided by the browser instance,
i.e. does not have to be generated beforehand using the new operator.

4.3.14 maps.html - Loading the Google Maps API

Before the Google Maps API can be used, the integrated browser must first be informed that it
has to load an external JavaScript file. This is achieved within the maps.html file with the
following call:

<html>
<head>

<title>Google Maps</title>

Sw N

<script type="text/javascript"
src="http://maps.google.com/maps?file=api&v=2&key="></script>
<script type="text/javascript">

</head>

o J o w

</html>

Within the Script tags the browser is notified here that it should load an external JavaScript file
from URL http://maps.google.com/maps?file=api&v=2&key=myKey (for further information see

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20 115

http://maps.google.com/maps?file=api&v=2&key=myKey

FirstSpirit™ AppCenter FirS t Spirit

chapter Excursus: HTML and JavaScript page 114 ff.). This JavaScript file contains all the
necessary functions, classes and libraries, required for use of the Google Maps API. The key
passed here (key=..), must correspond to the previously generated, individual Google Maps API
key (see Chapter 4.1.3 page 54). If the example implementation is to be used, the individual key
must be added within the script tag (.. Src="http://maps.google.com/

maps?file=api&v=2&key=myKey")

4.3.15 maps.html - Initializing the container for the map display

A central element of the Google Maps integration is the map display. This display takes place
externally via the Google Maps API. However, to display the map in the integrated browser, an
HTML element must be provided, which acts as a kind of placeholder or container for the map.
To this end, a DIV element with an attribute id ("container”) is defined within the <body> tags in
the maps.html file.

1. <body>
2. <div id='container'></div>
3. </body>

All HTML nodes of the page are lower level objects of the JavaScript objects document (for
further information see Chapter Excursus: HTML and JavaScript page 114 f.). The id attribute
(here: "container") can be used to reference the DIV element in the Document Object Model
(DOM) of the browser (for further information see Chapter Excursus: HTML and JavaScript page
114 f.). To do this, the getElementByld(...) method is called on the document object:

document.getElementById('container"') ;

The Google Maps map display automatically adjusts to the size of the DIV container, in which it
is displayed. The display of the DIV container (e.g. width, height) can be changed within the style
tags via the corresponding style attributes.

1. <style>

26

3. #container {

4. position: absolute;
5. visibility: hidden;
6. width: 100%;

7. height: 100%;

8. }

9. </style>

Initialization of the DIV container (or the map display) is controlled by events, which ensure that
all the files required to run the JavaScript functions have already been loaded (see Chapter

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20 116

FirstSpirit™ AppCenter FirS t Spirit

4.3.19 page 122). If one of the events occurs, the JavaScript function init() is called, which first
generates a new map object (see Chapter 4.3.16 page 117).

4.3.16 maps.html - Creating a new map object

With the help of the JavaScript operator new, the init() function generates a new instance of the
type GMap2 (for a description of the class and the constructor, see Google Maps API
Documentation®).

window.GoogleMap = null; // GMap2 instance

function init () {

window.GoogleMap = new GMap2 (document.getElementById('container'), {
mapTypes: [G NORMAL MAP, G SATELLITE MAP, G HYBRID MAP, G SATELLITE 3D MAP]
}) i

O 0 J o O b w N

}

GMap? is the central class of the Google Maps API, which represents the map. For the map to
be displayed in the integrated browser, it must be connected with a DOM node of the HTML
page. To this end, the previously defined DIV element is passed to the constructor. In addition,
the required map types are also passed to the constructor. The example implementation uses
the following map types:

= G_NORMAL_MAP: Display of the map with standard 2D tiles.

= G_SATELLITE_MAP: Display of the map with photo tiles (satellite images).

= G_HYBRID_MAP: Display of the map with photo tiles and tiles for the display of prominent
functions, such as streets and place names.

= G_SATELLITE_3D_MAP: Display of the map as an interactive 3D model of the earth with
satellite images.

Further properties, for example, for zooming within the map, are defined via the corresponding
methods of the Google Maps API'°. The control is added to the map with the addControl(...)
method. Within the init function these are a control for swinging and zooming

® http://code.google.com/intl/de/apis/maps/documentation/javascript/v2/introduction.html

1% see http://code.google.com/intl/de-DE/apis/maps/documentation/javascript/v2/reference.htmi#GMap2

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

117

http://code.google.com/intl/de/apis/maps/documentation/javascript/v2/introduction.html
http://code.google.com/intl/de-DE/apis/maps/documentation/javascript/v2/reference.html#GMap2

FirstSpirit™ AppCenter FirS t Spirit

(GLargeMapControl), a control for changing the scale (GScaleControl) and buttons for switching
between the defined map types (e.g. map and satellite) (GMapTypeControl).

4.3.17 maps.html - Center map (center point or display area)

In the next step the map display must be initialized. Maps or objects of the type GMap2 must be
centered before they can be displayed in an HTML page. This initialization is achieved by calling
the setCenter() method on the instance of the type GMap2 (see Chapter 4.3.16 page 117).

To do this, first of all the start coordinate must be defined, which is to be displayed in the map
after it has been loaded. The Google Maps API provides the GLatLng™! class for this purpose. An
object of the type GLatLng is a geographic point, which is defined by the corresponding
coordinates, consisting of the geographic northing and easting, or latitude and longitude
(abbreviated form: LatLng). A new object of the type GLatLng is generated by the new operator:

new GLatLng(latitude, longitude)

The coordinates of a new map display are initially set to 0.0/0.0 (see Chapter page).

The GLatLng coordinate must now be passed to the setCenter() method. Optionally, a zoom
level and a map type can also be passed:

<html>
<head>
<script ...>
window.GoogleMap = null; // GMapZ2 instance
window.DefaultMapZoom = 18, // Zoom for ~200 meter

function(latitude, longitude) ({

var zoomLevel = window.DefaultMapZoom;

window.GoogleMap.setCenter (new GLatLng(latitude, longitude), zoomLevel);

</script>

" see http://code.google.com/intl/de-DE/apis/maps/documentation/javascript/v2/reference.html#GLatLng

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

118

http://code.google.com/intl/de-DE/apis/maps/documentation/javascript/v2/reference.html#GLatLng

FirstSpirit™ AppCenter FirS t Spirit

</head>
<body>
<div id='container'></div>
</body>
</html>

The setCenter () method now sets the centre of the map at the passed coordinate (using the
optionally given zoom level and the map type). This method must always be run initially, before
other operations may take place on the map. This also applies to the definition of other map
attributes, for example, the map type (see Chapter 4.3.18 page 120).

Within the example implementation the map is used in two JavaScript functions. The
function (latitude, longitude) determines a centre point of the map view on the basis
of a single coordinate, the function (minLatitude, minLongitude, maxLatitude,
maxLongitude) determines a visible, rectangular selection area of the map view on the basis
of two coordinates, which define the limits of the selection area.

<html>
<head>
<script ...>
window.GoogleMap = null; // GMapZ? instance
* %
= Seit ewport to specified latitude/longitude positio

window.setViewPoint = function(latitude, longitude) ({
if (window.GoogleMap.getCurrentMapType () == G SATELLITE 3D MAP) ({
window.GoogleMap.getEarthInstance (function (ge) {
if (ge) |
ge.getOptions () .setFlyToSpeed (window.DefaultEarthFlySpeed) ;
var lookAt = createEarthLookAt (ge, latitude, longitude) ;

ge.getView () .setAbstractView (lookAt) ;

}) i
} else {
var zoomLevel = window.DefaultMapZoom;
if (window.LazyMapType == G SATELLITE 3D MAP) ({

zoomLevel = window.DefaultEarthZoom;

o

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

119

FirstSpirit™ AppCenter FirS t Spirit

}
window.GoogleMap.setCenter (new GLatLng (latitude, longitude), zoomLevel) ;
if (window.LazyMapType) {

_setMapType (window.LazyMapType) ;

window.LazyMapType = null;

}
// map is initially hidden; show map after viewport modification

document.getElementById ('container') .style.visibility = "visible";

</script>
</head>
<body>
<div id='container'></div>
</body>
</html>

4.3.18 maps.html - define map type

To display the map, the map type must be known beforehand. Within the example
implementation, the required map types are passed to the object of the type GMap2 in the
constructor (see Chapter 4.3.16 page 117).

The definition of a map type is ensured in the example implementation, following initialization of
the map, via the JavaScript function _setMapType(type). Within the function, the Google Maps
method setMapType(type:GMapType) is called on the instance of the type GMap2. The required
map type (GMapType'?) is passed to the method. The GMapType must be known to the map,
i.e. either given directly in the constructor (see example) or previously added via the method
addMapType(type:GMapType).

The function is not called until after the map has been initialized (see Chapter 4.3.17) using the
setCenter() method, within the JavaScript functions function (latitude, longitude) und
function (minLatitude, minLongitude, maxLatitude, maxLongitude), which
center the map view on a specific coordinate or a specific selection area.

1. <html>

12 http://code.google.com/intl/de/apis/maps/documentation/javascript/v2/reference.htmi#GMapType

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

120

http://code.google.com/intl/de/apis/maps/documentation/javascript/v2/reference.html#GMapType

FirstSpirit™ AppCenter FirS t SpiritTM

2o <head>

3. <script ...>

4.

5. window.GoogleMap = null; // GMapZ2 instance

6.

7. // earth plugin apply current location on first maptype switch, no

matter what.
8. // as workaround we change maptype in that case after viewport
modification not before.

9. // Maptype to set after viewport modification

10. window.LazyMapType = null;

11.

12. function init () {

13. window.GoogleMap = new GMap2 (document.getElementById('container'),
{

14. mapTypes: [G NORMAL MAP, G SATELLITE MAP, G HYBRID MAP,

G_SATELLITE 3D MAP]

15. 1)

16.

17. }

18.

19. Ve

20. * Set map type to GMapZ2 instance.

21. *

22. * @param type new maptype

23. */

24. function setMapType (type) {

25. window.GoogleMap.setMapType (type) ;

26. 000l

27.

28. A

29, * Set viewport to specified latitude/longitude position.

30. &

31. * @param latitude

32. * @param longitude

33. */

34. window.setViewPoint = function (latitude, longitude) {

35. ... window.GoogleMap.setCenter (new GLatLng(latitude, longitude),
zoomLevel) ;

36. if (window.LazyMapType) {

37. __setMapType (window.LazyMapType) ;

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20 121

FirstSpirit™ AppCenter FirS t Spirit

38. window.LazyMapType = null;

39. }

40. // map is initially hidden; show map after viewport modification

41. document.getElementById('container') .style.visibility = "visible";

42, Y

43.

44 . window.setViewBounds = function (minLatitude, minLongitude,
maxLatitude, maxLongitude) {

45.

46. if (window.LazyMapType) {

47. _setMapType (window.LazyMapType) ;

48. window.LazyMapType = null;

49. }

50. // map is initially hidden, show p after viewport modification

51. document.getElementById('container') .style.visibility = "visible";

52. e

53,

54. </script>

55. </head>

56. <body>

57. <div id='container'></div>

58. </body>

59 </html>

4.3.19 maps.html - load map object via events

The map (or the DIV container in which the map is displayed) is initialized event-controlled by
onLoad or load events. This ensures that all the necessary files, which are required on running
the JavaScript functions, are already loaded. To do this, the window object is extended to include
the EventHandler "onLoad" or "load" (event depends on the integrated browser used) (for further
information see Chapter Excursus: HTML and JavaScript page 114 f.):

if (window.attachEvent) {

window.attachEvent ("onload", init);

1

2

Sp } else if (window.addEventListener) {

4 window.addEventListener ("load", init, false);
5

}

If one of the events occurs, the JavaScript function init() is called, which creates a new map
object (see Chapter 4.3.16 page 117). This map display is then initialized and assigned
attributes. In order for the map to be displayed within the DIV container, the DIV element (and

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20 122

FirstSpirit™ AppCenter FirS t Spirit

therefore the map too) must then be shown. This is achieved by calling
document .getElementById('container') .style.visibility = "visible". This
method is not called until after the map has been initialized (see Chapter 4.3.17) using the
setCenter() method, within the JavaScript functions function (latitude, longitude) und
function (minLatitude, minLongitude, maxLatitude, maxLongitude), which
center the map view on a specific coordinate or a specific selection area.

4.3.20 maps.html - converting address data (Geocoding)

Such geographic coordinates consist of two decimal values, which describe a geographic
longitude and latitude. Geocoding is the term used if an address (as an object of the type string)
is converted into a geographic coordinate. Google provides a service for geocoding, which can
be accessed using the GClientGeocoder() object™®.

In the example implementation a new object of the type GClientGeocoder() is generated within
the init function:

1 <html>
2 <head>
3o <script type="text/javascript"

src="http://maps.google.com/maps?file=api&v=2&key="></script>

4. <script type="text/javascript">

5.

6. window.GoogleGeocoder = null; // Geocoder, address <> lat/lng
7.

8. function init () {

9.

10. window.GoogleGeocoder = new GClientGeocoder () ;

11. }

This function first determines a geographic coordinate from the passed address parameter (an
object of the type string). Google provides a service (GoogleGeocoder) for this geocoding (see
Chapter 4.3.20 page 123). The location of the Internet access point, from which the query is
made, is also included. Therefore, if only a street name is given for the address search, a
destination near the (starting) location is looked for. Following successful Google geocoding a

13 http://code.google.com/intl/de-DE/apis/maps/documentation/javascript/v2/services.html#Geocoding_Obiject

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

123

http://code.google.com/intl/de-DE/apis/maps/documentation/javascript/v2/services.html#Geocoding_Object

FirstSpirit™ AppCenter FirS t Spirit

callback takes place in the JavaScript function. There a new marker is added to the map display
(via window.addOverlay(...)) and a new center point is set (see Chapter 4.3.17 page 118).

4.3.21 maps.html - GeolocationUpdater (Injection Java / JavaScript)

A Java object (JavaScript proxy —GeolocationUpdater) must be provided in the JavaScript
environment for the communication between the native level of the integrated browser (or the
Google Maps API) and the Java level of FirstSpirit SiteArchitect (see Chapter 4.3.5 page 76).
This object is used to provide unidirectional communication from the JavaScript environment of
the integrated browser into the Java environment of FirstSpirit SiteArchitect. The required Java
object must be injected into the HTML document from the outside (from the Java environment)
(see Chapter 4.3.5 page 76). The FirstSpirit AppCenter API provides the necessary interfaces
and methods (Interface: BrowserApplication see Chapter 3.7 page 45).

The example implementation first generates a Java object of the type GeolocationUpdater in the
Java MapsPlugin class (see Chapter 4.3.5 page 76). The GeolocationUpdater class has the
methods void update (String uuid, double latitude, double longitude), which
update a GeolocationEntry to the passed coordinate and informs the ModificationListener
belonging to the input component of the update and the void info (String uuid,
String address) method, which updates the address information of the GeolocationEntry.

@SuppressWarnings ({"UnusedDeclaration"})

public static class GeolocationUpdater {

private final MapsPlugin mapsPlugin;

public GeolocationUpdater (final MapsPlugin mapsPlugin) {

_mapsPlugin = mapsPlugin;

public void update(final String uuid, final double latitude, final
double longitude) {
_mapsPlugin.update (uuid, latitude, longitude);

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

124

FirstSpirit™ AppCenter FirS t Spirit

public void info(final String uuid, final String address) {

_mapsPlugin.info (uuid, address);

}

A new instance of the type GeolocationUpdater is then injected into the HTML document
(maps.html) by calling the void inject (Object object, String name) method. A name
(here: "GeolocationUpdater") is passed, with which this object can be reached within the
JavaScript environment.

application.inject (new GeolocationUpdater (this), "GeolocationUpdater") ;

Following the injection, not only the object instance itself is available in the JavaScript
environment but also the corresponding methods of the GeolocationUpdater object. This means
that following injection, all methods of the Java GeolocationUpdater class can also be called
within the JavaScript environment. Therefore, in specific terms, the update and info methods,
which are implemented within MapsPlugin, are also available on the proxy within the JavaScript
environment:

1, <html>
26 <head>
3. <title>Google Maps</title>
4. <script type="text/javascript"
src="http://maps.google.com/maps?file=api&v=2&key="></script>
5. <script type="text/javascript">
6.
7. window.GeolocationUpdater = null;
8. *
9, 2 odification
10. g
11. * @paran
12. * @
13. *
14. */
15. function updateInfo(uuid, latitude, longitude) ({
16. var request = new GetLocationsRequest (new
GLatLng (latitude, longitude)) ;
17. request.execute (function (response) {
18. window.GeolocationUpdater.info (uuid,
response.Placemark([0] .address) ;
19. b
20. }

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20 125

FirstSpirit™ AppCenter FirS t Spirit

21.

22. VAR

23, of the

24.

25.

26.

27.

28. window. findAddress = function (uuid, pattern) ({

29. window.GoogleGeocoder.getLatLng (pattern,

function (point) {

30. if (point) {

31. var latitude = point.lat();

32. var longitude = point.lng() ;

33. window.addOverlay (uuid, latitude,
longitude) ;

34. window.setViewPoint (latitude, longitude) ;

35. window.GeolocationUpdater.update (uuid,
latitude, longitude) ;

36. updateInfo (uuid, latitude, longitude) ;

37. }

38. b

39. };

40. </script>

Listing 33: Geolocation — GeolocationUpdater (maps.html)

To do this, the FirstSpirit Framework generates a corresponding JavaScript method for each
method of the Java object instances. When called from the JavaScript environment, this method
sends an event, which is in turn evaluated on the Java side. Therefore, this means calling:

window.GeolocationUpdater.update (uuid, latitude, longitude) ;

in a JavaScript function, leads directly to running of the update() method within the Java
MapsPlugin implementation. The suitable Java method is determined from the name and the
passed parameters and is called accordingly.

Ny o W N R

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

126

FirstSpirit™ AppCenter FirS t Spirit

8. /
9. public void update(final String uuid, final double latitude, final double
longitude) ({

10. final GeolocationEntry location = get (uuid) ;
11. if (location !'= null) {

12. location.setLatitude (latitude) ;

13. location. setLongitude (longitude) ;

14. location.notifyPointModification() ;
15. }

16. }

All parameters passed within the JavaScript environment, are elevated into the Java
environment, analogous to the object conversion to date. As, unlike Java, JavaScript only
supports a limited set of simple data types, the conversion is subject to certain restrictions:

However, there is still a small restriction here. As synchronicity cannot be guaranteed for event
generation/evaluation, returned values of the Java methods are returned by means of callback.
If, therefore, there is a String getName() method, in JavaScript this becomes a void
getName(function:callback) method. Therefore, here the last parameter is always the
corresponding callback.

The inject method can be used to inject any Java object into a JavaScript environment. However,
certain restrictions apply to the methods of this object. For example, only a range of simple data
types are supported. Complex object types not known in JavaScript are not supported.

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

127

FirstSpirit™ AppCenter

5 Listings
LISTING 1: GEOLOCATION - GENERATING A NEW INSTANCE OF MAPSPLUGIN (SWINGGADGET-IMPL.)ccccvniennen 67
LISTING 2: GEOLOCATION — MAPSPLUGIN CONSTRUCTOR (MAPSPLUGIN-IMPL.)coviiiiiiieieiinieiec e 67
LISTING 3: GEOLOCATION —BROWSERAPPLICATION INSTANCE AVAILABLE? (MAPSPLUGIN-IMPL.)cceviveiiiinienen 68
LISTING 4: GEOLOCATION — OPENING THE APPLICATION WITHIN A TAB (MAPSPLUGIN-IMPL.)ooeiiiiieinieicenieee 71
LISTING 5: GEOLOCATION — CREATE SCRIPT FOR THE GEO-CODING OF AN ADDRESS STRING (MAPSPLUGIN-IMPL.) 74
LISTING 6: GEOLOCATION — JAVASCRIPT FUNCTION FINDADDRESS (MAPS.HTML) ...cviiiiiieieiinieieiesieieie e 75
LISTING 7: GEOLOCATION — RUN THE COLLATED JAVASCRIPT FRAGMENTS (MAPSPLUGIN-IMPL.)coviiiiiiiniennn 76
LISTING 8: GEOLOCATION — INJECTION OF JAVA OBJECT GEOLOCATIONUPDATER (MAPSPLUGIN-IMPL.) 77
LISTING 9: GEOLOCATION — GEOLOCATIONUPDATER (MAPSPLUGIN-IMPL.) ..c.viiviiieiecsieesie et 78
LISTING 10: GEOLOCATION — CALLING A JAVA METHOD FROM THE JAVASCRIPT CODE (MAPS.HTML-IMPL.)............. 79
LISTING 11: GEOLOCATION — ADDING A NEW GMARKER OBJECT (MAPS.HTML) 1.cvvtiiiiieiieeiteenie e snvesieesieesineseeanesnnes 80
LISTING 12: GEOLOCATION — GEOLOCATIONENTRY CONSTRUCTOR (MAPSPLUGIN-IMPL.) ..ccvccvvviiiiieiiecee e, 81
LISTING 13: GEOLOCATION — PASSING THE GADGETIDENTIFIER TO MAPSPLUGIN (SWINGGADGET-IMPL.) 82
LISTING 14: GEOLOCATION — CREATING A NEW GEOLOCATIONENTRY (MAPSPLUGIN-IMPL.) ...ccvveviiieriiecieecie e, 83
LISTING 15: GEOLOCATION — PASSING INFORMATION FROM THE GEOLOCATIONENTRY OBJECT (MAPSPLUGIN-
1= USSR 85
LISTING 16: GEOLOCATION — ADDING GMARKER OBJECT TO THE MAP DISPLAY (MAPS.HTML)....ccootrueieiinieieenieeane 86
LISTING 17: GEOLOCATION — ASSIGNMENT OF THE GEOLOCATIONENTRIES BACK INTO THE JAVA ENVIRONMENT
(IMAPSPLUGIN=IMPLL) .ttt bbb et bbb et b e et b e b e bt bbbt bbb b e bt eb e b et et nn e 87
LISTING 18: GEOLOCATION — REGISTERING AND USING THE TABLISTENER (MAPSPLUGIN-IMPL.) ...ccoviiiiiiinen, 90
LISTING 19: GEOLOCATION — REGISTERING AND USING A BROWSERLISTENER (MAPSPLUGIN-IMPL.).......cccccovrunnnn. 92
LISTING 20: GEOLOCATION — MODIFICATIONLISTENER INTERFACE (NOT PART OF THE APPCENTER-API)............... 93
LISTING 21: GEOLOCATION — INITIATE UPDATING VIA THE GEOLOCATIONUPDATER OBJECT (MAPS.HTML)c.e.... 95
LISTING 22: GEOLOCATION — UPDATING THE LATITUDE, LONGITUDE VALUE (MAPSPLUGIN-IMPL.) ...cceoviriiiiinienen 97
LISTING 23: GEOLOCATION — USING THE MODIFICATIONLISTENER INTERFACE (SWINGGADGET-IMPL.)ccvvunen. 98
LISTING 24: GEOLOCATION — UPDATING THE ADDRESS INFORMATION (MAPSPLUGIN-IMPL.)ccocovveviieiiiiecieiiens 100
LISTING 25: GEOLOCATION — USING THE EVENTLISTENER HIERARCHYLISTENER (SWINGGADGET-IMPL.).............. 102
LISTING 26: GEOLOCATION —UPDATEBROWSER (MAPSPLUGIN-IMPL.)cvitiiiiiiiiriiieiisieeeesie e 107
LISTING 27: GEOLOCATION — SEARCH BY MEANS OF AN ADDRESS STRING (SWINGGADGET-IMPL.)cccvrvvvreenenne. 108
LISTING 28: GEOLOCATION — SEARCH BY MEANS OF AN ADDRESS STRING (MAPSPLUGIN-IMPL.)coviriiiiiinne, 109
LISTING 29: GEOLOCATION — INNER METHOD: GET GEOLOCATIONENTRY (MAPSPLUGIN-IMPL.)coveiiiiiiiiinnne 110
LISTING 30: GEOLOCATION — UPDATING MAPSPLUGIN (SWINGGADGET-IMPL.) ...ccvtiiiiiiiieiinienieiisieeeesie e 111
LISTING 31: GEOLOCATION —... (IMAPSPLUGIN-IMPL.) ¢..utitiiiiiiiitiste sttt sttt bbbt e e b sne e 112
LISTING 32: GEOLOCATION — UPDATEBROWSER (SWINGGADGET-IMPL.) ..cuviitiiiiiiitirieaiieiee et 112
LISTING 33: GEOLOCATION — GEOLOCATIONUPDATER (MAPS.HTML)..c.utiuieiieteiesiestesieeseeeesiesaeseesie s eseeseeee e sne e 126

FirstSpirit™ Vv 5.2 = APPC_EN_FirstSpirit_AppCenter = 0.53 = in process = 2016-09-20

FirstSpirit

128

	1 Introduction
	1.1 FirstSpirit AppCenter – FirstSpirit as an integration platform
	1.2 Differences between ContentCreator and SiteArchitect
	1.2.1 Project-specific input components
	1.2.2 AppCenter – integrating web applications
	1.2.3 Reports – integrating external databases and services
	1.2.4 Exchanging data using drag-and-drop motions

	1.3 Enhancement of application integration in version 5.1
	1.4 Classification
	1.5 General information
	1.6 Restrictions
	1.7 License model
	1.8 Preview
	1.9 Topics covered in this document

	2 Concept: Integrating a web application into FirstSpirit
	2.1 Communication: FirstSpirit SiteArchitect – web application
	2.1.1 Controlling the integrated browser
	2.1.2 Communication between the browser instance and SiteArchitect
	2.1.3 Converting data types
	2.1.4 Return by means of callback function

	2.2 DOM access: access to the data of the integrated browser

	3 Standard enhancements
	3.1 Interface: ApplicationService
	3.2 Interface: ApplicationTab
	3.3 Interface: ApplicationTabAppearance
	3.4 Interface: ApplicationTabConfiguration
	3.5 Interface: TabListener
	3.6 Abstract Class: ApplicationType
	3.7 Interface: BrowserApplication
	3.8 Interface: BrowserListener
	3.9 Interface: BrowserApplicationConfiguration
	3.10 Interface: ClientServiceRegistryAgent

	4 Example: Integrating Google Maps in FirstSpirit
	4.1 First steps
	4.1.1 Note on the FirstSpirit license model
	4.1.2 Note regarding legal implications
	4.1.3 Generate Google Maps API key
	4.1.4 Note on configuring the FirstSpirit server
	4.1.5 Installing the Google Earth plug-in
	4.1.6 Example project

	4.2 Application areas of the Google Maps integration
	4.2.1 Address search with geolocalization
	4.2.2 Changing the coordinate using the Google Maps integration
	4.2.3 Showing additional information (Google Balloons)
	4.2.4 3D display using Google Earth
	4.2.5 Route directions ("How to find us")

	4.3 Implementation: Application integration for Google Maps
	4.3.1 (SwingGadget) input component CUSTOM_GEOLOCATION
	4.3.2 MapsPlugin – Generating a new instance of the type MapsPlugin
	4.3.3 MapsPlugin – Opening the application within a tab
	4.3.4 MapsPlugin – run JavaScript (Java » JavaScript)
	4.3.5 MapsPlugin - GeolocationUpdater (Injection Java » JavaScript)
	4.3.6 Show markers and assign an input component
	4.3.7 Listener – responding to changes
	4.3.7.1 TabListener
	4.3.7.2 BrowserListener
	4.3.7.3 ModificationListener

	4.3.8 Updating the geodata of the input component (JavaScript » Java)
	4.3.9 Responding to tree navigation events (Java » JavaScript)
	4.3.10 Updating the browser instance (Java » JavaScript)
	4.3.11 MapsPlugin – Address search (Google-Geolocation)
	4.3.12 maps.html – Introduction
	4.3.13 Excursus: HTML and JavaScript
	4.3.14 maps.html - Loading the Google Maps API
	4.3.15 maps .html - Initializing the container for the map display
	4.3.16 maps.html – Creating a new map object
	4.3.17 maps.html - Center map (center point or display area)
	4.3.18 maps.html – define map type
	4.3.19 maps.html - load map object via events
	4.3.20 maps.html – converting address data (Geocoding)
	4.3.21 maps.html – GeolocationUpdater (Injection Java / JavaScript)

	5 Listings

