
FirstSpirit Guide:
Developing Templates in the Cloud
Crownpeak Technology GmbH - Version Dec-2022

This document guides you through the template development process in FirstSpirit Cloud. You
will find the general process explained briefly. Links will lead you to the detailed documentation
to address specific steps of the journey.

1. Your FirstSpirit Cloud Environment
Preparations - Setting up the environment

2. Developing templates
a) Developing a classic HTML project
b) Developing a headless project

3. Distributing templates
a) Dev → QA → Prod
b) Master → Sub-project

4. Tutorial For Distributed
Development of FirstSpirit Project [BETA]

4.1 Concept
4.2 Setup of Git and FS-CLI
4.3 Set up a project (initial transfer to an empty git)
4.4 Use-Case: Implementing a requirement (#42)
4.5 Use-Case: Implementing a requirement with conflicts (#23)

Target audience (New) template developers
within the FirstSpirit cloud setting

Preconditions DTB (Developer Training Basic)
Training & Coaching Center

https://www.e-spirit.com/de/service/onboarding-support/training/

1. Your FirstSpirit Cloud Environment
Your FirstSpirit Cloud instance includes three stages: Dev, QA and Prod by default.

Development (Dev)
This stage is where one or more developers can work without posing any risk to each other or
the production code.

Quality Assurance (QA)
This stage is the staging or testing area where you can test developed segments to ensure
quality before they’re transferred to the Production stage.

Production (Prod)
This stage contains all deployed/published projects that may already hold content and are
available for your customers.

● All three stages contain nearly the same projects.development states.
● While Dev and QA typically contain test content, Prod contains all of the live project
● Template and setting changes are regularly moved to the next stage to avoid divergent

content.

Preparations - Setting up the environment

⨠ Creating a new Project
⨠ Adding a new user
⨠ Signing in as developer

Version: Dec-2022 Crownpeak Technology GmbH 2

https://docs.e-spirit.com/cloud/developer-cloud-documentation/Cloud_Development_Handover_EN.html#new-projects
https://docs.e-spirit.com/cloud/developer-cloud-documentation/Cloud_Development_Handover_EN.html#sign-upuser-management
https://docs.e-spirit.com/cloud/developer-cloud-documentation/Cloud_Development_Handover_EN.html#sign-in

2. Developing templates
There are two ways to develop your project:

Developing a classic HTML project
In a classic HTML project the HTML, CSS and JavaScript are developed in advance and
transferred to your project in the FirstSpirit SiteArchitect. You might be using this project type
when your editors are going to work directly within the preview of the concrete target website.

Developing a headless project
In a headless project editors are only working with content which is distributed into FirstSpirit
CaaS (Content as a Service) - a data pool of which the content can be accessed on different
channels (PWA, touchpoint, …). You might be using this project type if you are developing a
modern application with separation of front-end and content or diverse applications which will
be using the same content in different target applications.

Version: Dec-2022 Crownpeak Technology GmbH 3

a) Developing a classic HTML project

Content model and front-end (HTML, CSS, JS) are fully created and maintained in FirstSpirit
SiteAchitect.

Developing a classic HTML project Support

1. Starting with an empty project The basics of template development
Fundamentals about FirstSpirit template development

A. Manually creating templates
according to the HTML code structure
(HTML may be provided by an agency)

Composition of templates

B. Importing templates
Use the HTML importer tool

The Template Wizard

2. Creating forms for data entry by editors Creating forms / The "form" tab

How should data be output and your
website look like?

FirstSpirit template syntax

3. Uploading images and files
(incl. CSS and JS)

The FirstSpirit Media Store

4. Checking and debugging templates Debugging template errors

Further capabilities of FirstSpirit
templating and syntax reference
(Scripting, API, guiding the editor etc.)

FirstSpirit template development

A. Continuously developing in an
external tool (Recommended for major
design updates.)

The FirstSpirit Media Store
Upload updated CSS and JS files to theMedia Store

Composition of templates
Transfer modifications in HTML to the respective
template in SiteArchitect

B. Continuously developing in the
SiteArchitect (Recommended for smaller
modifications.)

Composition of templates
Accomplish smaller changes in HTML directly in
SiteArchitect

Version: Dec-2022 Crownpeak Technology GmbH 4

https://docs.e-spirit.com/odfs/templates-basic/index.html
https://docs.e-spirit.com/odfs/templates-basic/composition-tem/index.html
https://docs.e-spirit.com/odfs/template-develo/template-wizard/index.html
https://docs.e-spirit.com/odfs/template-develo/forms/index.html
https://docs.e-spirit.com/odfs/template-develo/template-syntax/index.html
https://docs.e-spirit.com/odfs/edocs/fsar/media-store/index.html
https://docs.e-spirit.com/odfs/template-develo/debugging/index.html
https://docs.e-spirit.com/odfs/template-develo/index.html
https://docs.e-spirit.com/odfs/edocs/fsar/media-store/index.html
https://docs.e-spirit.com/odfs/templates-basic/composition-tem/index.html
https://docs.e-spirit.com/odfs/templates-basic/composition-tem/index.html

b) Developing a headless project

The front-end is usually hosted externally (e.g. PWA in Git), and the content model is
maintained in FirstSpirit SiteAchitect.

Developing a headless project: Support

1. Developing the front-end
You can use any PWA as front-end, no FirstSpirit
output channel needed.

Examples: Custom apps (e.g. built with Angular, React, Vue.js),
front-ends as a Service (e.g. Vue Storefront, Frontastic),
Crownpeak blueprint custom app (FirstSpirit Experience
Accelerator)

The FirstSpirit FSXA
FirstSpirit Experience Accelerator as an
exemplary project

2. Developing the content model
The content is filled in FirstSpirit by means of
forms.

Creating forms / The "form" tab

Starting an e-commerce project
In e-commerce projects, content and structure are
defined by the FirstSpirit project, the front-end is
developed separately. The frontend often strongly
depends on the used e-com system.

FirstSpirit Connect for Commerce
- Reference Project on Git
Our reference project allows an easy start for
template development in e-commerce
environments.

Retrieving data in the front-end
Data is provided by FirstSpirit in a standardized, not
adaptable JSON format. It is automatically
delivered to FirstSpirit CaaS and can be retrieved by
the front-end.

Caas product documentation
Fundamentals about FirstSpirit CaaS

CaaS Connect for Administrators
How to configure CaaS Connect

FirstSpirit's standardized JSON
output
How does the JSON output look like?

Navigation Service
How to build dynamic navigations for
headless scenarios

Version: Dec-2022 Crownpeak Technology GmbH 5

https://docs.e-spirit.com/module/fsxa/FSXA_EN.html
https://docs.e-spirit.com/odfs/template-develo/forms/index.html
https://github.com/e-Spirit/fcecom-reference-project
https://github.com/e-Spirit/fcecom-reference-project
https://docs.e-spirit.com/module/caas/CaaS_Product_Documentation_EN.html
https://docs.e-spirit.com/module/caas-connect/CaaS_Connect_ServerAdministrator_EN.html#projectapp
https://docs.e-spirit.com/odfs/enhanced-json-s/single-expressi/index.html
https://docs.e-spirit.com/odfs/enhanced-json-s/single-expressi/index.html
https://docs.e-spirit.com/module/navigation-service-fsm/Navigation_Service_FSM_Documentation_EN.html

3. Distributing templates
Why to use template distribution

● Support multi-stage development process (develop, test, release).
Sharing work results across different stages (Dev, QA, Prod).

● Synchronize multiple sub-projects (master → sub-project)
Sharing work results across different projects.
Sub-projects can be projects for different countries of your web site (for example EN,
DE, FR…). Use your "master" project for template development and distribute them to
sub-projects for ensuring consistent design and structures across all projects, if
needed.

FirstSpirit offers different tools for distributing templates.

Template distribution
Module for simply distributing all templates, mainly between sub-projects. In the default
setting, only templates and technical media are distributed with a few clicks, across the 3
stages (Dev, QA, Prod). The capabilities can be enhanced by defining a custom configuration.

Content Transport
Capability for distributing selected templates, mainly between development stages. It allows a
more custom configuration, for example: only modified templates. Moreover, it visualizes
dependencies to referenced elements to make it easier for you to determine and transport
complete structures.

Version: Dec-2022 Crownpeak Technology GmbH 6

a) Distributing templates via stages: Dev → QA → Prod

Sharing templates with different stages: Support

1. Transporting templates Dev → QA
Transport the templates of your master
project on Dev to your master on QA

a) using "Template distribution"
if you would like to easily transport
all templates at once

What is Template distribution and how to
use it

b) using 'Content Transport'
if you would like to transport only a
subset of templates

Content Transport

● Transfer templates via FS-CLI using
the feature download and feature
install commands

FS-CLI Releases
See command reference bundled with FS-CLI for more
info.

● Use the Filesystem feature storage
and transport templates via the
“/opt/firstspirit5/s3-transfer”
directory. (AWS S3 Bucket present
in the Dev, QA, and Prod
environments)

Content Transport
See Section 4.9 (Configuring the storage locations)

2. QA: check the result

3. Transporting templates QA → Prod
Transport the templates of your master
project on QA to your master-project on
Prod

a) using "Template distribution"
if you would like to easily transport
all templates at once

What is Template distribution and how to
use it

b) using 'Content Transport'
if you would like to transport only a
subset of templates

Content Transport

● Transfer templates via FS-CLI using
the feature download and feature
install commands

FS-CLI Releases
See command reference bundled with FS-CLI for more
info.

Version: Dec-2022 Crownpeak Technology GmbH 7

https://docs.e-spirit.com/cloud/developer-cloud-documentation/Cloud_Development_Handover_EN.html#distribution
https://docs.e-spirit.com/cloud/developer-cloud-documentation/Cloud_Development_Handover_EN.html#distribution
https://docs.e-spirit.com/odfs/documentation/modules/developers/CONT_EN_FirstSpirit_CorporateContent.pdf
https://github.com/e-Spirit/FSDevTools/releases
https://docs.e-spirit.com/odfs/documentation/modules/developers/CONT_EN_FirstSpirit_CorporateContent.pdf
https://docs.e-spirit.com/cloud/developer-cloud-documentation/Cloud_Development_Handover_EN.html#distribution
https://docs.e-spirit.com/cloud/developer-cloud-documentation/Cloud_Development_Handover_EN.html#distribution
https://docs.e-spirit.com/odfs/documentation/modules/developers/CONT_EN_FirstSpirit_CorporateContent.pdf
https://github.com/e-Spirit/FSDevTools/releases

● Use the Filesystem feature storage
and transport templates via the
“/opt/firstspirit5/s3-transfer”
directory. (AWS S3 Bucket present
in the Dev, QA, and Prod
environments)

Content Transport
See Section 4.9 (Configuring the storage locations)

4. Prod: check the result

Transporting templates to sub-projects
If using sub-projects, include them into your
transport strategy (see a).

Continuous development takes place in the
master project

⨠ transport changes regularly to the
next stage

⨠ check result on the next stage
⨠ include potential sub-projects to

your transport strategy (see a).
⨠ only transport templates of your

master to the next stage

Version: Dec-2022 Crownpeak Technology GmbH 8

https://docs.e-spirit.com/odfs/documentation/modules/developers/CONT_EN_FirstSpirit_CorporateContent.pdf

b) Master → Sub-project

Transporting templates (master → sub-project) Support

1. Transporting your templates
Transport your templates from the master to the
sub-project

a) using "Template distribution"
if you would like to easily transport all
templates at once

What is Template distribution and
how to use it

b) using 'Content Transport'
if you would like to transport only a subset
of templates

Content Transport

● Transfer templates via FS-CLI using the
feature download and feature install
commands

FS-CLI Releases
See command reference bundled with FS-CLI
for more info.

● Use the Filesystem feature storage and
transport templates via the
“/opt/firstspirit5/s3-transfer” directory.
(AWS S3 Bucket present in the Dev, QA,
and Prod environments)

Content Transport
See Section 4.9 (Configuring the storage
locations)

2. Adjusting settings in the sub-project
(languages, resolutions, ContentCreator
settings...)

Set project properties

3. Checking the result
Check the results in the sub-project
(layout, function,…)

Using version comparison

Continuous development takes place in master
project - transport changes regularly to the
sub-project using

"Template distribution" and check the result in
the sub-project (layout, function…)

Version: Dec-2022 Crownpeak Technology GmbH 9

https://docs.e-spirit.com/cloud/developer-cloud-documentation/Cloud_Development_Handover_EN.html#distribution
https://docs.e-spirit.com/cloud/developer-cloud-documentation/Cloud_Development_Handover_EN.html#distribution
https://docs.e-spirit.com/odfs/documentation/modules/developers/CONT_EN_FirstSpirit_CorporateContent.pdf
https://github.com/e-Spirit/FSDevTools/releases
https://docs.e-spirit.com/odfs/documentation/modules/developers/CONT_EN_FirstSpirit_CorporateContent.pdf
https://docs.e-spirit.com/odfs/edocs/admi/firstspirit-ser/project-propert/index.html
https://docs.e-spirit.com/odfs/edocs/fsar/general-operati/version-managem/index.html

4. Tutorial For Distributed
Development of FirstSpirit Project [BETA]
This tutorial presents a concrete example of developing a demo FirstSpirit project in a
distributed fashion using git and FS-CLI.

4.1 Concept

The Git-based development process associates a FirstSpirit project with a Git repository, that
contains all the design elements like templates and technical media (javascript libraries, css
files, etc.).

The Git repository helps to track the developed features, which can make it easier to identify
and resolve issues that may arise later on.

The process also supports feature-branches in Git that allows multiple team members to
work on different requirements or bug fixes simultaneously and in isolation from the main
project or other developments. For each Git branch a separate FirstSpirit branch-project
exists that helps to easily develop and test changes, merge them when they are ready, without
disrupting the main project.

We use ExternalSync to synchronize between the Git repositories and FirstSpirit projects, and
ContentTransport to enhance new branch-projects with example content for a better
development experience as well as to transport the content between D/Q/P stages.

Overall this process improves the efficiency and collaboration in the team and improves the
quality of the codebase in an effective way.

Version: Dec-2022 Crownpeak Technology GmbH 10

4.2 Setup of Git and FS-CLI

Initial setup Support

1. Install FS-CLI The "FSDevTools" command line tool

1.1 Define FS CLI variables Find example values below.

1.2 Add the executable directory of the
FS-CLI (fs-cli/bin) to your system’s PATH
variable so that you can run the FS-CLI
from the project directory.

2. Install git Using version control systems (VCS)

2.1. Configure git Configuring external components

3. Test FS-CLI can connect to the FS server >fs-cli.cmd -e test

FS-CLI Variable Example value Description

fshost ecs-dev-caas-eu-central-1-1.e-spirit.hosting FS server host

fsport 443 FS server port

fsmode HTTPS connection mode

fsuser username@my-company.com username

fspwd Passw0rd! password

Version: Dec-2022 Crownpeak Technology GmbH 11

https://docs.e-spirit.com/odfs/edocs/sync/getting-started/komponenten/command-line-to/index.html
https://docs.e-spirit.com/odfs/edocs/sync/getting-started/komponenten/version-control/index.html
https://docs.e-spirit.com/odfs/edocs/sync/getting-started/configuration/configuring-ext/index.html

4.3 Set up a project (initial transfer to an empty git)

Setting up a project (empty git) CLI Command / Support

1. Create a git repository for the project >mkdir first-spirit-tutorial
>cd first-spirit-tutorial
>git init .

2. Import a FirstSpirit demo project

2.1 Download the archive with a
FirstSpirit demo project

GitHub (ExternalSync)
GitHub (Project Export)

2.2 Import the project into your FS
server

>fs-cli.cmd -e project import
--importProjectName "Demo SmartLiving
Project (master)"
--importProjectDescription "Demo
SmartLiving Project (master)"
--projectFile
"D:\path\to\smartliving-updated.tar.g
z" --databaseLayerMapping
"*:FirstSpiritDBA"

3. Create .gitignore and
add the following content to it

>.FirstSpirit
>/lastCommandResult.json
>/*.log
>/*.log.gz

4. Commit the .gitignore to git >git add .gitignore
>git commit -m "JIRAPROJECT-12345 add
.gitignore"

5. Export the project
via external sync into the file system

>fs-cli.cmd -e --project "Demo
SmartLiving Project (master)"
--syncDir
"./fs-projects/demo-smartliving-proje
ct" export
--permissionMode ALL
-- projectproperty:ALL contentstore
globalstore pagestore sitestore
templatestore mediastore

4. Add the exported files to git,
commit and push them
The master git branch then contains the
"Demo SmartLiving Project (master)" FS
project.

>git add fs-projects
>git commit -m "JIRAPROJECT-1234
synced FS project and added it to
git"
>git remote add origin [your git
repository url]
>git push -u origin master

Version: Dec-2022 Crownpeak Technology GmbH 12

https://github.com/e-Spirit/smartliving-website
https://github.com/e-Spirit/smartliving-website/releases/tag/Mar22

4.4 Use-Case: Implementing a requirement (#42)

Implementing a requirement Support

1. Create a new git feature branch
for later use

>git checkout -b
JIRAPROJECT-42_my_new_feature

This step represents the work of
another developer working on the
same project and implementing other
features.
This Branch will be used in 4.5
Use-Case: Implementing a
requirement with conflicts (#23)

2. Import FS project from the file system
into a new FS project on the FS server
using external sync

→ The local git branch
JIRAPROJECT-42_my_new_feature now
has the FS project "Demo SmartLiving
Project
(JIRAPROJECT-42_my_new_feature)" as a
companion FS project.

>fs-cli.cmd -e --project "Demo
SmartLiving Project
(JIRAPROJECT-42_my_new_feature)"
--syncDir
"./fs-projects/demo-smartliving-projec
t" import --permissionMode ALL
--layerMapping "*:FirstSpiritDBA"

3. Export the newly created companion
project back into the file system using
external sync

→ This should change some of the
project’s files.

>fs-cli.cmd -e --project "Demo
SmartLiving Project
(JIRAPROJECT-42_my_new_feature)"
--syncDir
"./fs-projects/demo-smartliving-projec
t" export --permissionMode ALL --
projectproperty:ALL contentstore
globalstore pagestore sitestore
templatestore mediastore

4. Commit and push these changes >git add fs-projects
>git commit -m "JIRAPROJECT-42 changes
due to re-sync"
>git push -u origin
JIRAPROJECT-42_my_new_feature

5. Implement the new feature using
SiteArchitect

Developing templates

6. Sync the project into the file system >fs-cli.cmd -e --project "Demo
SmartLiving Project
(JIRAPROJECT-42_my_new_feature)"
--syncDir
"./fs-projects/demo-smartliving-projec

Version: Dec-2022 Crownpeak Technology GmbH 13

t" export --permissionMode ALL --
projectproperty:ALL contentstore
globalstore pagestore sitestore
templatestore mediastore

7. Add the implementation
of the new feature to git
Among the changes you’ll notice e.g. that
the
“fs-projects/demo-smartliving-project/Te
mplateStore/PageTemplates/standard/FS
_References.txt” file has been changed.

>git add fs-projects
>git commit -m "JIRAPROJECT-42
implemented my new feature"
>git push

8. Check the demo project
Open "Demo SmartLiving Project
(JIRAPROJECT-42_my_new_feature)" FS
project and check that everything is fine

9. Create a merge request
After the merge request review it can be
merged by fast forwarding because the
master branch has been merged into the
topic branch.

10. Resync the FirstSpirit master project
This brings the new feature in the master
branch and in the master FS Project.

>fs-cli.cmd -e --project "Demo
SmartLiving Project (master)"
--syncDir
"./fs-projects/demo-smartliving-projec
t" import --permissionMode ALL
--layerMapping "*:FirstSpiritDBA"
--import-comment "upd after merge"

11. Delete branches

11.1 Change back to master branch >git checkout master

11.2 Delete the FS project branch
The feature branch FS project may
now be deleted (e.g. via
ServerManager).

>fs-cli project delete
–-deleteProjectName "Demo SmartLiving
Project
(JIRAPROJECT-42_my_new_feature)"

11.3 Delete the git feature branch
The feature git branch may be deleted
as well

>git branch -D
JIRAPROJECT-42_my_new_feature
>git push --delete origin
JIRAPROJECT-42_my_new_feature

Version: Dec-2022 Crownpeak Technology GmbH 14

4.5 Use-Case: Implementing a requirement with conflicts (#23)

Implementing a requirement with
conflicts

CLI Command to perform

1. Checkout feature branch for merge
conflict simulation

>git checkout -b
JIRAPROJECT-23_my_new_feature

2. Import a FirstSpirit project from the file
system into a new project on the
FirstSpirit server using external sync

This creates a FirstSpirit project "Demo
SmartLiving Project
(JIRAPROJECT-32_my_new_feature)" as a
companion FS project
in the local git branch
JIRAPROJECT-23_my_new_feature

>fs-cli.cmd -e --project "Demo
SmartLiving Project
(JIRAPROJECT-23_my_new_feature)"
--syncDir
"./fs-projects/demo-smartliving-projec
t" import --permissionMode ALL
--layerMapping "*:FirstSpiritDBA"
--import-comment "initialize project
for git feature branch"

3. PERFORM STEPS 3-7 in Chapter 4.4
(Export to the file system, commit & push
changes, implement the new feature, sync
the project, add the project to git)

Chapter 4.4

4. Fetch latest git changes >git fetch --all --prune --tags

5. Prepare feature branch for a merge
request

Since we have already merged a new
feature into master in the step 4.4, we
expect a merge conflict when merging
with master.

>git merge origin/master

6. Checking parallel work
Suppose the colleague developer has also
added a new format template with the
same name and UID, then check status.

>git status

7. Resolve merge conflict
Resolve Git merge conflicts manually in a
diff tool and then commit the corrected
versions to Git.

Version: Dec-2022 Crownpeak Technology GmbH 15

There are some cases where we need to
resolve the merge conflict manually.
Examples are UID clashes, where we
would rollback the merge and rename the
conflicting template.

8. Resync the project back into the file
system

>fs-cli.cmd -e --project "Demo
SmartLiving Project
(JIRAPROJECT-23_my_new_feature)"
--syncDir
"./fs-projects/demo-smartliving-projec
t" export --permissionMode ALL --
projectproperty:ALL contentstore
globalstore pagestore sitestore
templatestore mediastore

9. Commit the changes to git >git rm -r
fs-projects\demo-smartliving-project\T
emplateStore\FormatTemplates\content_f
ormat_templates\format_template_for_my
_new_feature\
>git add fs-projects
>git commit -m "JIRAPROJECT-23 rename
conflicting format template“
>git push

10. Try merge master branch again
This time less conflicts should show up.

>git merge origin/master

11. Sync project from file system into
companion FS project after merge conflict
resolution

>fs-cli.cmd -e --project "Demo
SmartLiving Project
(JIRAPROJECT-23_my_new_feature)"
--syncDir
"./fs-projects/demo-smartliving-projec
t" import --permissionMode ALL
--layerMapping "*:FirstSpiritDBA"
--import-comment "upd after merge"

12. PERFORM STEPS 8-11 in Chapter 4.4 Chapter 4.4

Version: Dec-2022 Crownpeak Technology GmbH 16

